
import java.awt.Dimension;
import java.awt.Graphics;
import javax.swing.JPanel;
import javax.swing.JFrame;
import java.awt.Color;

public class LineArt extends JPanel {

// Unique version ID for this class to ensure saved objects
can be loaded safely

private static final long serialVersionUID = 1L;

// Initial width of height of the starting rectangle (980,
630)

private static int width = 980;
private static int height = 630;

// main method to launch the program as a standalone
application - no need to

// modify
public static void main(String[] args) {

LineArt panel = new LineArt();
panel.setPreferredSize(new Dimension(width + 20,

height + 20)); // content size window dimensions

JFrame frame = new JFrame("Line Art"); // Title of
frame

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.add(panel);
frame.pack();
frame.setVisible(true);

}

/**
 * Draw the four corners of line art. Line art displays

straight lines inside a rectangle from one side to
 * a perpendicular side. The lines must be drawn in such a way

that both the starting points of the lines on
 * one side and the ending points on the other side are

equidistant along the sides. The size of the rectangle
 * is 980 pixels wide by 630 pixels high.
 *
 * @param g the Graphics object used for drawing shapes, text,

and images
 */
public void drawLineArt(Graphics g) {

int run = 7;
int pointnum = 100;
double gapw = 0;
double gaph = 0;

int startx = 0;
int starty = 0;
int x = 0;
int y = 0;
int runtime = 0;
int offsetx = 10;
int offsety = 10;
int tempwidth = width;
int tempheight = height;
double c = 1.98;
int count = 0;
int keepx = 0;
int keepy = 0;
//color
int red = 1;
int green = 2;
int blue = 3;
int cdist = 7;
int limhighr = 255;
int limhighg = 254;
int limhighb = 253;
int limlowr = 1;
int limlowg = 1;
int limlowb = 1;
int dred = 1;
int dgreen = 1;
int dblue = 1;
Color color = new Color(red,green,blue);
Color back = new Color(255,255,255);
g.setColor(back);
g.fillRect(0, 0, width + 20, height + 20);
//

while (run > 0) {

// Draw the initial rectangle
color = new Color(0,0,0);
g.setColor(color);
g.drawRect(offsetx, offsety, tempwidth,

tempheight);
System.out.println("(" + offsetx + "," +

offsety + ")");
System.out.println("Width: " + tempwidth);
System.out.println("Height: " + tempheight);
System.out.println();

// Draw bottom-left corner
gapw = 1.0 * tempwidth / (pointnum + 1);
gaph = 1.0 * tempheight / (pointnum + 1);
startx = offsetx;

starty = tempheight + offsety - 1;
x = (int) Math.round(1.0 * startx + gapw);
y = (int) Math.round(1.0 * offsety + gaph) ;
runtime = pointnum;
count = 2;
while (runtime > 0) {

//color
if (red >= (limhighr - cdist)) {

red = limhighr - 1 - cdist;
dred = -1;

}
else if (red <= (limlowr + cdist)) {

red = limlowr + 1 + cdist;
dred = 1;

}
else {

red = red + (dred * cdist);
}
if (green >= (limhighg - cdist)) {

green = limhighg - 1 - cdist;
dgreen = -1;

}
else if (green <= (limlowg + cdist)) {

green = limlowg + 1 + cdist;
dgreen = 1;

}
else {

green = green + (dgreen *
cdist);

}
if (blue >= (limhighb - cdist)) {

blue = limhighb - 1 - cdist;
dblue = -1;

}
else if (blue <= (limlowb + cdist)) {

blue = limlowb + 1 + cdist;
dblue = 1;

}
else {

blue = blue + (dblue * cdist);
}
color = new Color(red, green, blue);
g.setColor(color);
//
g.drawLine(startx, y, x, starty);
x = (int) Math.round(1.0 * startx +

(count * gapw));
y = (int) Math.round(1.0 * offsety +

(count * gaph));
runtime--;

count++;
}
// Draw bottom-right corner
startx = tempwidth + offsetx - 1;
starty = tempheight + offsety - 1;
x = (int) Math.round(1.0 * offsetx + gapw);
y = (int) Math.round(1.0 * starty - gaph);
runtime = pointnum;
count = 2;
while (runtime > 0) {

//color
if (red >= (limhighr - cdist)) {

red = limhighr - 1 - cdist;
dred = -1;

}
else if (red <= (limlowr + cdist)) {

red = limlowr + 1 + cdist;
dred = 1;

}
else {

red = red + (dred * cdist);
}
if (green >= (limhighg - cdist)) {

green = limhighg - 1 - cdist;
dgreen = -1;

}
else if (green <= (limlowg + cdist)) {

green = limlowg + 1 + cdist;
dgreen = 1;

}
else {

green = green + (dgreen *
cdist);

}
if (blue >= (limhighb - cdist)) {

blue = limhighb - 1 - cdist;
dblue = -1;

}
else if (blue <= (limlowb + cdist)) {

blue = limlowb + 1 + cdist;
dblue = 1;

}
else {

blue = blue + (dblue * cdist);
}
color = new Color(red, green, blue);
g.setColor(color);
//
g.drawLine(startx, y, x, starty);
x = (int) Math.round(1.0 * offsetx +

(count * gapw));
y = (int) Math.round(1.0 * starty -

(count * gaph));
runtime--;
count++;

}
// Draw top-right corner
startx = tempwidth + offsetx - 1;
starty = offsety;
x = (int) Math.round(1.0 * startx - gapw);
y = (int) Math.round(1.0 * offsety +

tempheight - 1 - gaph);
runtime = pointnum;
count = 2;
while (runtime > 0) {

//color
if (red >= (limhighr - cdist)) {

red = limhighr - 1 - cdist;
dred = -1;

}
else if (red <= (limlowr + cdist)) {

red = limlowr + 1 + cdist;
dred = 1;

}
else {

red = red + (dred * cdist);
}
if (green >= (limhighg - cdist)) {

green = limhighg - 1 - cdist;
dgreen = -1;

}
else if (green <= (limlowg + cdist)) {

green = limlowg + 1 + cdist;
dgreen = 1;

}
else {

green = green + (dgreen *
cdist);

}
if (blue >= (limhighb - cdist)) {

blue = limhighb - 1 - cdist;
dblue = -1;

}
else if (blue <= (limlowb + cdist)) {

blue = limlowb + 1 + cdist;
dblue = 1;

}
else {

blue = blue + (dblue * cdist);
}

color = new Color(red, green, blue);
g.setColor(color);
//
g.drawLine(startx, y, x, starty);
x = (int) Math.round(1.0 * startx -

(count * gapw));
y = (int) Math.round(1.0 * offsety +

tempheight - 1 - (count * gaph));
runtime--;
count++;

}
// Draw top-left corner
startx = offsetx;
starty = offsety;
x = (int) Math.round(1.0 * offsetx + tempwidth

- 1 - gapw);
y = (int) Math.round(1.0 * starty + gaph);
runtime = pointnum;
count = 2;
while (runtime > 0) {

//color
if (red >= (limhighr - cdist)) {

red = limhighr - 1 - cdist;
dred = -1;

}
else if (red <= (limlowr + cdist)) {

red = limlowr + 1 + cdist;
dred = 1;

}
else {

red = red + (dred * cdist);
}
if (green >= (limhighg - cdist)) {

green = limhighg - 1 - cdist;
dgreen = -1;

}
else if (green <= (limlowg + cdist)) {

green = limlowg + 1 + cdist;
dgreen = 1;

}
else {

green = green + (dgreen *
cdist);

}
if (blue >= (limhighb - cdist)) {

blue = limhighb - 1 - cdist;
dblue = -1;

}
else if (blue <= (limlowb + cdist)) {

blue = limlowb + 1 + cdist;

dblue = 1;
}
else {

blue = blue + (dblue * cdist);
}
color = new Color(red, green, blue);
g.setColor(color);
//
g.drawLine(startx, y, x, starty);
x = (int) Math.round(1.0 * offsetx +

tempwidth - (count * gapw));
y = (int) Math.round(1.0 * starty +

(count * gaph));
runtime--;
count++;

}

run--;
keepx = offsetx;
keepy = offsety;
offsetx = (int) Math.round(offsetx +

(tempwidth / (2 * c)));
offsety = (int) Math.round(offsety +

(tempheight / (2 * c)));
tempwidth = (int) Math.round(tempwidth - (2 *

(offsetx - keepx)));
tempheight = (int) Math.round(tempheight - (2

* (offsety - keepy)));
}

}

/**
 * Overrides JPanel's paintComponent method to perform custom

drawing.
 *
 * @param g the Graphics object used for drawing shapes, text,

and images
 */
@Override
protected void paintComponent(Graphics g) {

super.paintComponent(g); // Clears the panel before
drawing

drawLineArt(g);
}

}

