import java.awt.Dimension;
import java.awt.Graphics;
import javax.swing.JPanel;
import javax.swing.JFrame;
import java.awt.Color;

public class LineArt extends JPanel {

// Unique version ID for this class to ensure saved objects
can be loaded safely
private static final long serialVersionUID = 1L;

// Initial width of height of the starting rectangle (980,
630)

private static int width = 980;

private static int height = 630;

// main method to launch the program as a standalone
application - no need to
// modify
public static void main(String[] args) {
LineArt panel = new LineArt();
panel.setPreferredSize(new Dimension(width + 20,
height + 20)); // content size window dimensions

JFrame frame = new JFrame('Line Art"); // Title of
frame

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

frame.add(panel);

frame.pack();

frame.setVisible(true);

}

/%%
* Draw the four corners of line art. Line art displays
straight lines inside a rectangle from one side to
* a perpendicular side. The lines must be drawn in such a way
that both the starting points of the lines on
* one side and the ending points on the other side are
equidistant along the sides. The size of the rectangle
* 1s 980 pixels wide by 630 pixels high.
>k
* @param g the Graphics object used for drawing shapes, text,
and images
*/
public void drawLineArt(Graphics g) {
int run = 7;
int pointnum = 100;
double gapw

= 0;
double gaph = 0;



tempheight);

offsety + ")");

int startx

int starty
int x = 0;
int y = 0;
int runtime = 0;
int offsetx = 10;
int offsety = 10;

int tempwidth = width;
int tempheight = height;

double c

int count
int keepx
int keepy

//color
int red

int green

= 1.98;

0
0
0

=

2;

int blue = 3;
int cdist = 7;

int limhighr
int limhighg
int limhighb
int limlowr =1
int limlowg = 1;
int limlowb =1

255;
254;
253;

’

[
’

int dred = 1;
int dgreen = 1;

int dblue =
Color color

1;
= new Color(red,green,blue);

Color back = new Color(255,255,255);
g.setColor(back);
g.fillRect(@, @, width + 20, height + 20);

//

while (run > 0) {

// Draw the initial rectangle

color = new Color(0,0,0);
g.setColor(color);

g.drawRect(offsetx, offsety, tempwidth,

System.out.println(" (" + offsetx + "," +

System.out.printin("Width: " + tempwidth);
System.out.printin("Height: " + tempheight);
System.out.println();

// Draw bottom-left corner

gapw = 1.0 x tempwidth / (pointnum + 1);
gaph = 1.0 x tempheight / (pointnum + 1);
startx = offsetx;



starty = tempheight + offsety - 1;

x = (int) Math.round(1.0 * startx + gapw);

y = (int) Math.round(1.0 *x offsety + gaph) ;
runtime = pointnum;

count = 2;
while (runtime > 0) {
//color

if (red >= (limhighr - cdist)) {
red = limhighr - 1 - cdist;
dred = -1;

}

else if (red <= (limlowr + cdist)) {
red = limlowr + 1 + cdist;

dred = 1;
}
else {

red = red + (dred x cdist);
}

if (green >= (limhighg - cdist)) {
green = limhighg - 1 - cdist;
dgreen = -1;

I

else if (green <= (limlowg + cdist)) {
green = limlowg + 1 + cdist;
dgreen = 1;

I

else {
green = green + (dgreen x

cdist);

I

if (blue >= (limhighb - cdist)) {
blue = limhighb - 1 - cdist;
dblue = -1;

b

else if (blue <= (limlowb + cdist)) {
blue = limlowb + 1 + cdist;

dblue = 1;
}
else {

blue = blue + (dblue * cdist);
}

color = new Color(red, green, blue);

g.setColor(color);

//

g.drawLine(startx, y, x, starty);

x = (int) Math.round(1.0 x startx +
(count x gapw));

y = (int) Math.round(1.0 * offsety +
(count * gaph));

runtime—-;



count++;
}
// Draw bottom-right corner
startx = tempwidth + offsetx - 1;
starty = tempheight + offsety - 1;
x = (int) Math.round(1.0 * offsetx + gapw);
y = (int) Math.round(1.0 * starty - gaph);
runtime = pointnum;

count = 2;
while (runtime > 0) {
//color

if (red >= (limhighr - cdist)) {
red = limhighr - 1 - cdist;
dred = -1;

else if (red <= (limlowr + cdist)) {
red = limlowr + 1 + cdist;

dred = 1;
}
else {

red = red + (dred x cdist);
}

if (green >= (limhighg - cdist)) {
green = limhighg - 1 - cdist;
dgreen = -1;

I

else if (green <= (limlowg + cdist)) {
green = limlowg + 1 + cdist;
dgreen = 1;

+

else {
green = green + (dgreen x

cdist);

I

if (blue >= (limhighb - cdist)) {
blue = limhighb - 1 - cdist;
dblue = -1;

I

else if (blue <= (limlowb + cdist)) {
blue = limlowb + 1 + cdist;

dblue = 1;
}
else {

blue = blue + (dblue x cdist);
}

color = new Color(red, green, blue);
g.setColor(color);

//

g.drawLine(startx, y, x, starty);

x = (int) Math.round(1.0 * offsetx +



(count * gapw));
y = (int) Math.round(1.0 * starty -
(count * gaph));
runtime——;
count++;
b
// Draw top-right corner
startx = tempwidth + offsetx - 1;
starty = offsety;
x = (int) Math.round(1.0 *x startx — gapw);
y = (int) Math.round(1.0 * offsety +
tempheight - 1 - gaph);
runtime
count =
while (r

= pointnum;

2;

untime > 0) {

//color

if (red >= (limhighr - cdist)) {
red = limhighr - 1 - cdist;
dred = -1;

}

else if (red <= (limlowr + cdist)) {
red = limlowr + 1 + cdist;

dred = 1;
}
else {

red = red + (dred *x cdist);
}

if (green >= (limhighg - cdist)) {
green = limhighg - 1 - cdist;
dgreen = -1;

I

else if (green <= (limlowg + cdist)) {
green = limlowg + 1 + cdist;
dgreen = 1;

I

else {
green = green + (dgreen x

cdist);

I

if (blue >= (limhighb - cdist)) {
blue = limhighb - 1 - cdist;
dblue = -1;

I

else if (blue <= (limlowb + cdist)) {
blue = limlowb + 1 + cdist;
dblue = 1;

I

else {

¥

blue = blue + (dblue * cdist);



color = new Color(red, green, blue);
g.setColor(color);
//
g.drawLine(startx, y, x, starty);
x = (int) Math.round(1.0 * startx -
(count * gapw));
y = (int) Math.round(1.0 * offsety +
tempheight - 1 - (count * gaph));
runtime——;
count++;
}
// Draw top-left corner
startx = offsetx;
starty = offsety;
x = (int) Math.round(1.0 *x offsetx + tempwidth

- 1 - gapw);
y = (int) Math.round(1.0 *x starty + gaph);
runtime = pointnum;
count = 2;
while (runtime > 0) {
//color
if (red >= (limhighr - cdist)) {
red = limhighr - 1 - cdist;
dred = -1;
I
else if (red <= (limlowr + cdist)) {
red = limlowr + 1 + cdist;
dred = 1;
I
else {
red = red + (dred * cdist);
I
if (green >= (limhighg - cdist)) {
green = limhighg - 1 - cdist;
dgreen = -1;
I
else if (green <= (limlowg + cdist)) {
green = limlowg + 1 + cdist;
dgreen = 1;
I
else {
green = green + (dgreen x
cdist);
I

if (blue >= (limhighb - cdist)) {
blue = limhighb - 1 - cdist;
dblue = -1;

b

else if (blue <= (limlowb + cdist)) {
blue = limlowb + 1 + cdist;



dblue = 1;
}

else {

I

color = new Color(red, green, blue);
g.setColor(color);

//

g.drawLine(startx, y, x, starty);

x = (int) Math.round(1.0 * offsetx +

blue = blue + (dblue x cdist);

tempwidth - (count * gapw));

y = (int) Math.round(1.0 * starty +
(count * gaph));

runtime——;

count++;

by

run——;

keepx = offsetx;

keepy = offsety;

offsetx = (int) Math.round(offsetx +
(tempwidth / (2 % c)));

offsety = (int) Math.round(offsety +
(tempheight / (2 *x c)));

tempwidth = (int) Math.round(tempwidth - (2 x
(offsetx — keepx)));

tempheight = (int) Math.round(tempheight - (2
* (offsety — keepy)));

¥

}

/%%
* Overrides JPanel's paintComponent method to perform custom
drawing.
%
* @param g the Graphics object used for drawing shapes, text,
and images
*/
@Override
protected void paintComponent(Graphics g) {
super.paintComponent(g); // Clears the panel before
drawing
drawLineArt(g);



