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We apply the general formalism of statistical mechanics developed in Chapter 4 to the Ising model,
a model for which the interactions between the magnetic moments are important. We will find
that these interactions lead to a wide range of interesting phenomena, including the existence
of phase transitions. Computer simulations will be used extensively and a simple, but powerful
approximation method known as mean-field theory will be introduced.

5.1 Paramagnetism

The most familiar magnetic system in our everyday experience is probably the magnet on your
refrigerator door. This magnet likely consists of iron ions localized on sites of a lattice with
conduction electrons that are free to move throughout the crystal. The iron ions each have a
magnetic moment and due to a complicated interaction with each other and with the conduction
electrons, they tend to line up with each other. At sufficiently low temperatures, the moments can
be aligned by an external magnetic field and produce a net magnetic moment or magnetization
which remains even if the magnetic field is removed. Materials that retain a non-zero magnetization
in zero magnetic field are called ferromagnetic. At high enough temperatures there is enough energy
to destroy the magnetization, and the iron is said to be in the paramagnetic phase. One of the key
goals of this chapter is to understand the transition between the ferromagnetic and paramagnetic
phases.

In the simplest model of magnetism the magnetic moment can be in one of two states as
discussed in Section 4.3.1. The next level of complexity is to introduce an interaction between
neighboring magnetic moments. A model that includes such an interaction is discussed in Sec-
tion 5.4.
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5.2 Noninteracting Magnetic Moments

We first review the behavior of a system of noninteracting magnetic moments with spin 1/2 in
equilibrium with a heat bath at temperature T . We discussed this system in Section 4.3.1 and in
Example 4.1 using the microcanonical ensemble.

The energy of interaction of a magnetic moment µ in a magnetic field B is given by

E = −µ · B = −µzB, (5.1)

where µz is the component of the magnetic moment in the direction of the magnetic field B.
Because the magnetic moment has spin 1/2, it has two possible orientations. We write µz = sµ,
where s = ±1. The association of the magnetic moment of a particle with its spin is an intrinsic
quantum mechanical effect (see Section 5.10.1). We will refer to the magnetic moment or the spin
of a particle interchangeably.

What would we like to know about the properties of a system of noninteracting spins? In the
absence of an external magnetic field, there is little of interest. The spins point randomly up or
down because there is no preferred direction, and the mean internal energy is zero. In contrast, in
the presence of an external magnetic field, the net magnetic moment and the energy of the system
are nonzero. In the following we will calculate their mean values as a function of the external
magnetic field B and the temperature T .

We assume that the spins are fixed on a lattice so that they are distinguishable even though
the spins are intrinsically quantum mechanical. Hence the only quantum mechanical property
of the system is that the spins are restricted to two values. As we will learn, the usual choice
for determining the thermal properties of systems defined on a lattice is the canonical ensemble.
Because each spin is independent of the others and distinguishable, we can find the partition
function for one spin, Z1, and use the relation ZN = ZN

1 to obtain ZN , the partition function for
N spins. (We reached a similar conclusion in Example 4.2.) We can derive this relation between

Z1 and ZN by writing the energy of the N spins as E = −µB∑N
i=1 si and expressing the partition

function ZN for the N -spin system as

ZN =
∑

s1=±1

∑

s2=±1

. . .
∑

sN =±1

eβµBΣN
i=1si (5.2a)

=
∑

s1=±1

∑

s2=±1

. . .
∑

sN =±1

eβµBs1eβµBs2 . . . eβµBsN (5.2b)

=
∑

s1=±1

eβµBs1

∑

s2=±1

eβµBs2 . . .
∑

sN=±1

eβµBsN (5.2c)

=
[

∑

s1=±1

eβµBs1
]N

= ZN
1 . (5.2d)

To find Z1 we write

Z1 =
∑

s=±1

e−βµBs = eβµB(−1) + eβµB(+1) = 2 coshβµB. (5.3)

Hence, the partition function for N spins is

ZN = (2 coshβµB)N . (5.4)
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We now use the canonical ensemble formalism that we developed in Section 4.6 to find the
thermodynamic properties of the system for a given T and B. The free energy is given by

F = −kT lnZN = −NkT lnZ1 = −NkT ln(2 coshβµB). (5.5)

The mean energy E is

E = −∂ lnZN

∂β
=
∂(βF )

∂β
= −NµB tanhβµB. (5.6)

From (5.6) we see that E → 0 as T → ∞ (β → 0). In the following we will frequently omit the
mean value notation when it is clear from the context that an average is implied.

Problem 5.1. Comparison of the results of two ensembles

(a) Compare the result (5.6) for the mean energy E(T ) of a system of noninteracting spins in
the canonical ensemble to the result that you found in Problem 4.21 for T (E) using the
microcanonical ensemble.

(b) Why is it much easier to treat a system of noninteracting spins in the canonical ensemble?

(c) What is the probability p that a spin is parallel to the magnetic field B given that the system
is in equilibrium with a heat bath at temperature T ? Compare your result to the result in
(4.74) using the microcanonical ensemble.

(d) What is the relation of the results that we have found for a system of noninteracting spins to
the results obtained in Example 4.2?

The heat capacity C is a measure of the change of the temperature due to the addition of
energy at constant magnetic field. The heat capacity at constant magnetic field can be expressed
as

C =
(∂E

∂T

)

B
= −kβ2 ∂E

∂β
. (5.7)

(We will write C rather than CB .) From (5.6) and (5.7) we find that the heat capacity of a system
of N noninteracting spins is given by

C = kN(βµB)2 sech2 βµB. (5.8)

Note that the heat capacity is always positive, goes to zero at high T , and goes to zero as T → 0,
consistent with the third law of thermodynamics.

Magnetization and Susceptibility. Two other macroscopic quantities of interest for mag-
netic systems are the mean magnetization M (in the z direction) given by

M = µ

N
∑

i=1

si, (5.9)

and the isothermal susceptibility χ, which is defined as

χ =
(∂M

∂B

)

T
. (5.10)
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The susceptibility χ is a measure of the change of the magnetization due to the change in the
external magnetic field and is another example of a response function.

We will frequently omit the factor of µ in (5.9) so that M becomes the number of spins
pointing in a given direction minus the number pointing in the opposite direction. Often it is more
convenient to work with the mean magnetization per spin m, an intensive variable, which is defined
as

m =
1

N
M. (5.11)

As for the discussion of the heat capacity and the specific heat, the meaning of M and m will be
clear from the context.

We can express M and χ in terms of derivatives of lnZ by noting that the total energy can
be expressed as

E = E0 −MB, (5.12)

where E0 is the energy of interaction of the spins with each other (the energy of the system when
B = 0) and −MB is the energy of interaction of the spins with the external magnetic field. (For
noninteracting spins E0 = 0.) The form of E in (5.12) implies that we can write Z in the form

Z =
∑

s

e−β(E0,s−MsB), (5.13)

where Ms and E0,s are the values of M and E0 in microstate s. From (5.13) we have

∂Z

∂B
=

∑

s

βMs e
−β(E0,s−MsB), (5.14)

and hence the mean magnetization is given by

M =
1

Z

∑

s

Mse
−β(E0,s−MsB) (5.15a)

=
1

βZ

∂Z

∂B
= kT

∂ lnZN

∂B
. (5.15b)

If we substitute the relation F = −kT lnZ, we obtain

M = −∂F
∂B

. (5.16)

Problem 5.2. Relation of the susceptibility to the magnetization fluctuations

Use considerations similar to that used to derive (5.15b) to show that the isothermal susceptibility
can be written as

χ =
1

kT
[M2 −M

2
] . (5.17)

Note the similarity of the form (5.17) with the form (4.88) for the heat capacity CV .
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The relation of the response functions CV and χ to the equilibrium fluctuations of the energy
and magnetization, respectively, are special cases of a general result known as the fluctuation-
dissipation theorem.

Example 5.1. Magnetization and susceptibility of a noninteracting system of spins

From (5.5) and (5.16) we find that the mean magnetization of a system of noninteracting spins is

M = Nµ tanh(βµB). (5.18)

The susceptibility can be calculated using (5.10) and (5.18) and is given by

χ = Nµ2β sech2(βµB). (5.19)

♦

Note that the arguments of the hyperbolic functions in (5.18) and (5.19) must be dimensionless
and be proportional to the ratio µB/kT . Because there are only two energy scales in the system,
µB, the energy of interaction of a spin with the magnetic field, and kT , the arguments must depend
only on the dimensionless ratio µB/kT .

For high temperatures (kT ≫ µB) or (βµB ≪ 1), sech(βµB) → 1, and the leading behavior
of χ is given by

χ→ Nµ2β =
Nµ2

kT
. (kT ≫ µB) (5.20)

The result (5.20) is known as the Curie form of the isothermal susceptibility and is commonly
observed for magnetic materials at high temperatures.

From (5.18) we see that M is zero at B = 0 for all T > 0, which implies that the system is
paramagnetic. Because a system of noninteracting spins is paramagnetic, such a model is not ap-
plicable to materials such as iron which can have a nonzero magnetization even when the magnetic
field is zero. Ferromagnetism is due to the interactions between the spins.

Problem 5.3. Thermodynamics of noninteracting spins

(a) Plot the magnetization given by (5.18) and the heat capacity C given in (5.8) as a function of
T for a given external magnetic field B. Give a simple argument why C must have a broad
maximum somewhere between T = 0 and T = ∞.

(b) Plot the isothermal susceptibility χ versus T for fixed B and describe its limiting behavior for
low temperatures.

(c) Calculate the entropy of a system of N noninteracting spins and discuss its limiting behavior
at low (kT ≪ µB) and high temperatures (kT ≫ µB). Does S depend on kT and µB
separately?

Problem 5.4. Adiabatic demagnetization

Consider a solid containing N noninteracting paramagnetic atoms whose magnetic moments can
be aligned either parallel or antiparallel to the magnetic field B. The system is in equilibrium with
a heat bath at temperature T . The magnetic moment is µ = 9.274× 10−24 J/tesla.
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(a) If B = 4 tesla, at what temperature is 75% of the spins oriented in the +z direction?

(b) Assume that N = 1023, T = 1 K, and that B is increased quasistatically from 1 tesla to 10 tesla.
What is the magnitude of the energy transfer from the heat bath?

(c) If the system is now thermally isolated at T = 1 K and B is quasistatically decreased from
10 tesla to 1 tesla, what is the final temperature of the system? This process is known as
adiabatic demagnetization. (This problem can be done without elaborate calculations.)

5.3 Thermodynamics of Magnetism

The fundamental magnetic field is B. However, we can usually control only the part of B due to
currents in wires, and cannot directly control that part of the field due to the magnetic dipoles in
a material. Thus, we define a new field H by

H =
1

µ0
B− M

V
, (5.21)

where M is the magnetization and V is the volume of the system. In this section we use V instead
of N to make contact with standard notation in electromagnetism. Our goal in this section is to
find the magnetic equivalent of the thermodynamic relation dW = −PdV in terms of H, which
we can control, and M, which we can measure. To gain insight on how to do so we consider a
solenoid of length L and n turns per unit length with a magnetic material inside. When a current
I flows in the solenoid, there is an emf E generated in the solenoid wires. The power or rate at
which work is done on the magnetic substance is −EI. By Faraday’s law we know that

E = −dΦ
dt

= −ALndB
dt
, (5.22)

where the cross-sectional area of the solenoid is A, the magnetic flux through each turn is Φ = BA,
and there are Ln turns. The work done on the system is

dW = −EIdt = ALnIdB. (5.23)

Ampere’s law can be used to find that the field H within the ideal solenoid is uniform and is given
by

H = nI. (5.24)

Hence, (5.23) becomes
dW = ALHdB = V HdB, (5.25)

We use (5.21) to express (5.25) as

dW = µ0V HdH + µ0HdM. (5.26)

The first term on the right-hand side of (5.26) refers only to the field energy, which would be there
even if there were no magnetic material inside the solenoid. Thus, for the purpose of understanding
the thermodynamics of the magnetic material, we can neglect the first term and write

dW = µ0HdM. (5.27)
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The form of (5.27) leads us to introduce the magnetic free energy, G(T,M), given by

dG(T,M) = −SdT + µ0HdM. (5.28)

We use the notation G for the free energy as a function of T and M and reserve F for the free
energy F (T,H). We define

F = G− µ0HM, (5.29)

and find

dF (T,H) = dG− µ0HdM − µ0MdH (5.30a)

= −SdT + µ0HdM − µ0HdM − µ0MdH (5.30b)

= −SdT − µ0MdH. (5.30c)

Thus, we have

µ0M = − ∂F

∂H
. (5.31)

The factor of µ0 is usually incorporated into H , so that we will usually write

F (T,H) = G(T,M) −HM, (5.32)

as well as dW = HdM and dG = −SdT +HdM . Similarly, we will write dG = −SdT +HdM ,

M = −
( ∂F

∂H

)

T
, (5.33)

and

χ =
(∂M

∂H

)

T
. (5.34)

The free energy F (T,H) is frequently more useful because the quantities T and H are the easiest
to control experimentally as well as in computer simulations.

5.4 The Ising Model

As we saw in Section 5.1 the absence of interactions between spins implies that the system can
only be paramagnetic. The most important and simplest system that exhibits a phase transition is
the Ising model.1 The model was proposed by Wilhelm Lenz (1888–1957) in 1920 and was solved
exactly for one dimension by his student Ernst Ising2 (1900–1998) in 1925. Ising was disappointed
because the one-dimensional model does not have a phase transition. Lars Onsager (1903–1976)
solved the Ising model exactly in 1944 for two dimensions in the absence of an external magnetic
field and showed that there was a phase transition in two dimensions.3

1Each year hundreds of papers are published that apply the Ising model to problems in fields as diverse as neural
networks, protein folding, biological membranes, and social behavior. For this reason the Ising model is sometimes
known as the “fruit fly” of statistical mechanics.

2A biographical note about Ernst Ising can be found at <www.bradley.edu/las/phy/personnel/ising.html> .
3The model is sometimes known as the Lenz-Ising model. The history of the Ising model is discussed by

Stephen Brush.

<www.bradley.edu/las/phy/personnel/ising.html>
http://www.bradley.edu/las/phy/personnel/ising.html
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– J + J

Figure 5.1: Two nearest neighbor spins (in any dimension) have an interaction energy −J if they
are parallel and interaction energy +J if they are antiparallel.

In the Ising model the spin at every site is either up (+1) or down (−1). Unless otherwise
stated, the interaction is between nearest neighbors only and is given by −J if the spins are parallel
and +J if the spins are antiparallel. The total energy can be expressed in the form4

E = −J
N

∑

i,j=nn(i)

sisj −H

N
∑

i=1

si, (Ising model) (5.35)

where si = ±1 and J is known as the exchange constant. We will assume that J > 0 unless
otherwise stated and that the external magnetic field is in the up or positive z direction. In the
following we will refer to s as the spin.5 The first sum in (5.35) is over all pairs of spins that are
nearest neighbors. The interaction between two nearest neighbor spins is counted only once. A
factor of µ has been incorporated into H , which we will refer to as the magnetic field. In the same
spirit the magnetization becomes the net number of positive spins.

Because the number of spins is fixed, we will choose the canonical ensemble and evaluate the
partition function. In spite of the apparent simplicity of the Ising model it is possible to obtain
exact solutions only in one dimension and in two dimensions in the absence of a magnetic field.6

In other cases we need to use various approximation methods and computer simulations. There is
no general recipe for how to perform the sums and integrals needed to calculate thermodynamic
quantities.

5.5 The Ising Chain

In the following we obtain an exact solution of the one-dimensional Ising model and introduce an
additional physical quantity of interest.

4If we interpret the spin as a operator, then the energy is really a Hamiltonian. The distinction is unimportant
here.

5Because the spin Ŝ is a quantum mechanical object, we might expect that the commutator of the spin operator
with the Hamiltonian is nonzero. However, because the Ising model retains only the component of the spin along
the direction of the magnetic field, the commutator of the spin Ŝ with the Hamiltonian is zero, and we can treat
the spins in the Ising model as if they were classical.

6It has been shown that the three-dimensional Ising model (and the two-dimensional Ising model with nearest
neighbor and next nearest neighbor interactions) is computationally intractable and falls into the same class as other
problems such as the traveling salesman problem. See <www.sandia.gov/LabNews/LN04-21-00/sorin_story.html>

and <www.siam.org/siamnews/07-00/ising.pdf> . The Ising model is of interest to computer scientists in part for
this reason.

<www.sandia.gov/LabNews/LN04-21-00/sorin_story.html>
http://www.sandia.gov/LabNews/LN04-21-00/sorin_story.html
<www.siam.org/siamnews/07-00/ising.pdf>
http://www.siam.org/siamnews/07-00/ising.pdf
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(a) (b)

Figure 5.2: (a) Example of free boundary conditions for N = 9 spins. The spins at each end
interact with only one spin. In contrast, all the other spins interact with two spins. (b) Example
of toroidal boundary conditions. The Nth spin interacts with the first spin so that the chain forms
a ring. As a result, all the spins have the same number of neighbors and the chain does not have
a surface.

5.5.1 Exact enumeration

As we mentioned, the canonical ensemble is the natural choice for calculating the thermodynamic
properties of systems defined on a lattice. Because the spins are interacting, the relation ZN = ZN

1

is not applicable, and we have to calculate ZN directly. The calculation of the partition function
ZN is straightforward in principle. The goal is to enumerate all the microstates of the system
and their corresponding energies, calculate ZN for finite N , and then take the limit N → ∞.
The difficulty is that the total number of states, 2N , is too many for N ≫ 1. However, for the
one-dimensional Ising model (Ising chain) we can calculate ZN for small N and easily see how to
generalize to arbitrary N .

For a finite chain we need to specify the boundary conditions. One possibility is to choose
free ends so that the spin at each end has only one neighbor instead of two (see Figure 5.2(a)).
Another choice is toroidal boundary conditions as shown in Figure 5.2(b). This choice implies that
the Nth spin is connected to the first spin so that the chain forms a ring. In this case every spin
is equivalent, and there is no boundary or surface. The choice of boundary conditions does not
matter in the thermodynamic limit, N → ∞.

In the absence of an external magnetic field it is more convenient to choose free boundary
conditions when calculating Z directly. (We will choose toroidal boundary conditions when doing
simulations.) The energy of the Ising chain in the absence of an external magnetic field with free
boundary conditions is given explicitly by

E = −J
N−1
∑

i=1

sisi+1. (free boundary conditions) (5.36)

We begin by calculating the partition function for two spins. There are four possible states:
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– J – J + J + J

Figure 5.3: The four possible microstates of the N = 2 Ising chain.

both spins up with energy −J , both spins down with energy −J , and two states with one spin up
and one spin down with energy +J (see Figure 5.3). Thus Z2 is given by

Z2 = 2eβJ + 2e−βJ = 4 coshβJ. (5.37)

In the same way we can enumerate the eight microstates for N = 3. We find that

Z3 = 2 e2βJ + 4 + 2 e−2βJ = 2(eβJ + e−βJ)2 (5.38a)

= (eβJ + e−βJ)Z2 = (2 coshβJ)Z2. (5.38b)

The relation (5.38b) between Z3 and Z2 suggests a general relation between ZN and ZN−1:

ZN = (2 coshβJ)ZN−1 = 2
(

2 coshβJ
)N−1

. (5.39)

We can derive the recursion relation (5.39) directly by writing ZN for the Ising chain in the
form

ZN =
∑

s1=±1

· · ·
∑

sN =±1

eβJ
PN−1

i=1
sisi+1 . (5.40)

The sum over the two possible states for each spin yields 2N microstates. To understand the
meaning of the sums in (5.40), we write (5.40) for N = 3:

Z3 =
∑

s1=±1

∑

s2=±1

∑

s3=±1

eβJs1s2+βJs2s3 . (5.41)

The sum over s3 can be done independently of s1 and s2, and we have

Z3 =
∑

s1=±1

∑

s2=±1

eβJs1s2
[

eβJs2 + e−βJs2
]

(5.42a)

=
∑

s1=±1

∑

s2=±1

eβJs1s22 coshβJs2 = 2
∑

s1=±1

∑

s2=±1

eβJs1s2 coshβJ. (5.42b)

We have used the fact that the cosh function is even and hence coshβJs2 = coshβJ , independently
of the sign of s2. The sum over s1 and s2 in (5.42b) is straightforward, and we find,

Z3 = (2 coshβJ)Z2, (5.43)

in agreement with (5.38b).

The analysis of (5.40) for ZN proceeds similarly. We note that spin sN occurs only once in
the exponential, and we have, independently of the value of sN−1,

∑

sN =±1

eβJsN−1sN = 2 coshβJ. (5.44)
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Figure 5.4: The temperature dependence of the specific heat (in units of k) of an Ising chain in
the absence of an external magnetic field. At what value of kT/J does C exhibit a maximum?

Hence we can write ZN as
ZN = (2 coshβJ)ZN−1. (5.45)

We can continue this process to find

ZN = (2 coshβJ)2ZN−2, (5.46a)

= (2 coshβJ)3ZN−3, (5.46b)

...

= (2 coshβJ)N−1Z1 = 2(2 coshβJ)N−1, (5.46c)

where we have used the fact that Z1 =
∑

s1=±1 1 = 2. No Boltzmann factor appears in Z1 because
there are no interactions with one spin.

We can use the general result (5.39) for ZN to find the Helmholtz free energy:

F = −kT lnZN = −kT
[

ln 2 + (N − 1) ln(2 coshβJ)
]

. (5.47)

In the thermodynamic limit N → ∞, the term proportional to N in (5.47) dominates, and we have
the desired result:

F = −NkT ln
(

2 coshβJ
)

. (5.48)

Problem 5.5. Exact enumeration

Enumerate the 2N microstates for the N = 4 Ising chain and find the corresponding contributions
to Z4 for free boundary conditions. Then show that Z4 and Z3 satisfy the recursion relation (5.45)
for free boundary conditions.
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Problem 5.6. Thermodynamics of the Ising chain

(a) What is the ground state of the Ising chain?

(b) What is the entropy S in the limits T → 0 and T → ∞? The answers can be found without
doing an explicit calculation.

(c) Use (5.48) for the free energy F to verify the following results for the entropy S, the mean
energy E, and the heat capacity C of the Ising chain:

S = Nk
[

ln(e2βJ + 1) − 2βJ

1 + e−2βJ

]

. (5.49)

E = −NJ tanhβJ. (5.50)

C = Nk(βJ)2(sechβJ)2. (5.51)

Verify that the results in (5.49)–(5.51) reduce to the appropriate behavior for low and high
temperatures.

(d) A plot of the T -dependence of the heat capacity in the absence of a magnetic field is given in
Figure 5.4. Explain why it has a maximum.

5.5.2 Spin-spin correlation function

We can gain further insight into the properties of the Ising model by calculating the spin-spin
correlation function G(r) defined as

G(r) = sksk+r − sk sk+r . (5.52)

Because the average of sk is independent of the choice of the site k (for toroidal boundary condi-
tions) and equals m = M/N , G(r) can be written as

G(r) = sksk+r −m2. (5.53)

The average is over all microstates. Because all lattice sites are equivalent, G(r) is independent of
the choice of k and depends only on the separation r (for a given T andH), where r is the separation
between the two spins in units of the lattice constant. Note that G(r = 0) = m2 −m2 ∝ χ (see
(5.17)).

The spin-spin correlation function G(r) is a measure of the degree to which a spin at one
site is correlated with a spin at another site. If the spins are not correlated, then G(r) = 0. At
high temperatures the interaction between spins is unimportant, and hence the spins are randomly
oriented in the absence of an external magnetic field. Thus in the limit kT ≫ J , we expect that
G(r) → 0 for fixed r. For fixed T and H , we expect that if spin k is up, then the two adjacent
spins will have a greater probability of being up than down. For spins further away from spin k,
we expect that the probability that spin k + r is up or correlated will decrease. Hence, we expect
that G(r) → 0 as r → ∞.
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Figure 5.5: Plot of the spin-spin correlation function G(r) as given by (5.54) for the Ising chain
for βJ = 2.

Problem 5.7. Calculation of G(r) for three spins

Consider an Ising chain of N = 3 spins with free boundary conditions in equilibrium with a heat
bath at temperature T and in zero magnetic field. Enumerate the 23 microstates and calculate
G(r = 1) and G(r = 2) for k = 1, the first spin on the left.

We will show in the following that G(r) can be calculated exactly for the Ising chain and is
given by

G(r) =
(

tanhβJ
)r
. (5.54)

A plot of G(r) for βJ = 2 is shown in Figure 5.5. Note that G(r) → 0 for r ≫ 1 as expected.

We also see from Figure 5.5 that we can associate a length with the decrease of G(r). We will
define the correlation length ξ by writing G(r) in the form

G(r) = e−r/ξ, (r ≫ 1) (5.55)

where

ξ = − 1

ln(tanh βJ)
. (5.56)

At low temperatures, tanhβJ ≈ 1 − 2e−2βJ , and

ln
(

tanhβJ
)

≈ −2e−2βJ . (5.57)

Hence

ξ =
1

2
e2βJ . (βJ ≫ 1) (5.58)

The correlation length is a measure of the distance over which the spins are correlated. From (5.58)
we see that the correlation length becomes very large for low temperatures (βJ ≫ 1).
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Problem 5.8. What is the maximum value of tanhβJ? Show that for finite values of βJ , G(r)
given by (5.54) decays with increasing r.

∗General calculation of G(r) in one dimension. To calculate G(r) in the absence of an
external magnetic field we assume free boundary conditions. It is useful to generalize the Ising
model and assume that the magnitude of each of the nearest neighbor interactions is arbitrary so
that the total energy E is given by

E = −
N−1
∑

i=1

Jisisi+1, (5.59)

where Ji is the interaction energy between spin i and spin i+ 1. At the end of the calculation we
will set Ji = J . We will find in Section 5.5.4, that m = 0 for T > 0 for the one-dimensional Ising
model. Hence, we can write G(r) = sksk+r. For the form (5.59) of the energy, sksk+r is given by

sksk+r =
1

ZN

∑

s1=±1

· · ·
∑

sN =±1

sksk+r exp
[

N−1
∑

i=1

βJisisi+1

]

, (5.60)

where

ZN = 2

N−1
∏

i=1

2 coshβJi. (5.61)

The right-hand side of (5.60) is the value of the product of two spins separated by a distance r in
a particular microstate times the probability of that microstate.

We now use a trick similar to that used in Section 3.5 and Appendix A to calculate various
sums and integrals. If we take the derivative of the exponential in (5.60) with respect to Jk, we
bring down a factor of βsksk+1. Hence, the spin-spin correlation function G(r = 1) = sksk+1 for
the Ising model with Ji = J can be expressed as

sksk+1 =
1

ZN

∑

s1=±1

· · ·
∑

sN=±1

sksk+1 exp
[

N−1
∑

i=1

βJisisi+1

]

, (5.62a)

=
1

ZN

1

β

∂

∂Jk

∑

s1=±1

· · ·
∑

sN =±1

exp
[

N−1
∑

i=1

βJisisi+1

]

, (5.62b)

=
1

ZN

1

β

∂ZN(J1, · · · , JN−1)

∂Jk

∣

∣

∣

∣

Ji=J

(5.62c)

=
sinhβJ

coshβJ
= tanhβJ, (5.62d)

where we have used the form (5.61) for ZN . To obtain G(r = 2), we use the fact that s2k+1 = 1 to
write sksk+2 = sk(sk+1sk+1)sk+2 = (sksk+1)(sk+1sk+2). We write

G(r = 2) =
1

ZN

∑

{sj}

sksk+1sk+1sk+2 exp
[

N−1
∑

i=1

βJisisi+1

]

, (5.63a)

=
1

ZN

1

β2

∂2ZN (J1, · · · , JN−1)

∂Jk ∂Jk+1
= [tanhβJ ]2. (5.63b)
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The method used to obtain G(r = 1) and G(r = 2) can be generalized to arbitrary r. We
write

G(r) =
1

ZN

1

βr

∂

∂Jk

∂

Jk+1
· · · ∂

Jk+r−1
ZN , (5.64)

and use (5.61) for ZN to find that

G(r) = tanhβJk tanhβJk+1 · · · tanhβJk+r−1, (5.65a)

=

r
∏

k=1

tanhβJk+r−1. (5.65b)

For a uniform interaction, Ji = J , (5.65b) reduces to the result for G(r) in (5.54).

5.5.3 Simulations of the Ising chain

Although we have found an exact solution for the one-dimensional Ising model in the absence of
an external magnetic field, we can gain additional physical insight by doing simulations. As we
will see, simulations are essential for the Ising model in higher dimensions.

As we discussed in Section 4.11, page 217, the Metropolis algorithm is the simplest and most
common Monte Carlo algorithm for a system in equilibrium with a heat bath at temperature T .
In the context of the Ising model, the Metropolis algorithm can be implemented as follows:

1. Choose an initial microstate of N spins. The two most common initial states are the ground
state with all spins parallel or the T = ∞ state where each spin is chosen to be ±1 at random.

2. Choose a spin at random and make a trial flip. Compute the change in energy of the system,
∆E, corresponding to the flip. The calculation is straightforward because the change in
energy is determined by only the nearest neighbor spins. If ∆E < 0, then accept the change.
If ∆E > 0, accept the change with probability p = e−β∆E. To do so, generate a random
number r uniformly distributed in the unit interval. If r ≤ p, accept the new microstate;
otherwise, retain the previous microstate.

3. Repeat step 2 many times choosing spins at random.

4. Compute averages of the quantities of interest such as E, M , C, and χ after the system has
reached equilibrium.

In the following problem we explore some of the qualitative properties of the Ising chain.

Problem 5.9. Computer simulation of the Ising chain

Use program Ising1D to simulate the one-dimensional Ising model. It is convenient to measure
the temperature in units such that J/k = 1. For example, a temperature of T = 2 means that
T = 2J/k. The “time” is measured in terms of Monte Carlo steps per spin (mcs), where in one
Monte Carlo step per spin, N spins are chosen at random for trial changes. (On the average each
spin will be chosen equally, but during any finite interval, some spins might be chosen more than
others.) Choose H = 0. The thermodynamic quantities of interest for the Ising model include the
mean energy E, the heat capacity C, and the isothermal susceptibility χ.



CHAPTER 5. MAGNETIC SYSTEMS 246

(a) Determine the heat capacity C and susceptibility χ for different temperatures, and discuss the
qualitative temperature dependence of χ and C. Choose N ≥ 200.

(b) Why is the mean value of the magnetization of little interest for the one-dimensional Ising
model? Why does the simulation return M 6= 0?

(c) Estimate the mean size of the domains at T = 1.0 and T = 0.5. By how much does the mean
size of the domains increase when T is decreased? Compare your estimates with the correlation
length given by (5.56). What is the qualitative temperature dependence of the mean domain
size?

(d) Why does the Metropolis algorithm become inefficient at low temperatures?

5.5.4 *Transfer matrix

So far we have considered the Ising chain only in zero external magnetic field. The solution for
nonzero magnetic field requires a different approach. We now apply the transfer matrix method to
solve for the thermodynamic properties of the Ising chain in nonzero magnetic field. The transfer
matrix method is powerful and can be applied to various magnetic systems and to seemingly
unrelated quantum mechanical systems. The transfer matrix method also is of historical interest
because it led to the exact solution of the two-dimensional Ising model in the absence of a magnetic
field. A background in matrix algebra is important for understanding the following discussion.

To apply the transfer matrix method to the one-dimensional Ising model, it is necessary to
adopt toroidal boundary conditions so that the chain becomes a ring with sN+1 = s1. This
boundary condition enables us to write the energy as:

E = −J
N

∑

i=1

sisi+1 −
1

2
H

N
∑

i=1

(si + si+1). (toroidal boundary conditions) (5.66)

The use of toroidal boundary conditions implies that each spin is equivalent.

The transfer matrix T is defined by its four matrix elements which are given by

Ts,s′ = eβ[Jss′+ 1
2
H(s+s′)]. (5.67)

The explicit form of the matrix elements is

T++ = eβ(J+H) (5.68a)

T−− = eβ(J−H) (5.68b)

T−+ = T+− = e−βJ , (5.68c)

or

T =

(

T++ T+−

T−+ T−−

)

=

(

eβ(J+H) e−βJ

e−βJ eβ(J−H)

)

. (5.69)

The definition (5.67) of T allows us to write ZN in the form

ZN (T,H) =
∑

s1

∑

s2

· · ·
∑

sN

Ts1,s2
Ts2,s3

· · ·TsN ,s1
. (5.70)
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The form of (5.70) is suggestive of the interpretation of T as a transfer function.

Problem 5.10. Transfer matrix method in zero magnetic field

Show that the partition function for a system of N = 3 spins with toroidal boundary conditions
can be expressed as the trace (the sum of the diagonal elements) of the product of three matrices:

(

eβJ e−βJ

e−βJ eβJ

) (

eβJ e−βJ

e−βJ eβJ

) (

eβJ e−βJ

e−βJ eβJ

)

. (5.71)

The rule for matrix multiplication that we need for the transfer matrix method is

(T2)s1,s3
=

∑

s2

Ts1,s2
Ts2,s3

, (5.72)

or

(T)2 =

(

T++T++ T+−T−+

T−+T+− T−−T−−

)

. (5.73)

If we multiply N matrices, we obtain:

(TN )s1,sN+1
=

∑

s2

∑

s3

· · ·
∑

sN

Ts1,s2
Ts2,s3

· · ·TsN ,sN+1
. (5.74)

This result is very close to the form of ZN in (5.70). To make it identical, we use toroidal boundary
conditions and set sN+1 = s1, and sum over s1:

∑

s1

(TN )s1,s1
=

∑

s1

∑

s2

∑

s3

· · ·
∑

sN

Ts1,s2
Ts2,s3

· · ·TsN ,s1
= ZN . (5.75)

Because
∑

s1
(TN )s1,s1

is the definition of the trace (the sum of the diagonal elements) of (TN ),
we have

ZN = Tr (TN ). (5.76)

The fact that ZN is the trace of the Nth power of a matrix is a consequence of our assumption of
toroidal boundary conditions.

Because the trace of a matrix is independent of the representation of the matrix, the trace in
(5.76) may be evaluated by bringing T into diagonal form:

T =

(

λ+ 0
0 λ−

)

. (5.77)

The matrix TN is diagonal with the diagonal matrix elements λN
+ , λN

− . In the diagonal represen-
tation for T in (5.77), we have

ZN = Tr (TN ) = λN
+ + λN

− , (5.78)

where λ+ and λ− are the eigenvalues of T.
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The eigenvalues λ± are given by the solution of the determinant equation
∣

∣

∣

∣

eβ(J+H) − λ e−βJ

e−βJ eβ(J−H) − λ

∣

∣

∣

∣

= 0. (5.79)

The roots of (5.79) are

λ± = eβJ coshβH ±
[

e−2βJ + e2βJ sinh2 βH
]1/2

. (5.80)

It is easy to show that λ+ > λ− for all β and H , and consequently (λ−/λ+)N → 0 as N → ∞. In
the thermodynamic limit N → ∞ we obtain from (5.78) and (5.80)

lim
N→∞

1

N
lnZN (T,H) = lnλ+ + ln

[

1 +
(λ−
λ+

)N]

= lnλ+, (5.81)

and the free energy per spin is given by

f(T,H) =
1

N
F (T,H) = −kT ln

[

eβJ coshβH +
(

e2βJ sinh2 βH + e−2βJ
)1/2]

. (5.82)

We can use (5.82) and (5.31) and some algebraic manipulations to find the magnetization per
spin m at nonzero T and H :

m = − ∂f

∂H
=

sinhβH

(sinh2 βH + e−4βJ)1/2
. (5.83)

A system is paramagnetic if m 6= 0 only when H 6= 0, and is ferromagnetic if m 6= 0 when H = 0.
From (5.83) we see that m = 0 for H = 0 because sinhx ≈ x for small x. Thus for H = 0,
sinhβH = 0 and thus m = 0. The one-dimensional Ising model becomes a ferromagnet only at
T = 0 where e−4βJ → 0, and thus from (5.83) |m| → 1 at T = 0.

Problem 5.11. Isothermal susceptibility of the Ising chain

More insight into the properties of the Ising chain can be found by understanding the temperture-
dependence of the isothermal susceptibility χ.

(a) Calculate χ using (5.83).

(b) What is the limiting behavior of χ in the limit T → 0 for H > 0?

(c) Show that the limiting behavior of the zero field susceptibility in the limit T → 0 is χ ∼ e2βJ .
(The zero field susceptibility is found by calculating the susceptibility for H 6= 0 and then
taking the limit H → 0 before other limits such as T → 0 are taken.) Express the limiting
behavior in terms of the correlation length ξ. Why does χ diverge as T → 0?

Because the zero field susceptibility diverges as T → 0, the fluctuations of the magnetization
also diverge in this limit. As we will see in Section 5.6, the divergence of the magnetization
fluctuations is one of the characteristics of the critical point of the Ising model. That is, the phase
transition from a paramagnet (m = 0 for H = 0) to a ferromagnet (m 6= 0 for H = 0) occurs at
zero temperature for the one-dimensional Ising model. We will see that the critical point occurs
at T > 0 for the Ising model in two and higher dimensions.
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(a) (b)

Figure 5.6: A domain wall in one dimension for a system of N = 8 spins with free boundary
conditions. In (a) the energy of the system is E = −5J (H = 0). The energy cost for forming a
domain wall is 2J (recall that the ground state energy is −7J). In (b) the domain wall has moved
with no cost in energy.

5.5.5 Absence of a phase transition in one dimension

We found by direct calculations that the one-dimensional Ising model does not have a phase
transition for T > 0. We now argue that a phase transition in one dimension is impossible if the
interaction is short-range, that is, if a given spin interacts with only a finite number of spins.

At T = 0 the energy is a minimum with E = −(N − 1)J (for free boundary conditions), and
the entropy S = 0.7 Consider all the excitations at T > 0 obtained by flipping all the spins to
the right of some site (see Figure 5.6(a)). The energy cost of creating such a domain wall is 2J .
Because there are N − 1 sites where the domain wall may be placed, the entropy increases by
∆S = k ln(N − 1). Hence, the free energy cost associated with creating one domain wall is

∆F = 2J − kT ln(N − 1). (5.84)

We see from (5.84) that for T > 0 and N → ∞, the creation of a domain wall lowers the free
energy. Hence, more domain walls will be created until the spins are completely randomized and
the net magnetization is zero. We conclude that M = 0 for T > 0 in the limit N → ∞.

Problem 5.12. Energy cost of a single domain

Compare the energy of the microstate in Figure 5.6(a) with the energy of the microstate shown in
Figure 5.6(b) and discuss why the number of spins in a domain in one dimension can be changed
without any energy cost.

5.6 The Two-Dimensional Ising Model

We first give an argument similar to the one that was given in Section 5.5.5 to suggest the existence
of a paramagnetic to ferromagnetism phase transition in the two-dimensional Ising model at a
nonzero temperature. We will show that the mean value of the magnetization is nonzero at low,
but nonzero temperatures and in zero magnetic field.

The key difference between one and two dimensions is that in the former the existence of one
domain wall allows the system to have regions of up and down spins whose size can be changed
without any cost of energy. So on the average the number of up and down spins is the same. In
two dimensions the existence of one domain does not make the magnetization zero. The regions of

7The ground state for H = 0 corresponds to all spins up or all spins down. It is convenient to break this symmetry
by assuming that H = 0+ and letting T → 0 before letting H → 0+.
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(a) (b)

Figure 5.7: (a) The ground state of a 5×5 Ising model. (b) Example of a domain wall. The energy
cost of the domain is 10J assuming free boundary conditions.

down spins cannot grow at low temperature because their growth requires longer boundaries and
hence more energy.

From Figure 5.7 we see that the energy cost of creating a rectangular domain in two dimensions
is given by 2JL (for an L × L lattice with free boundary conditions). Because the domain wall
can be at any of the L columns, the entropy is at least order lnL. Hence the free energy cost of
creating one domain is ∆F ∼ 2JL − T lnL. hence, we see that ∆F > 0 in the limit L → ∞.
Therefore creating one domain increases the free energy and thus most of the spins will remain
positive, and the magnetization remains positive. Hence M > 0 for T > 0, and the system is
ferromagnetic. This argument suggests why it is possible for the magnetization to be nonzero for
T > 0. M becomes zero at a critical temperature Tc > 0, because there are many other ways of
creating domains, thus increasing the entropy and leading to a disordered phase.

5.6.1 Onsager solution

As mentioned, the two-dimensional Ising model was solved exactly in zero magnetic field for a
rectangular lattice by Lars Onsager in 1944. Onsager’s calculation was the first exact solution that
exhibited a phase transition in a model with short-range interactions. Before his calculation, some
people believed that statistical mechanics was not capable of yielding a phase transition.

Although Onsager’s solution is of much historical interest, the mathematical manipulations
are very involved. Moreover, the manipulations are special to the Ising model and cannot be
generalized to other systems. For these reasons few workers in statistical mechanics have gone
through the Onsager solution in great detail. In the following, we summarize some of the results
of the two-dimensional solution for a square lattice.

The critical temperature Tc is given by

sinh
2J

kTc
= 1, (5.85)
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Figure 5.8: Plot of the function κ defined in (5.87) as a function of J/kT .

or
kTc

J
=

2

ln(1 +
√

2)
≈ 2.269. (5.86)

It is convenient to express the mean energy in terms of the dimensionless parameter κ defined as

κ = 2
sinh 2βJ

(cosh 2βJ)2
. (5.87)

A plot of the function κ versus βJ is given in Figure 5.8. Note that κ is zero at low and high
temperatures and has a maximum of one at T = Tc.

The exact solution for the energy E can be written in the form

E = −2NJ tanh 2βJ −NJ
sinh2 2βJ − 1

sinh 2βJ cosh 2βJ

[ 2

π
K1(κ) − 1

]

, (5.88)

where

K1(κ) =

∫ π/2

0

dφ
√

1 − κ2 sin2 φ
. (5.89)

K1 is known as the complete elliptic integral of the first kind. The first term in (5.88) is similar to
the result (5.50) for the energy of the one-dimensional Ising model with a doubling of the exchange
interaction J for two dimensions. The second term in (5.88) vanishes at low and high temperatures
(because of the term in brackets) and at T = Tc because of the vanishing of the term sinh2 2βJ−1.
The function K1(κ) has a logarithmic singularity at T = Tc at which κ = 1. Hence, the second
term behaves as (T − Tc) ln |T − Tc| in the vicinity of Tc. We conclude that E(T ) is continuous at
T = Tc and at all other temperatures (see Figure 5.9(a)).
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Figure 5.9: (a) Temperature dependence of the energy of the Ising model on the square lattice
according to (5.88). Note that E(T ) is a continuous function of kT/J . (b) Temperature-dependence
of the specific heat of the Ising model on the square lattice according to (5.90). Note the divergence
of the specific heat at the critical temperature.

The heat capacity can be obtained by differentiating E(T ) with respect to temperature. It
can be shown after some tedious algebra that

C(T ) = Nk
4

π
(βJ coth 2βJ)2

[

K1(κ) − E1(κ)

− (1 − tanh2 2βJ)
(π

2
+ (2 tanh2 2βJ − 1)K1(κ)

)]

, (5.90)

where

E1(κ) =

∫ π/2

0

dφ

√

1 − κ2 sin2 φ. (5.91)

E1 is called the complete elliptic integral of the second kind. A plot ofC(T ) is given in Figure 5.9(b).
The behavior of C near Tc is given by

C ≈ −Nk 2

π

( 2J

kTc

)2

ln

∣

∣

∣

∣

1 − T

Tc

∣

∣

∣

∣

+ constant. (T near Tc) (5.92)

An important property of the Onsager solution is that the heat capacity diverges logarithmi-
cally at T = Tc:

C(T ) ∼ − ln |ǫ|, (5.93)

where the reduced temperature difference is given by

ǫ = (Tc − T )/Tc. (5.94)
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A major test of the approximate treatments that we will develop in Section 5.7 and in Chapter 9
is whether they can yield a heat capacity that diverges as in (5.93).

The power law divergence of C(T ) can be written in general as

C(T ) ∼ ǫ−α, (5.95)

Because the divergence of C in (5.93) is logarithmic which depends on ǫ slower than any power of
ǫ, the critical exponent α equals zero for the two-dimensional Ising model.

To know whether the logarithmic divergence of the heat capacity in the Ising model at T = Tc

is associated with a phase transition, we need to know if there is a spontaneous magnetization.
That is, is there a range of T > 0 such that M 6= 0 for H = 0? (Onsager’s solution is limited to zero
magnetic field.) To calculate the spontaneous magnetization we need to calculate the derivative
of the free energy with respect to H for nonzero H and then let H = 0. In 1952 C. N. Yang
calculated the magnetization for T < Tc and the zero-field susceptibility.8 Yang’s exact result for
the magnetization per spin can be expressed as

m(T ) =

{

(

1 − [sinh 2βJ ]−4
)1/8

(T < Tc)

0 (T > Tc)
(5.96)

A plot of m is shown in Figure 5.10.

We see that m vanishes near Tc as

m ∼ ǫβ , (T < Tc) (5.97)

where β is a critical exponent and should not be confused with the inverse temperature. For the
two-dimensional Ising model β = 1/8.

The magnetization m is an example of an order parameter. For the Ising model m = 0 for
T > Tc (paramagnetic phase), and m 6= 0 for T ≤ Tc (ferromagnetic phase). The word “order”
in the magnetic context is used to denote that below Tc the spins are mostly aligned in the same
direction; in contrast, the spins point randomly in both directions for T above Tc.

The behavior of the zero-field susceptibility for T near Tc was found by Yang to be

χ ∼ |ǫ|−7/4 ∼ |ǫ|−γ , (5.98)

where γ is another critical exponent. We see that γ = 7/4 for the two-dimensional Ising model.

The most important results of the exact solution of the two-dimensional Ising model are
that the energy (and the free energy and the entropy) are continuous functions for all T , m
vanishes continuously at T = Tc, the heat capacity diverges logarithmically at T = T−

c , and
the zero-field susceptibility and other quantities show power law behavior which can be described
by critical exponents. We say that the paramagnetic ↔ ferromagnetic transition in the two-
dimensional Ising model is continuous because the order parameter m vanishes continuously rather

8C. N. Yang, “The spontaneous magnetization of a two-dimensional Ising model,” Phys. Rev. 85, 808–
816 (1952). The result (5.96) was first announced by Onsager at a conference in 1944 but not published.
C. N. Yang and T. D. Lee shared the 1957 Nobel Prize in Physics for work on parity violation. See
<nobelprize.org/physics/laureates/1957/> .

<nobelprize.org/physics/laureates/1957/>
http://nobelprize.org/physics/laureates/1957/
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Figure 5.10: The temperature dependence of the spontaneous magnetization m(T ) of the two-
dimensional Ising model.

than discontinuously. Because the transition occurs only at T = Tc and H = 0, the transition
occurs at a critical point.

So far we have introduced the critical exponents α, β, and γ to describe the behavior of the
specific heat, magnetization, and the susceptibility near the order parameter. We now introduce
three more critical exponents: η, ν, and δ (see Table 5.1). The notation χ ∼ |ǫ|−γ means that χ
has a singular contribution proportional to |ǫ|−γ . The definitions of the critical exponents given
in Table 5.1 implicitly assume that the singularities are the same whether the critical point is
approached from above or below Tc. The exception is m which is zero for T > Tc. In the following,
we will not bother to write |ǫ| instead of ǫ.

The critical exponent δ characterizes the dependence of m on the magnetic field at T = Tc:

|m| ∼ |H |1/15 ∼ |H |1/δ (T = Tc). (5.99)

We see that δ = 15 for the two-dimensional Ising model.

The behavior of the spin-spin correlation function G(r) for T near Tc and large r is given by

G(r) ∼ 1

rd−2+η
e−r/ξ (r ≫ 1 and |ǫ| ≪ 1), (5.100)

where d is the spatial dimension and η is another critical exponent. The correlation length ξ
diverges as

ξ ∼ |ǫ|−ν . (5.101)

The exact result for the critical exponent ν for the two-dimensional (d = 2) Ising model is ν = 1.
At T = Tc, G(r) decays as a power law for large r:

G(r) =
1

rd−2+η
. (T = Tc, r ≫ 1) (5.102)
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values of the exponents
quantity singular behavior d = 2 (exact) d = 3 mean-field theory
specific heat C ∼ ǫ−α 0 (logarithmic) 0.113 0 (jump)
order parameter m ∼ ǫβ 1/8 0.324 1/2
susceptibility χ ∼ ǫ−γ 7/4 1.238 1

equation of state (ǫ = 0) m ∼ H1/δ 15 4.82 3
correlation length ξ ∼ ǫ−ν 1 0.629 1/2
correlation function ǫ = 0 G(r) ∼ 1/rd−2+η 1/4 0.031 0

Table 5.1: Values of the critical exponents for the Ising model in two and three dimensions. The
values of the critical exponents of the Ising model are known exactly in two dimensions and are
ratios of integers. The results in three dimensions are not ratios of integers and are approximate.
The exponents predicted by mean-field theory are discussed in Sections 5.7, and 9.1, pages 258
and 436, respectively.

For the two-dimensional Ising model η = 1/4. The values of the various critical exponents for the
Ising model in two and three dimensions are summarized in Table 5.1.

There is a fundamental difference between the exponential behavior of G(r) for T 6= Tc in
(5.100) and the power law behavior of G(r) for T = Tc in (5.102). Systems with correlation
functions that decay as a power law are said to be scale invariant. That is, power laws look
the same on all scales. The replacement x → ax in the function f(x) = Ax−η yields a function
that is indistinguishable from f(x) except for a change in the amplitude A by the factor a−η. In
contrast, this invariance does not hold for functions that decay exponentially because making the
replacement x → ax in the function e−x/ξ changes the correlation length ξ by the factor a. The
fact that the critical point is scale invariant is the basis for the renormalization group method (see
Chapter 9). Scale invariance means that at the critical point there will be domains of spins of the
same sign of all sizes.

We stress that the phase transition in the Ising model is the result of the cooperative interac-
tions between the spins. Although phase transitions are commonplace, they are remarkable from
a microscopic point of view. For example, the behavior of the system changes dramatically with a
small change in the temperature even though the interactions between the spins remain unchanged
and short-range. The study of phase transitions in relatively simple systems such as the Ising
model has helped us begin to understand phenomena as diverse as the distribution of earthquake
sizes, the shape of snow flakes, and the transition from a boom economy to a recession.

5.6.2 Computer simulation of the two-dimensional Ising model

The implementation of the Metropolis algorithm for the two-dimensional Ising model proceeds
as in one dimension. The only difference is that an individual spin interacts with four nearest
neighbors on a square lattice rather than two nearest neighbors in one dimension. Simulations of
the Ising model in two dimensions allow us to test approximate theories and determine properties
that cannot be calculated analytically. We explore some of the properties of the two-dimensional
Ising model in Problem 5.13.

Problem 5.13. Simulation of the two-dimensional Ising model
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Use program Ising2D to simulate the Ising model on a square lattice at a given temperature T and
external magnetic field H . (Remember that T is given in terms of J/k.) First chooseN = L2 = 322

and set H = 0. For simplicity, the initial orientation of the spins is all spins up.

(a) Choose T = 10 and run until equilibrium has been established. Is the orientation of the spins
random such that the mean magnetization is approximately equal to zero? What is a typical
size of a domain, a region of parallel spins?

(b) Choose a low temperature such as T = 0.5. Are the spins still random or do a majority
choose a preferred direction? You will notice that M ≈ 0 for sufficient high T and M 6= 0
for sufficiently low T . Hence, there is an intermediate value of T at which M first becomes
nonzero.

(c) Start at T = 4 and determine the temperature dependence of the magnetization per spin m,
the zero-field susceptibility χ, the mean energy E, and the specific heat C. (Note that we have
used the same notation for the specific heat and the heat capacity.) Decrease the temperature
in intervals of 0.2 until T ≈ 1.6, equilibrating for at least 1000mcs before collecting data at
each value of T . Describe the qualitative temperature dependence of these quantities. Note
that when the simulation is stopped, the mean magnetization and the mean of the absolute
value of the magnetization is returned. At low temperatures the magnetization can sometimes
flip for small systems so that the value of 〈|M |〉 is a more accurate representation of the
magnetization. For the same reason the susceptibility is given by

χ =
1

kT

[

〈M2〉 − 〈|M |〉2
]

, (5.103)

rather than by (5.17). A method for estimating the critical exponents is discussed in Prob-
lem 5.41.

(d) Set T = Tc ≈ 2.269 and choose L ≥ 128. Obtain 〈M〉 for H = 0.01, 0.02, 0.04, 0.08, and 0.16.
Make sure you equilibrate the system at each value of H before collecting data. Make a log-log
plot of m versus H and estimate the critical exponent δ using (5.99).

(e) Choose L = 4 and T = 2.0. Does the sign of the magnetization change during the simulation?
Choose a larger value of L and observe if the sign of the magnetization changes. Will the sign
of M change for L ≫ 1? Should a theoretical calculation of 〈M〉 yield 〈M〉 6= 0 or 〈M〉 = 0
for T < Tc?

∗Problem 5.14. Ising antiferromagnet

So far we have considered the ferromagnetic Ising model for which the energy of interaction between
two nearest neighbor spins is J > 0. Hence the ground state in the ferromagnetic Ising model is
all spins parallel. In contrast, if J < 0, nearest neighbor spins must be antiparallel to minimize
their energy of interaction.

(a) Sketch the ground state of the one-dimensional antiferromagnetic Ising model. Then do the
same for the antiferromagnetic Ising model on a square lattice. What is the value of M for
the ground state of an Ising antiferromagnet?
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√3 a
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a

Figure 5.11: Each spin has six nearest neighbors on a hexagonal lattice. This lattice structure is
sometimes called a triangular lattice.

?

Figure 5.12: The six nearest neighbors of the central spin on a hexagonal lattice are successively
antiparallel, corresponding to the lowest energy of interaction for an Ising antiferromagnet. The
central spin cannot be antiparallel to all its neighbors and is said to be frustrated.

(b) Use program IsingAnitferromagnetSquareLattice to simulate the antiferromagnetic Ising
model on a square lattice at various temperatures and describe its qualitative behavior. Does
the system have a phase transition at T > 0? Does the value of M show evidence of a phase
transition?

(c) In addition to the usual thermodynamic quantities the program calculates the staggered mag-
netization and the staggered susceptibility. The staggered magnetization is calculated by con-
sidering the square lattice as a checkerboard with black and red sites so that each black site has
four red sites as nearest neighbors and vice versa. The staggered magnetization is calculated
from

∑

cisi where ci = +1 for a black site and ci = −1 for a white site. Describe the behavior
of these quantities and compare them to the behavior of M and χ for the ferromagnetic Ising
model.

(d) *Consider the Ising antiferromagnetic model on a hexagonal lattice (see Fig. 5.11), for which
each spin has six nearest neighbors. The ground state in this case is not unique because of
frustration (see Fig. 5.12). Convince yourself that there are multiple ground states. Is the
entropy zero or nonzero at T = 0?9 Use program IsingAntiferromagnetHexagonalLattice

9The entropy at zero temperature is S(T = 0) = 0.3383kN . See G. H. Wannier, “Antiferromagnetism. The
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to simulate the antiferromagnetic Ising model on a hexagonal lattice at various temperatures
and describe its qualitative behavior. This system does not have a phase transition for T > 0.
Are your results consistent with this behavior?

5.7 Mean-Field Theory

Because it is not possible to solve the thermodynamics of the Ising model exactly in three dimen-
sions and the two-dimensional Ising model in the presence of a magnetic field, we need to develop
approximate theories. In this section we develop an approximation known as mean-field theory.
Mean-field theories are relatively easy to treat and usually yield qualitatively correct results, but
are not usually quantitatively correct. In Section 5.10.4 we will consider a more sophisticated ver-
sion of mean-field theory for Ising models that yields more accurate values of Tc, and in Section 9.1
we consider a more general formulation of mean-field theory. In Section 8.6 we will discuss how to
apply similar ideas to gases and liquids.

In its simplest form mean-field theory assumes that each spin interacts with the same effective
magnetic field. The effective field is due to the external magnetic field plus the internal field due
to all the neighboring spins. That is, spin i “feels” an effective field Heff given by

Heff = J

q
∑

j=1

sj +H, (5.104)

where the sum over j in (5.104) is over the q nearest neighbors of i. (Recall that we have incorpo-
rated a factor of µ into H so that H in (5.104) has units of energy.) Because the orientation of the
neighboring spins depends on the orientation of spin i, Heff fluctuates from its mean value, which
is given by

Heff = J

q
∑

j=1

sj +H = Jqm+H, (5.105)

where sj = m. In mean-field theory we ignore the deviations of Heff from Heff and assume that
the field at i is Heff , independent of the orientation of si. This assumption is an approximation
because if si is up, then its neighbors are more likely to be up. This correlation is ignored in
mean-field theory.

The form of the mean effective field in (5.105) is the same throughout the system. The result
of the this approximation is that the system of N interacting spins has been reduced to a system
of one spin interacting with an effective field which depends on all the other spins.

The partition function for one spin in the effective field Heff is

Z1 =
∑

s1=±1

es1Heff/kT = 2 cosh[(Jqm+H)/kT ]. (5.106)

The free energy per spin is

f = −kT lnZ1 = −kT ln
(

2 cosh[(Jqm+H)/kT ]
)

, (5.107)

triangular Ising net,” Phys. Rev. 79, 357–364 (1950), errata, Phys. Rev. B 7, 5017 (1973).
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Figure 5.13: Graphical solution of the self-consistent equation (5.108) for H = 0. The line y1(m) =
m represents the left-hand side of (5.108), and the function y2(m) = tanhJqm/kT represents the
right-hand side. The intersection of y1 and y2 gives a possible solution for m. The solution m = 0
exists for all T . Stable solutions m = ±m0 (m0 > 0) exist only for T sufficiently small such that
the slope Jq/kT of y2 near m = 0 is greater than one.

and the magnetization is

m = − ∂f

∂H
= tanh[(Jqm+H)/kT ]. (5.108)

Equation (5.108) is a self-consistent transcendental equation whose solution yields m. The mean-
field that influences the mean value of m in turn depends on the mean value of m.

From Figure 5.13 we see that nonzero solutions for m exist for H = 0 when qJ/kT ≥ 1. The
critical temperature satisfies the condition that m 6= 0 for T ≤ Tc and m = 0 for T > Tc. Thus
the critical temperature Tc is given by

kTc = Jq. (5.109)

Problem 5.15. Numerical solutions of (5.108)

Use program IsingMeanField to find numerical solutions of (5.108).

(a) Set H = 0 and q = 4 and determine the value of the mean-field approximation to the critical
temperature Tc of the Ising model on a square lattice. Start with kT/Jq = 10 and then proceed
to lower temperatures. Plot the temperature dependence of m. The equilibrium value of m is
the solution with the lowest free energy (see Problem 5.18).

(b) Determine m(T ) for the one-dimensional Ising model (q = 2) and H = 0 and H = 1 and
compare your values for m(T ) with the exact solution in one dimension (see (5.83)).

For T near Tc the magnetization is small, and we can expand tanhJqm/kT (tanhx ≈ x−x3/3
for x≪ 1) to find

m = Jqm/kT − 1

3
(Jqm/kT )3 + . . . (5.110)
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Equation (5.110) has two solutions:

m(T > Tc) = 0, (5.111a)

and

m(T < Tc) = ± 31/2

(Jq/kT )3/2
((Jq/kT ) − 1)1/2. (5.111b)

The solution m = 0 in (5.111a) corresponds to the high temperature paramagnetic state. The
solution in (5.111b) corresponds to the low temperature ferromagnetic state (m 6= 0). How do we
know which solution to choose? The answer can be found by calculating the free energy for both
solutions and choosing the solution that gives the smaller free energy (see Problems 5.15 and 5.17).

If we let Jq = kTc in (5.111b), we can write the spontaneous magnetization (the nonzero
magnetization for T < Tc) as

m(T < Tc) = 31/2
( T

Tc

)(Tc − T

Tc

)1/2

. (5.112)

We see from (5.112) that m approaches zero as a power law as T approaches Tc from below. It is
convenient to express the temperature dependence of m near the critical temperature in terms of
the reduced temperature ǫ = |Tc − T |/Tc (see (5.94)) and write (5.112) as

m(T ) ∼ ǫβ . (5.113)

From (5.112) we see that mean-field theory predicts that β = 1/2. Compare this prediction to the
value of β for the two-dimensional Ising model (see Table 5.1).

We now find the behavior of other important physical properties near Tc. The zero field
isothermal susceptibility (per spin) is given by

χ = lim
H→0

∂m

∂H
=

1 − tanh2 Jqm/kT

kT − Jq(1 − tanh2 Jqm/kT )
=

1 −m2

kT − Jq(1 −m2)
. (5.114)

For T & Tc we have m = 0 and χ in (5.114) reduces to

χ =
1

k(T − Tc)
, (T > Tc, H = 0) (5.115)

where we have used the relation (5.108) with H = 0. The result (5.115) for χ is known as the
Curie-Weiss law.

For T . Tc we have from (5.112) that m2 ≈ 3(Tc − T )/Tc, 1 −m2 = (3T − 2Tc)/Tc, and

χ ≈ 1

k[T − Tc(1 −m2)]
=

1

k[T − 3T + 2Tc]
(5.116a)

=
1

2k(Tc − T )
. (T . Tc, H = 0) (5.116b)

We see that we can characterize the divergence of the zero-field susceptibility as the critical
point is approached from either the low or high temperature side by χ ∼ ǫ−γ (see (5.98)). The
mean-field prediction for the critical exponent γ is γ = 1.
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The magnetization at Tc as a function of H can be calculated by expanding (5.108) to third
order in H with kT = kTc = qJ :

m = m+H/kTc −
1

3
(m+H/kTc)

3 + . . . (5.117)

For H/kTc ≪ m we find
m = (3H/kTc)

1/3 ∝ H1/3. (T = Tc) (5.118)

The result (5.118) is consistent with our assumption that H/kTc ≪ m. If we use the power law
dependence given in (5.99), we see that mean-field theory predicts that the critical exponent δ is
δ = 3, which compares poorly with the exact result for the two-dimensional Ising model given by
δ = 15.

The easiest way to obtain the energy per spin for H = 0 in the mean-field approximation is
to write

E

N
= −1

2
Jqm2, (5.119)

which is the average value of the interaction energy divided by two to account for double counting.
Because m = 0 for T > Tc, the energy vanishes for all T > Tc, and thus the specific heat also
vanishes. Below Tc the energy per spin is given by

E

N
= −1

2
Jq

[

tanh(Jqm/kT )
]2
. (5.120)

Problem 5.16. Behavior of the specific heat near Tc

Use (5.120) and the fact that m2 ≈ 3(Tc−T )/Tc for T . Tc to show that the specific heat according
to mean-field theory is

C(T → T−
c ) = 3k/2. (5.121)

Hence, mean-field theory predicts that there is a jump (discontinuity) in the specific heat.

∗Problem 5.17. Improved mean-field theory approximation for the energy

We write si and sj in terms of their deviation from the mean as si = m + ∆i and sj = m + ∆j ,
and write the product sisj as

sisj = (m+ ∆i)(m+ ∆j) (5.122a)

= m2 +m(∆i + ∆j) + ∆i∆j . (5.122b)

We have ordered the terms in (5.122b) in powers of their deviation from the mean. If we neglect
the last term, which is quadratic in the fluctuations from the mean, we obtain

sisj ≈ m2 +m(si −m) +m(sj −m) = −m2 +m(si + sj). (5.123)

(a) Show that we can approximate the energy of interaction in the Ising model as

−J
∑

i,j=nn(i)

sisj = +J
∑

i,j=nn(i)

m2 − Jm
∑

i,j=nn(i)

(si + sj) (5.124a)

=
JqNm2

2
− Jqm

N
∑

i=1

si. (5.124b)
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(b) Show that the partition function Z(T,H,N) can be expressed as

Z(T,H,N) = e−NqJm2/2kT
∑

s1=±1

· · ·
∑

sN =±1

e(Jqm+H)
P

i si/kT (5.125a)

= e−NqJm2/2kT
(

∑

s=±1

e(qJm+H)s/kT
)N

(5.125b)

= e−NqJm2/2kT
[

2 cosh(qJm+H)/kT
]N
. (5.125c)

Show that the free energy per spin f(T,H) = −(kT/N) lnZ(T,H,N) is given by

f(T,H) =
1

2
Jqm2 − kT ln

[

2 cosh(qJm+H)/kT
]

. (5.126)

The expressions for the free energy in (5.107) and (5.126) contain both m and H rather than
H only. In this case m represents a parameter. For arbitrary values of m these expressions do not
give the equilibrium free energy, which is determined by minimizing f treated as a function of m.

Problem 5.18. Minima of the free energy

(a) To understand the meaning of the various solutions of (5.108), expand the free energy in
(5.126) about m = 0 with H = 0 and show that the form of f(m) near the critical point (small
m) is given by

f(m) = a+ b(1 − βqJ)m2 + cm4 (5.127)

for small m. Determine a, b, and c.

(b) If H is nonzero but small, show that there is an additional term −mH in (5.127).

(c) Show that the minimum free energy for T > Tc and H = 0 is at m = 0, and that m = ±m0

corresponds to a lower free energy for T < Tc.

(d) Use program IsingMeanField to plot f(m) as a function of m for T > Tc and H = 0. For
what value of m does f(m) have a minimum?

(e) Plot f(m) for T = 1 and H = 0. Where are the minima of f(m)? Do they have the same
depth? If so, what is the meaning of this result?

(f) Choose H = 0.5 and T = 1. Do the two minima have the same depth? The global minimum
corresponds to the equilibrium or stable phase. If we quickly “flip” the field and let H → −0.5,
the minimum at m ≈ 1 will become a local minimum. The system will remain in this local
minimum for some time before it switches to the global minimum (see Section 5.10.6).

We now compare the results of mean-field theory near the critical point with the exact results
for the one and two-dimensional Ising models. The fact that the mean-field result (5.109) for Tc

depends only on q, the number of nearest neighbors, and not the spatial dimension d is one of
the inadequacies of the simple version of mean-field theory that we have discussed. The simple
mean-field theory even predicts a phase transition in one dimension, which we know is incorrect. In
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lattice d q Tmf/Tc

square 2 4 1.763
hexagonal 2 6 1.648
diamond 3 4 1.479
simple cubic 3 6 1.330
bcc 3 8 1.260
fcc 3 12 1.225

Table 5.2: Comparison of the mean-field predictions for the critical temperature of the Ising model
with exact results and the best known estimates for different spatial dimensions d and lattice
symmetries.

Table 5.2 the mean-field predictions for Tc are compared to the best known estimates of the critical
temperatures for the Ising model for two and three-dimensional lattices. We see that the mean-
field theory predictions for Tc improve as the number of neighbors increases for a given dimension.
The inaccuracy of mean-field theory is due to the fact that it ignores correlations between the
spins. In Section 5.10.4 we discuss more sophisticated treatments of mean-field theory that include
short-range correlations between the spins and yield better estimates of the critical temperature,
but not the critical exponents.

Mean-field theory predicts that various thermodynamic properties exhibit power law behavior
near Tc, in qualitative agreement with the exact solution of the two-dimensional Ising model and the
known properties of the three-dimensional Ising model. This qualitative behavior is characterized
by critical exponents. The mean-field predictions for the critical exponents β, γ, and δ are β = 1/2,
γ = 1, and δ = 3 respectively (see Table 5.1). (The mean-field theory predictions of the other
critical exponents are given in Section 9.1.) These values of the critical exponents do not agree
with the results of the Onsager solution of the two-dimensional Ising model (see Table 5.1), but
are not terribly wrong. Also mean-field theory predicts a jump in the specific heat, whereas the
Onsager solution predicts a logarithmic divergence. Similar disagreements between the predictions
of mean-field theory and the known critical exponents are found in three dimensions, but the
discrepancies are not as large.

We also note that the mean-field results for the critical exponents are independent of dimen-
sion. In Section 9.1 we discuss a more general version of mean-field theory, which is applicable to a
wide variety of systems, and shows why all mean-field theories predict the same (incorrect) values
for the critical exponents independent of dimension.

Problem 5.19. Improvement of mean-field theory with dimension

From Table 5.1 we see that the predictions of mean-field theory increase in accuracy with increasing
dimension. Why is this trend reasonable?

Why mean-field theory fails. The main development of mean-field theory is that each spin
feels the same effective magnetic field due to all the other spins. That is, mean-field theory ignores
the fluctuations in the effective field. But if mean-field theory ignores fluctuations, why does the
susceptibility diverge near the critical point? (Recall that the susceptibility is a measure of the
fluctuations of the magnetization.) Because the fluctuations are ignored in one context, but not
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another, we see that mean-field theory carries with it the seeds of its own destruction. That is,
mean-field theory does not treat the fluctuations consistently. This inconsistency is unimportant
if the fluctuations are weak.

Because the fluctuations become more important as the system approaches the critical point,
we expect that mean-field theory breaks down for T close to Tc. A criterion for the range of
temperatures for which mean-field theory theory is applicable is discussed in Section 9.1, page 436,
where it is shown that the fluctuations can be ignored if

ξ−d
0 ǫ(d/2)−2 ≪ 1, (5.128)

where ξ0 is the correlation length at T = 0 and is proportional to the effective range of interaction.
The inequality in (5.128) is always satisfied for d > 4 near the critical point where ǫ≪ 1. That is,
mean-field theory yields the correct results for the critical exponents in higher than four dimensions.
(In four dimensions the power law behavior is modified by logarithmic factors.) In a conventional
superconductor such as tin, ξ0 ≈ 2300 Å, and the mean-field theory of a superconductor (known
as BCS theory) is applicable near the superconducting transition for ǫ as small as 10−14.

5.7.1 *Phase diagram of the Ising model

Nature exhibits two qualitatively different kinds of phase transitions. The more familiar kind,
which we observe when ice freezes or water boils, involves a discontinuous change in various ther-
modynamic quantities such as the energy and the entropy. For example, the density as well as the
energy and the entropy change discontinuously when water boils and when ice freezes. This type
of phase transition is called a discontinuous or first-order transition. We will discuss first-order
transitions in the context of gases and liquids in Chapter 7.

The other type of phase transition is more subtle. In this case thermodynamic quantities such
as the energy and the entropy are continuous, but various derivatives such as the specific heat and
the compressibility of a fluid and the susceptibility of a magnetic system show divergent behavior
at the phase transition. Such transitions are called continuous phase transitions.

We have seen that the Ising model in two dimensions has a continuous phase transition in
zero magnetic field such that below the critical temperature Tc there is a nonzero spontaneous
magnetization, and above Tc the mean magnetization vanishes as shown by the solid curve in the
phase diagram in Fig. 5.15. The three-dimensional Ising model has the same qualitative behavior,
and only the values of the critical temperature and the critical exponents are different.

The behavior of the Ising model is qualitatively different if we apply an external magnetic
field H . If H 6= 0, the magnetization m is nonzero at all temperatures and has the same sign as H
(see Figure 5.14). The same information is shown in a different way in Figure 5.15. Each point in
the unshaded region corresponds to an equilibrium value of m for a particular value of T and H .10

10In a ferromagnetic material such as iron, nickel, and cobalt the net magnetization frequently vanishes even
below Tc. In these materials there are several magnetic domains within which the magnetization is nonzero. These
domains are usually oriented at random, leading to zero net magnetization for the entire sample. Such a state is
located in the shaded region of Fig. 5.15. The randomization of the orientation of the domains occurs when the
metal is formed and cooled below Tc and is facilitated by crystal defects. When a piece of iron or similar material
is subject to an external magnetic field, the domains align, and the iron becomes “magnetized.” When the field is
removed the iron remains magnetized. If the iron is subject to external forces such as banging it with a hammer,
the domains can be randomized again, and the iron loses its net magnetization. The Ising model is an example of
a single domain ferromagnet.
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Figure 5.14: The equilibrium values of m as a function of the magnetic field H for T > Tc, T = Tc,
and T < Tc. The plot for T > Tc is smooth in contrast to the plot for T < Tc which has a
discontinuity at H = 0. For T = Tc there is no discontinuity, and the function m(H) has an
infinite slope at H = 0.

At a phase transition at least one thermodynamic quantity diverges or has a discontinuity.
For example, both the specific heat and the susceptibility diverge at Tc for a ferromagnetic phase
transition with H = 0. For H 6= 0 and T > Tc there is no phase transition as the magnetic field is
decreased to zero and then to negative values because no quantity diverges or has a discontinuity.
In contrast, for T < Tc there is a transition because as we change the field from H = 0+ to H = 0−

m changes discontinuously from a positive value to a negative value (see Figure 5.14).

Problem 5.20. Ising model in an external magnetic field

Use program Ising2D to simulate the Ising model on a square lattice at a given temperature.
Choose N = L2 = 322. Run for at least 200 Monte Carlo steps per spin at each value of the field.

(a) Set H = 0.2 and T = 3 and estimate the approximate value of the magnetization. Then
change the field to H = 0.1 and continue updating the spins (do not press New) so that
the simulation is continued from the last microstate. Note the value of the magnetization.
Continue this procedure with H = 0, then H = −0.1 and then H = −0.2. Do your values of
the magnetization change abruptly as you change the field? Is there any indication of a phase
transition as you change H?

(b) Repeat the same procedure as in part (a) at T = 1.8 which is below the critical temperature.
What happens now? Is there evidence of a sudden change in the magnetization as the direction
of the field is changed?

(c) Use program Ising2DHysteresis with T = 1.8, the initial magnetic field H = 1, ∆H = 0.01,
and 10mcs for each value of H . The program plots the mean magnetization for each value of
H , and changes H by ∆H until H reaches H = −1, when it changes ∆H to −∆H . Describe
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Figure 5.15: Sketch of the phase diagram for an Ising ferromagnet. The bold line represents the
magnetization for H = 0. Equilibrium magnetization values for H 6= 0 are possible at any point
in the unshaded region. Points in the shaded region represent nonequilibrium values of m.

what you obtain and why it occurred. The resulting curve is called a hysteresis loop, and is
characteristic of discontinuous phase transitions. An example of the data you can obtain in
this way is shown in Fig. 5.16.

(d) Change the number of mcs per field value to 1 and view the resulting plot for m versus H .
Repeat for mcs per field value equal to 100. Explain the differences you see.

5.8 *Simulation of the Density of States

The probability that a system in equilibrium with a heat bath at a temperature T has energy E
is given by

P (E) =
Ω(E)

Z
e−βE, (5.129)

where Ω(E) is the number of states with energyE,11 and the partition function Z =
∑

E Ω(E)e−βE .
If Ω(E) is known, we can calculate the mean energy (and other thermodynamic quantities) at any
temperature from the relation

E =
1

Z

∑

E

EΩ(E)e−βE . (5.130)

Hence, the quantity Ω(E) is of much interest. In the following we discuss an algorithm that directly
computes Ω(E) for the Ising model. In this case the energy is a discrete variable and hence the

11The quantity Ω(E) is the number of states with energy E for a system such as the Ising model which has discrete
values of the energy. It is common to refer to Ω(E) as the density of states even when the values of E are discrete.
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Figure 5.16: Hysteresis curve obtained from the simulation of the two-dimensional Ising model at
T = 1.8. The field was reduced by ∆H = 0.01 every 10mcs. The arrows indicate the direction
in which the magnetization is changing. Note that starting from saturation at m = 1, a “coercive
field” of about H = −0.25 is needed to reduce the magnetization to zero. The magnetization
at zero magnetic field is called the “remnant” magnetization. The equilibrium value of m drops
discontinuously from a positive value to a negative value as H decreases from H = 0+ to H = 0−.
Hysteresis is a nonequilibrium phenomenon and is a dynamic manifestation of a system that
remains in a local minimum for some time before it switches to the global minimum.

quantity we wish to compute is the number of spin microstates with the same energy.

Suppose that we were to try to compute Ω(E) by doing a random walk in energy space
by flipping the spins at random and accepting all microstates that we obtain in this way. The
histogram of the energy, H(E), the number of visits to each possible energy E of the system,
would become proportional to Ω(E) if the walk visited all possible microstates many times. In
practice, it would be impossible to realize such a long random walk given the extremely large
number of microstates. For example, an Ising model with N = 100 spins has 2100 ≈ 1.3 × 1030

microstates.

An even more important limitation of doing a simple random walk to determine Ω(E) is that
the walk would spend most of its time visiting the same energy values over and over again and
would not reach the values of E that are less probable. The idea of the Wang-Landau algorithm is
to do a random walk in energy space by flipping single spins at random and accepting the changes
with a probability that is proportional to the reciprocal of the density of states. In this way energy
values that would be visited often using a simple random walk would be visited less often because
they have a larger density of states. There is only one problem – we don’t know Ω(E). We will see
that the Wang-Landau12 algorithm estimates Ω(E) at the same time that it does a random walk.

To implement the algorithm we begin with an arbitrary microstate and a guess for the density

12We have mentioned the name Landau several times in the text. This Landau is not Lev D. Landau, but is
David Landau, a well known physicist at the University of Georgia.
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of states. The simplest guess is to set Ω(E) = 1 for all possible energies E. The algorithm can be
summarized by the follow steps.

1. Choose a spin at random and make a trial flip. Compute the energy before, E1, and after
the flip, E2, and accept the change with probability

p(E1 → E2) = min(Ω̃(E1)/Ω̃(E2), 1), (5.131)

where Ω̃(E) is the current estimate of Ω(E). Equation (5.131) implies that if Ω̃(E2) ≤
Ω̃(E1), the state with energy E2 is always accepted; otherwise, it is accepted with probability
Ω̃(E1)/Ω̃(E2). That is, the state with energy E2 is accepted if a random number r satisfies
the condition r ≤ Ω̃(E1)/Ω̃(E2). After the trial flip the energy of the system is E. (E = E2

if the change is accepted or remains at E1 if the change is not accepted.)

2. To estimate Ω(E) multiply the current value of Ω̃(E) by a modification factor f > 1:

Ω̃(E) = f Ω̃(E). (5.132)

We also update the existing entry for H(E) in the energy histogram

H(E) → H(E) + 1. (5.133)

Because Ω̃(E) becomes very large, we must work with the logarithm of the density of states,
so that ln Ω̃(E) will fit into double precision numbers. Therefore, each update of the density
of states is implemented as ln Ω̃(E) → ln Ω̃(E) + ln f , and the ratio of the density of states
is computed as exp[ln Ω̃E1 − ln Ω̃E2]. A reasonable choice of the initial modification factor
is f = f0 = e ≈ 2.71828 . . .. If f0 is too small, the random walk will need a very long time to
reach all possible energies. Too large a choice of f0 will lead to large statistical errors.

3. Proceed with the random walk in energy space until an approximately flat histogram H(E)
is obtained, that is, until all the possible energy values are visited an approximately equal
number of times. Because it is impossible to obtain a perfectly flat histogram, we will say
that H(E) is “flat” when H(E) for all possible E is not less than ∆ of the average histogram
H(E); ∆ is chosen according to the size and the complexity of the system and the desired
accuracy of the density of states. For the two-dimensional Ising model on small lattices, ∆
can be chosen to be as high as 0.95, but for large systems the criterion for flatness might
never be satisfied if ∆ is too close to one.

4. Once the flatness criterion has been satisfied, reduce the modification factor f using a function
such as f1 =

√
f0, reset the histogram to H(E) = 0 for all values of E, and begin the next

iteration of the random walk during which the density of states is modified by f1 at each
trial flip. The density of states is not reset during the simulation. We continue performing
the random walk until the histogram H(E) is again flat. We then reduce the modification
factor, fi+1 =

√
fi, reset the histogram to H(E) = 0 for all values of E, and continue the

random walk.

5. The simulation is stopped when f is smaller than a predefined value (such as f = exp(10−8) ≈
1.00000001). The modification factor acts as a control parameter for the accuracy of the
density of states during the simulation and also determines how many Monte Carlo sweeps
are necessary for the entire simulation.



CHAPTER 5. MAGNETIC SYSTEMS 269

The algorithm provides an estimate of the density of states because if the current estimate of
Ω̃(E) is too low, then the acceptance criteria (5.131) pushes the system to states with lower Ω̃(E),
thus increasing Ω̃(E). If Ω̃(E) is too high, the reverse happens. Gradually, the calculation tends
to the true value of Ω(E).

At the end of the simulation, the algorithm provides only a relative density of states. To
determine the normalized density of states Ω(E), we can either use the fact that the total number
of states for the Ising model is

∑

E

Ω(E) = 2N , (5.134)

or that the number of ground states (for which E = −2NJ) is two. The latter normalization
ensures the accuracy of the density of states at low energies which is important in the calculation
of thermodynamic quantities at low temperatures. If we apply (5.134), we cannot guarantee the
accuracy of Ω(E) for energies at or near the ground state, because the rescaling factor is dominated
by the maximum density of states. We may use one of these normalization conditions to obtain
the absolute density of states and the other normalization condition to check the accuracy of our
result.

∗Problem 5.21. Wang-Landau algorithm for the Ising model

Program IsingDensityOfStates which implements the Wang-Landau algorithm for the Ising
model on a square lattice.

(a) Calculate the exact values of Ω(E) for the 2 × 2 Ising model. Run the simulation for L = 2
and verify that the computed density of states is close to your exact answer.

(b) Choose larger values of L, for example, L = 16, and describe the qualitative energy dependence
of Ω(E).

(c) The program also computes the specific heat as a function of temperature using the estimated
value of Ω̃(E). Describe the qualitative temperature dependence of the specific heat.

The Potts model. The Potts model is a generalization of the Ising model in which each
lattice site contains an entity (a spin) that can be in one of q states. If two nearest neighbor sites
are in the same state, then the interaction energy is −K. The interaction energy is zero if they are
in different states. Potts models are useful for describing the absorption of molecules on crystalline
surfaces and the behavior of foams, for example, and exhibit a discontinuous or continuous phase
transition depending on the value of q.

The Potts model exhibits a phase transition between a high temperature phase where the q
states equally populate the sites and a low temperature phase where one of the q states is more
common than the others. In two dimensions the transition between these two phases is first-order
(see Section 5.7.1) for q > 4 and is continuous otherwise. In Problem 5.22 we explore how the
Wang-Landau algorithm can provide some insight into the nature of the Potts model and its phase
transitions.

∗Problem 5.22. Application of Wang-Landau algorithm to the Potts model
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(a) (b)

Figure 5.17: (a) A typical microstate of the Ising model. (b) The same microstate in the lattice
gas picture with spin up replaced by a particle and spin down replaced by an empty cell.

(a) What is the relation of the q = 2 Potts model to the usual Ising model? In particular, what is
the relation of the interaction energy K defined in the Potts model and the interaction energy
J defined in the Ising model?

(b) Program PottsModel implements the Wang-Landau algorithm for the Potts model on a square
lattice. Run the program for L = 16 and various values of q and verify that the peak in the
heat capacity occurs near the known exact value for the transition temperature given by
Tc = (ln (1 +

√
q))−1. You will need over 100,000 Monte Carlo steps to obtain reliable data.

(c) Choose q = 2 and q = 3 and observe the energy distribution P (E) = Ωe−βE at T = Tc. Do
you see one peak or two?

(d) Choose q = 10 and observe the energy distribution P (E) at T = Tc. You should notice
two peaks in this distribution. Discuss why the occurrence of two peaks is appropriate for a
first-order transition.

5.9 *Lattice Gas

The Ising model is useful not only because it is the simplest model of magnetism, but also because
it can be applied to many other systems. Two common applications are to fluids and to binary
alloys. In the fluid model a spin of +1 represents a particle and a spin of −1 represents a void
(see Figure 5.17). The hard core repulsion between particles at short distances is modeled by
the restriction that there is at most one particle per site. The short-range attractive interaction
between particles is modeled by the nearest-neighbor Ising interaction.

Binary alloys are modeled in a similar way with +1 representing one type of atom and −1
representing a second type. The Ising interaction models the tendency of like atoms to be near
each other because the attraction between like atoms is stronger than that between unlike atoms
in binary alloys. In this section we will focus on the fluid model, which is called the lattice gas.

We could proceed by taking the form of the Ising energy given in (5.35) and converting all
our previous results in the language of magnetism to the language of fluids. For example, when
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most spins are up the system is mostly a liquid, and when most spins are down the system is a
gas. However, it is useful to change variables so that we can more directly describe the behavior of
the system in the language of particles. For this purpose we define a new variable ni ≡ (si + 1)/2,
so that ni = 0 or 1. The energy function (5.35) becomes

E = −J
N

∑

i,j=nn(i)

(2ni − 1)(2nj − 1) −H

N
∑

i=1

(2ni − 1). (5.135)

We expand and rearrange terms and find that on a square lattice,

E = −4J

N
∑

i,j=nn(i)

ninj − (2H − 8J)

N
∑

i=1

ni +N(H − 2J). (5.136)

To obtain the factor of 8 in (5.136) note that
∑N

i,j=nn(i) 2ni = 4
∑N

i 2ni, where the factor of 4

arises from the sum over j and is the number of nearest neighbors of i. The sum
∑N

i,j=nn(i) 2nj

gives the same contribution. To avoid double counting we need to divide the sums by a factor of
two.

We define the energy u0 ≡ 4J and the chemical potential µ ≡ 2H−8J , and express the energy
of the lattice gas as

E = −u0

N
∑

i,j=nn(i)

ninj − µ

N
∑

i=1

ni +N(H − 2J). (5.137)

The constant term N(H − 2J) can be eliminated by redefining the zero of energy.

It is natural to fix the temperature T and external magnetic field H of the Ising model because
we can control these quantities experimentally and in simulations. Hence, we usually simulate and
calculate the properties of the Ising model in the canonical ensemble. The Metropolis algorithm
for simulating the Ising model flips individual spins, which causes the magnetization to fluctuate.
Because the magnetization is not conserved, the number of particles in the lattice gas context is not
conserved, and hence the same Metropolis algorithm is equivalent to the grand canonical ensemble
for a lattice gas. We can modify the Metropolis algorithm to simulate a lattice gas in the canonical
ensemble with the number of particles fixed. Instead of flipping individual spins (single spin flip
dynamics), we have to interchange two spins. The algorithm proceeds by choosing a pair of nearest
neighbor spins at random. If the two spins are parallel, we include the unchanged microstate in
various averages. If the two spins are antiparallel, we interchange the two spins and compute the
trial change in the energy ∆E as before and accept the trial change with the usual Boltzmann
probability. (This algorithm is called spin exchange or Kawasaki dynamics.)

Although the Ising model and the lattice gas are equivalent and all the critical exponents are
the same, the interpretation of the phase diagram differs. Suppose that the number of occupied
sites equals the number of unoccupied sites. In this case the transition from high temperature to
low temperature is continuous. For T > Tc the particles exist in small droplets and the voids exist
in small bubbles. In this case the system is neither a liquid or a gas. Below Tc the particles coalesce
into a macroscopically large cluster, and the bubbles coalesce into a large region of unoccupied
sites. This change is an example of phase separation, and the simultaneous existence of both a
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gas and liquid is referred to as gas-liquid coexistence.13 The order parameter of the lattice gas is
taken to be ρ∗ ≡ (ρL − ρG)/ρL, where ρL is the particle density of the liquid region and ρG is the
density of the gas region. Above Tc there is no phase separation (there are no separate liquid and
gas regions) and thus ρ∗ = 0. At T = 0, ρL = 1 and ρG = 0.14 The power law behavior of ρ∗ as
T → Tc from below Tc is described by the critical exponent β, which has the same value as that
for the magnetization in the Ising model. The equality of the critical exponents for the Ising and
lattice gas models as well as more realistic models of liquids and gases is an example of universality

of critical phenomena for qualitatively different systems (see Sections 9.5 and 9.6).

If the number of occupied and unoccupied sites is unequal, then the transition from a fluid
to two phase coexistence as the temperature is lowered is discontinuous. For particle systems it is
easier to analyze the transition by varying the pressure rather than the temperature.

As we will discuss in Chapter 7 there is a jump in the density as the pressure is changed along
an isotherm in a real fluid. This density change can occur either for a fixed number of particles
with a change in the volume or as a change in the number of particles for a fixed volume. We will
consider the latter by discussing the lattice gas in the grand canonical ensemble. From (2.168)
we know that the thermodynamic potential Ω associated with the grand canonical ensemble is
given by Ω = −PV . For the lattice gas the volume V is equal to the number of sites N , a fixed
quantity. We know from (4.144) that Ω = −kT lnZG, where ZG is the grand partition function.
The grand partition function for the lattice gas with the energy given by (5.137) is identical to the
partition function for the Ising model in a magnetic field with the energy given by (5.35), because
the difference is only a change of variables. The free energy for the Ising model in a magnetic field
is F = −kT lnZ. Because Z = ZG, we have that F = Ω, and thus we conclude that −PV for
the lattice gas equals F for the Ising model. This identification will allow us to understand what
happens to the density as we change the pressure along an isotherm. In a lattice gas the density
is the number of particles divided by the number of sites or ρ = ni. In Ising language ρ is

ρ =
1

2
(si + 1) = (m+ 1)/2, (5.138)

where m is the magnetization. Because −PV = F , changing the pressure at fixed temperature
and volume in the lattice gas corresponds to changing the free energy F (T, V,H) by changing the
field H in the Ising model. We know that when H changes from 0+ to 0− for T < Tc there is a
jump in the magnetization from a positive to a negative value. From (5.138) we see that this jump
corresponds to a jump in the density in the lattice gas model, corresponding to a change in the
density from a liquid to a gas.

Problem 5.23. Simulation of the two-dimensional lattice gas

(a) What is the value of the critical temperature Tc for the lattice gas in two dimensions?

(b) Program LatticeGas simulates the lattice gas on a square lattice of linear dimension L. The
initial state has all the particles at the bottom of the simulation cell. Choose L = 32 and set
the gravitational field equal to zero. Do a simulation at T = 0.4 with N = 600 particles. After

13If the system were subject to gravity, the liquid region would be at the bottom of a container and the gas would
be at the top.

14For T > 0 the cluster representing the liquid region would have some unoccupied sites and thus ρL < 1, and
the gas region would have some particles so that ρG > 0.
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a few Monte Carlo steps you should see the bottom region of particles (green sites) develop
a few small holes or bubbles and the unoccupied region contain a few isolated particles or
small clusters of particles. This system represents a liquid (the predominately green region)
in equilibrium with its vapor (the mostly white region). Record the energy. To speed up the
simulation set steps per display equal to 100.

(c) Increase the temperature in steps of 0.05 until T = 0.7. At each temperature run for at
least 10000mcs to reach equilibrium and then press the Zero averages button. Run for at
least 20000mcs before recording your estimate of the energy. Describe the visual appearance
of the positions of the particle and empty sites at each temperature. At what temperature
does the one large liquid region break up into many pieces, such that there is no longer a
sharp distinction between the liquid and vapor region? At this temperature the two phases
are no longer in equilibrium and there is a single fluid phase. Is there any evidence from your
estimates of the energy that a transition from a two phase system to a one phase system has
occurred? Repeat your simulations with N = 200.

(d) Repeat part (c) with N = 512. In this case the system will pass through a critical point. The
change from a one phase to a two phase system occurs continuously in the thermodynamic
limit. Can you detect this change or does the system look similar to the case in part (c).

(e) If we include a gravitational field, the program removes the periodic boundary conditions in
the vertical direction, and thus sites in the top and bottom rows have three neighbors instead
of four. The field should help define the liquid and gas regions. Choose g = 0.01 and repeat
the above simulations. Describe the differences you see.

(f) Simulate a lattice gas ofN = 2048 particles on a 64 lattice at T = 2.0 with no gravitational field
for 5000mcs. Then change the temperature to T = 0.2. This process is called a (temperature)
quench, and the resulting behavior is called spinodal decomposition. The domains grow very
slowly as a function of time. Discuss why it is difficult for the system to reach its equilibrium
state for which there is one domain of mostly occupied sites in equilibrium with one domain
of mostly unoccupied sites.

5.10 Supplementary Notes

5.10.1 The Heisenberg model of magnetism

Classical electromagnetic theory tells us that magnetic fields are due to electrical currents and
changing electric fields, and that the magnetic fields far from the currents are described by a
magnetic dipole. It is natural to assume that magnetic effects in matter are due to microscopic
current loops created by the motion of electrons in atoms. However, it was shown by Niels Bohr
in his doctoral thesis of 1911 and independently by Johanna H. van Leeuwen in her 1919 doctoral
thesis that diamagnetism does not exist in classical physics (see Mattis). Magnetism is a quantum
phenomena.

In the context of magnetism the most obvious new physics due to quantum mechanics is the
existence of an intrinsic magnetic moment. The intrinsic magnetic moment is proportional to
the intrinsic spin, another quantum mechanical property. We will now derive an approximation
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for the interaction energy between two magnetic moments. Because the electrons responsible for
magnetic behavior are localized near the atoms of a regular lattice in most magnetic materials,
we consider the simple case of two localized electrons. Each electron has spin 1/2 and are aligned
up or down along the axis specified by the applied magnetic field. The electrons interact with
each other and with nearby atoms and are described in part by the spatial wavefunction ψ(r1, r2).
This wavefunction must be multiplied by the spin eigenstates to obtain the actual state of the two
electron system. We denote the basis for the spin eigenstates as

|↑↑〉, |↓↓〉, |↑↓〉, |↓↑〉, (5.139)

where the arrows correspond to the spin of the electrons. These states are eigenstates of the
z-component of the total spin angular momentum15 Ŝz such that Ŝz operating on any of the
states in (5.139) has an eigenvalue equal to the sum of the spins in the z direction. For example,
Ŝz|↑↑〉 = 1|↑↑〉 and Ŝz|↑↓〉 = 0|↑↓〉. Similarly, Ŝx or Ŝy give zero if either operator acts on these
eigenstates.

Because electrons are fermions, the basis states in (5.139) are not acceptable because if two
electrons are interchanged, the wave function must be antisymmetric. Thus, ψ(r1, r2) = +ψ(r2, r1)
if the spin state is antisymmetric, and ψ(r1, r2) = −ψ(r2, r1) if the spin state is symmetric. The
simplest normalized linear combinations of the eigenstates in (5.139) that satisfy this condition are

1√
2
[|↑↓〉 − |↓↑〉] (5.140a)

|↑↑〉 (5.140b)

1√
2
[|↑↓〉 + |↓↑〉] (5.140c)

|↓↓〉. (5.140d)

The state in (5.140a) is antisymmetric, because interchanging the two electrons leads to minus the
original state. This state has a total spin, S = 0, and is called the singlet state. The collection of the
last three states is called the triplet state and has S = 1. If the spins are in the triplet state, then
ψ(r1, r2) = −ψ(r2, r1). Similarly, if the spins are in the singlet state, then ψ(r1, r2) = +ψ(r2, r1).
Hence, when r1 = r2, ψ is zero for the triplet state, and thus the electrons stay further apart, and
their electrostatic energy is smaller. For the singlet state at r1 = r2, ψ is nonzero, and thus the
electrons can be closer to each other, with a larger electrostatic energy. To find a relation between
the energy and the spin operators we note that

Ŝ · Ŝ = (Ŝ1 + Ŝ2)
2 = Ŝ2

1 + Ŝ2
2 + 2 Ŝ1 ·Ŝ2, (5.141)

where the operator Ŝ is the total spin. Because both electrons have spin 1/2, the eigenvalues of Ŝ2
1

and Ŝ2
2 are equal and are given by (1/2)(1 + 1/2) = 3/4. We see that the eigenvalue S of Ŝ is zero

for the singlet state and is one for the triplet state. Hence, the eigenvalue of Ŝ2 is S(S + 1) = 0
for the singlet state and (1(1 + 1) = 2 for the triplet state. Similarly, the eigenvalue S12 of Ŝ1 · Ŝ2

equals −3/4 for the singlet state and 1/4 for the triplet state. These considerations allows us to
write

E = c− JS12, (5.142)

15We will denote operators by the caret symbol in this section.
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where c is a constant and J is known as the exchange constant. If we denote Etriplet and Esinglet

as the triplet energy and the singlet energy, respectively, and let J = Esinglet − Etriplet, we can
determine c and find

E =
1

4
(Esinglet + 3Etriplet) − JS12. (5.143)

You can check (5.143) by showing that when S12 = −3/4, E = Esinglet and when S12 = 1/4,
E = Etriplet. The term in parenthesis in (5.143) is a constant and can be omitted by suitably
defining the zero of energy. The second term represents a convenient form of the interaction
between two spins.

The total energy of the Heisenberg model of magnetism is based on the form (5.143) for the
spin-spin interaction and is expressed as

Ĥ = −
N

∑

i<j=1

Jij Ŝi · Ŝj − gµ0H·
N

∑

i=1

Ŝi, (5.144)

where gµ0 is the magnetic moment of the electron. Usually we combine the factors of g and µ0

into H and write the Heisenberg Hamiltonian as

Ĥ = −
N

∑

i<j=1

Jij Ŝi · Ŝj −H

N
∑

i=1

Ŝz,i, (Heisenberg model) (5.145)

The form (5.145) of the interaction energy is known as the Heisenberg model. The exchange

constant Jij can be either positive or negative. Note that
ˆ̂
S as well as the Hamiltonian Ĥ is

an operator, and that the Heisenberg model is quantum mechanical in nature. The distinction
between the operator Ĥ and the magnetic field H will be clear from the context.

The Heisenberg model assumes that we can treat all interactions in terms of pairs of spins.
This assumption means that the magnetic ions in the crystal must be sufficiently far apart that
the overlap of their wavefunctions is small. We also have neglected any orbital contribution to
the total angular momentum. In addition, dipolar interactions can be important and lead to a
coupling between the spin degrees of freedom and the relative displacements of the magnetic ions.
It is very difficult to obtain the exact Hamiltonian from first principles.

The Heisenberg model is the starting point for most microscopic models of magnetism. We
can go to the classical limit S → ∞, consider spins with one, two, or three components, place the
spins on lattices of any dimension and any crystal structure, and take J to be positive, negative,
random, nearest-neighbor, long-range, etc. In addition, we can include other interactions such as
the interaction of an electron with an ion. The theoretical possibilities are very rich as are the
types of magnetic materials of interest experimentally.

5.10.2 Low temperature expansion

The existence of exact analytical solutions for systems with nontrivial interactions is the exception,
and we usually must be satisfied with approximate solutions with limited ranges of applicability.
If the ground state is known and if we can determine the excitations from the ground state, we
can determine the behavior of a system at low temperatures.
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(a) (b)

Figure 5.18: (a) The ground state of N = 5 Ising spins in an external magnetic field H . For
toroidal boundary conditions, the ground state energy is E0 = −5J − 5H . (b) The flip of a single
spin of N = 5 Ising spins. The corresponding energy cost is 4J + 2H .

(a) (b)

Figure 5.19: Microstates corresponding to two flipped spins of a system of N = 5 spins in one
dimension. In (a) the flipped spins are nearest neighbors and in (b) the flipped spins are not
nearest neighbors.

To understand the nature of this class of approximations we consider the one-dimensional Ising
model at low temperatures. We know that the ground state corresponds to all spins completely
aligned. When we raise the temperature slightly above T = 0, the system can raise its energy by
flipping one or more spins. At a given temperature we can consider the excited states corresponding
to 1, 2, . . . , f flipped spins. These f spins may be connected or may consist of disconnected
groups. Each number of flipped spins corresponds to a term in the low temperature expansion of
the partition function.

As an example, consider a system of N = 5 spins with toroidal boundary conditions. The
ground state is shown in Figure 5.18(a). The energy cost of flipping a single spin is 4J + 2H . A
typical microstate with one flipped spin is shown in Figure 5.18(b). (The energy of interaction of
the flipped spin with its two neighbors changes from −2J to +2J .) Because the flipped spin can
be at N = 5 different sites, we have

Z = [1 + 5 e−β(4J+2H)]e−βE0 , (f = 1) (5.146)

where E0 = −5(J +H).

The next higher energy excitation consists of a pair of flipped spins with one type of contribu-
tion arising from pairs that are nearest neighbors (see Figure 5.19(a)) and the other type arising
from pairs that are not nearest neighbor (see Figure 5.19(b)). We will leave it as an exercise (see
Problem 5.24) to determine the corresponding energies and the number of different ways that this
type of excitation occurs.

∗Problem 5.24. Low temperature expansion for five spins

(a) Determine the part of the partition function corresponding to two flipped spins out of N = 5.
(Use toroidal boundary conditions.)

(b) Enumerate the 25 microstates of the N = 5 Ising model in one dimension and classify the
microstates corresponding to the energy of the microstate. Then use your results to find the
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low temperature expansion of Z. Express your result for Z in terms of the variables

u = e−2J/kT , (5.147a)

and

w = e−2H/kT . (5.147b)

Problem 5.25. Low temperature behavior of N spins

(a) Generalize your results to N spins in one dimension and calculate Z corresponding to f = 1
and f = 2 flipped spins. Find the free energy, mean energy, heat capacity, magnetization,
and susceptibility assuming that u ≪ 1 and w ≪ 1 (see (5.147)) so that you can use the
approximation ln (1 + ǫ) ≈ ǫ.

(b) *Generalize the low temperature expansion for the one-dimensional Ising model to find higher
order contributions to ZN and show that the low temperature series can be summed exactly.
(The low temperature series of the Ising model can be summed only approximately in higher
dimensions using what are known as Padé approximants.)

5.10.3 High temperature expansion

At high temperatures for which J/kT ≪ 1, the effects of the interactions between the spins
become small, and we can develop a perturbation method based on expanding Z in terms of the
small parameter J/kT . For simplicity, we consider the Ising model in zero magnetic field. We
write

ZN =
∑

{si=±1}

∏

i,j=nn(i)

eβJsisj , (5.148)

where the sum is over all states of the N spins, and the product is restricted to nearest neighbor
pairs of sites 〈ij〉 in the lattice. We first use the identity

eβJsisj = coshβJ + sisj sinhβJ = (1 + vsisj) coshβJ, (5.149)

where
v = tanhβJ. (5.150)

The identity (5.149) can be demonstrated by considering the various cases si, sj = ±1 (see Prob-
lem 5.43). The variable v approaches zero as T → ∞ and will be used as an expansion parameter
instead of J/kT for reasons that will become clear. Equation (5.148) can now be written as

ZN = (coshβJ)p
∑

{si}

∏

〈ij〉

(1 + vsisj), (5.151)

where p is the total number of nearest neighbor pairs in the lattice, that is, the total number of
interactions. For a lattice with toroidal boundary conditions

p =
1

2
Nq, (5.152)



CHAPTER 5. MAGNETIC SYSTEMS 278

where q is the number of nearest neighbor sites of a given site; q = 2 for one dimension and q = 4
for a square lattice.

To make this procedure explicit, consider an Ising chain with toroidal boundary conditions
for N = 3. For this case p = 3(2)/2 = 3, and there are three factors in the product in (5.151):
(1 + vs1s2)(1 + vs2s3)(1 + vs3s1). We can expand this product in powers of v to obtain the 2p = 8
terms in the partition function:

ZN=3 = (coshβJ)3
1

∑

s1=−1

1
∑

s2=−1

1
∑

s3=−1

[

1 + v(s1s2 + s2s3 + s3s1)

+ v2(s1s2s2s3 + s1s2s3s1 + s2s3s3s1) + v3s1s2s2s3s3s1
]

. (5.153)

It is convenient to introduce a one-to-one correspondence between each of the eight terms in
the bracket in (5.153) and a diagram. The set of eight diagrams is shown in Figure 5.20. Because
v enters into the product in (5.153) as vsisj , a diagram of order vn has n v-bonds. We can use
the topology of the diagrams to help us to keep track of the terms in (5.153). The term of order
v0 is 2N=3 = 8. Because

∑

si=±1 si = 0, each of the terms of order v vanish. Similarly, each of the

three terms of order v2 contains at least one of the spin variables raised to an odd power so that
these terms also vanish. For example, s1s2s2s3 = s1s3, and both s1 and s3 enter to first-order. In
general, we have

1
∑

si=−1

si
n =

{

2 n even

0 n odd
(5.154)

From (5.154) we see that only terms of order v0 and v3 contribute so that

ZN=3 = cosh3 βJ [8 + 8v3] = 23(cosh3 βJ + sinh3 βJ). (5.155)

We can now generalize our analysis to arbitrary N . We have observed that the diagrams that
correspond to nonvanishing terms in Z are those that have an even number of bonds from each
vertex; these diagrams are called closed. A bond from site i corresponds to a product of the form
sisj . An even number of bonds from site i implies that si to an even power enters into the sum
in (5.151). Hence, only diagrams with an even number of bonds from each vertex yield a nonzero
contribution to ZN .

For the Ising chain only two bonds can come from a given site. Hence, although there are
2N diagrams for a Ising chain of N spins with toroidal boundary conditions, only the diagrams of
order v0 (with no bonds) and of order vN contribute to ZN . We conclude that

ZN = (coshβJ)N [2N + 2NvN ]. (5.156)

Problem 5.26. The form of ZN in (5.156) is not the same as the form of ZN given in (5.39). Use
the fact that v < 1 and take the thermodynamic limit N → ∞ to show the equivalence of the two
results for ZN .

Problem 5.27. High temperature expansion for four spins

Draw the diagrams that correspond to the nonvanishing terms in the high temperature expansion
of the partition function for the N = 4 Ising chain.
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1

2 3
v0

v1

v2

v3

Figure 5.20: The eight diagrams that correspond to the eight terms in the partition function for
the N = 3 Ising chain. The term sisj is represented by a line between the neighboring sites i and
j (see Stanley).

It is possible to generalize the diagrammatic analysis to higher dimensions. The results of
low temperature and high temperature expansions have been used to estimate the values of the
various critical exponents (see the monograph by Domb). An analogous diagrammatic expansion
is discussed in Chapter 8 for particle systems.

5.10.4 Bethe approximation

In Section 5.7 we introduced a simple mean-field theory of the Ising model. In the following we
discuss how to improve this approximation.16

The idea is that instead of considering a single spin, we consider a group or cluster of spins and
the effective field experienced by it. In particular, we will choose the group to be a spin and its q
nearest neighbors (see Figure 5.21). The interactions of the nearest neighbors with the central spin
are calculated exactly, and the rest of the spins in the system are assumed to act on the nearest
neighbors through a self-consistent effective field. The energy of the cluster is

Hc = −Js0
q

∑

j=1

sj −Hs0 −Heff

q
∑

j=1

sj (5.157a)

= −(Js0 +Heff)

q
∑

j=1

sj −Hs0. (5.157b)

16This approach is due to Bethe, who received a Nobel prize for his work on the theory of stellar nucleosynthesis.
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s3s1

s4

s2

s0

Figure 5.21: The simplest cluster on the square lattice used in the Bethe approximation. The
interaction of the central spin with its q = 4 nearest neighbors is treated exactly.

For a square lattice q = 4. Note that the fluctuating field acting on the nearest neighbor spins
s1, . . . , sq has been replaced by the effective field Heff .

The cluster partition function Zc is given by

Zc =
∑

s0=±1,sj=±1

e−βHc . (5.158)

We first do the sum over s0 = ±1 using (5.157b) and write

Zc = eβH
∑

sj=±1

eβ(J+Heff )(
Pq

j=1
sj) + e−βH

∑

sj=±1

eβ(−J+Heff )(
Pq

j=1
sj). (5.159)

For simplicity, we will evaluate the partition function of the cluster for the one-dimensional Ising
model for which q = 2. Because the two neighboring cluster spins can take the values ↑↑, ↑↓, ↓↑,
and ↓↓, the sums in (5.159) yield

Zc = eβH
[

e2β(J+Heff ) + 2 + e−2β(J+Heff )
]

+ e−βH
[

e2β(−J+Heff ) + 2 + e−2β(−J+Heff )
]

(5.160a)

= 4
[

eβH cosh2 β(J +Heff) + e−βH cosh2 β(J −Heff)
]

. (5.160b)

The expectation value of the central spin is given by

〈s0〉 =
1

β

∂ lnZc

∂H
=

4

Zc

[

eβH cosh2 β(J +Heff) − e−βH cosh2 β(J −Heff)
]

. (5.161)

In the following we will set H = 0 to find the critical temperature.

We also want to calculate the expectation value of the spin of the nearest neighbors 〈sj〉 for
j = 1, . . . , q. Because the system is translationally invariant, we require that 〈s0〉 = 〈sj〉 and find
the effective field Heff by requiring that this condition be satisfied. From (5.159) we see that

〈sj〉 =
1

q

∂ lnZc

∂(βHeff)
. (5.162)
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If we substitute (5.160b) for Zc in (5.162) with H = 0, we find

〈sj〉 =
4

Zc

[

sinhβ(J +Heff) coshβ(J +Heff)

− sinhβ(J −Heff) coshβ(J −Heff)
]

. (5.163)

The requirement 〈s0〉 = 〈sj〉 yields the relation

cosh2β(J +Heff) − cosh2β(J −Heff) = sinhβ(J +Heff) coshβ(J +Heff)

− sinhβ(J −Heff) coshβ(J −Heff). (5.164)

Equation (5.164) can be simplified by writing sinhx = coshx − e−x with x = β(J ± Heff). The
result is

coshβ(J +Heff)

coshβ(J −Heff)
= e2βHeff . (5.165)

We can follow a similiar procedure to find the generalization of (5.165) to arbitrary q. The
result is

coshq−1 β(J +Heff)

coshq−1 β(J −Heff)
= e2βHeff . (5.166)

Equation (5.166) always has the solution Heff = 0 corresponding to the high temperature phase.
Is there a nonzero solution for Heff for low temperatures? As Heff → ∞, the left-hand side of
(5.166) approaches e2βJ(q−1), a constant independent of Heff , and the right-hand side diverges.
Therefore, if the slope of the function on the left at Heff = 0 is greater than 2β, the two functions
must intersect again at finite Heff . If we take the derivative of the left-hand side of (5.166) with
respect to Heff and set it equal to 2β, we find that the condition for a solution to exist is

cothβcJ = q − 1, (5.167)

where cothx = coshx/ sinhx. Because (5.166) is invariant under Heff → −Heff , there will be two
solutions for T ≤ Tc.

On the square lattice (q = 4) the condition (5.167) yields kTc/J ≈ 2.885 in comparison to the
Onsager solution kTc/J ≈ 2.269 (see (5.86)) and the result of simple mean-field theory, kTc/J = 4.
For the one-dimensional Ising model (q = 2), the Bethe approximation predicts Tc = 0 in agreement
with the exact result. That is, the Bethe approximation does not predict a phase transition in one
dimension.

Better results can be found by considering larger clusters. Although such an approach yields
more accurate results for Tc, it yields the same mean-field exponents because it depends on the
truncation of correlations beyond a certain distance. Hence, this approximation must break down
in the vicinity of a critical point where the correlation between spins becomes infinite.

Problem 5.28. The Bethe approximation

(a) Work out the details of the Bethe approximation for the cluster in Figure 5.21 and derive
(5.166).

(b) Derive (5.167) for the critical temperature.

(c) Show that kTc/J ≈ 2.885 for q = 4 and kTc/J = 0 for q = 2.
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5.10.5 Fully connected Ising model

We expect that mean-field theory becomes exact for a system in which every spin interacts equally
strongly with every other spin in the system because the fluctuations of the effective field would
go to zero in the limit N → ∞. We will refer to this model as the fully connected Ising model.

For such a system the energy is given by (see Problem 5.29)

E =
JN

2
(N −M2), (5.168)

where M is the magnetization and JN is the interaction between any two spins. Note that E
depends only on M . In Problem 5.29 we also find that the number of states with magnetization
M is given by

Ω(M) =
N !

n!(N − n)!
, (5.169)

where n is the number of up spins. As before, n = N/2 +M/2 and N − n = N/2 −M/2.

Problem 5.29. Energy and density of states of the fully connected Ising model

(a) Show that the energy of a system for which every spin interacts with every other spin is given
by (5.168). A straightforward way to proceed is to consider a small system, say N = 9, and
determine the energy of various microstates. As you do so, you will see how to generalize your
results to arbitrary N .

(b) Use similar considerations as in part (a) to find the number of states as in (5.169).

The energy of interaction JN of two spins has to scale as 1/N so that the total energy of N
spins will be proportional to N . We will choose

JN = q
J

N
. (5.170)

The factor of q is included so that we will obtain the usual mean-field result for Tc.

Given the form of the energy in (5.168) and the number of states in (5.169), we can write the
partition function as

ZN =
∑

M

N !
(

N
2 + M

2

)

!
(

N
2 − M

2

)

!
e−βJN(N−M2)/2eβHM . (5.171)

We have included the interaction with an external magnetic field. For N ≫ 1 we can convert the
sum to an integral. We write

ZN =

∫ ∞

−∞

Z(M) dM, (5.172)

where

Z(M) =
N !

n!(N − n)!
e−βEeβHM , (5.173)
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where n = (M +N)/2. A plot of Z(M) shows that it is peaked about a particular value of M . So
let us do our usual trick of expanding lnZM about its maximum.

We first find the value of M for which Z(M) is a maximum. We write

lnZ(M) = lnN ! − lnn! − ln(N − n)! − βE + βHM. (5.174)

We then use the weaker form of Stirling’s approximation (3.102) and the fact that d(lnx!)/dx =
lnx, dn/dM = 1/2, and d(N − n)/dM = −1/2, and obtain

d lnZ(M)

dM
= −1

2
lnn+

1

2
ln(N − n) + βJNM + βH (5.175a)

= −1

2
ln
N

2
(1 +m) +

1

2
ln
N

2
(1 −m) + qβJm+ βH (5.175b)

= −1

2
ln(1 +m) +

1

2
ln(1 −m) + qβJm+ βH = 0, (5.175c)

where m = M/N . We set d(lnZ(M))/dM = 0 to find the value of m that maximizes Z(M). We
have

1

2
ln

1 −m

1 +m
= −β(qJm+H), (5.176)

so that
1 −m

1 +m
= e−2β(qJm+H) = x (5.177)

Finally we solve (5.177) for m in terms of x and obtain 1 −m = x(1 +m), m(−1 − x) = −1 + x.
Hence

m =
1 − x

1 + x
=

1 − e−2β(Jqm+H)

e−2β(Jqm+H) + 1
(5.178a)

=
eβ(Jqm+H) − e−β(Jqm+H)

e−β(Jqm+H) + eβ(Jqm+H)
(5.178b)

= tanh(β(Jqm+H). (5.178c)

Note that (5.178c) is identical to the mean-field result in (5.108).17

∗Problem 5.30. Fully connected Ising form of Z

(a) Show that Z(M) can be written as a Gaussian and then do the integral over M in (5.172) to
find the mean-field form of Z.

(b) Use the form of Z from part (a) to find the mean-field result for the free energy F . Compare
your result to (5.126).

17 Mean-field theory corresponds to taking the limit N → ∞ before letting the range of interaction go to infinity.
In contrast, the fully connected Ising model corresponds to taking both limits simultaneously. Although the Ising
model gives the same results for the partition function as mean-field theory, the fully connected Ising model can
yield different results in other contexts.
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5.10.6 Metastability and nucleation

To introduce the concepts of metastability and nucleation we first consider the results of the
simulations in Problem 5.31.

Problem 5.31. Simulations of metastability

(a) Use program Ising2D to simulate the Ising model on a square lattice. Choose L = 64, T = 1,
and H = 0.7. Run the simulation until the system reaches equilibrium. You will notice that
most of the spins are aligned with the magnetic field.

(b) Pause the simulation and let H = −0.7; we say that we have “flipped” the field. Continue the
simulation after the change of the field and watch spins. Do the spins align themselves with
the magnetic field immediately after the flip? Monitor the magnetization of the system as a
function of time. Is there an interval of time for which the mean value of m does not change
appreciably? At what time does m change sign? What is the equilibrium state of the system
after the change of the field?

(c) Keep the temperature fixed at T = 1 and decrease the field to H = 0.6 and flip the field as
in part (b). Does m become negative sooner or later? Is this time the same each time you do
the simulation? The program uses a different random number seed each time it is run.

You probably found that the spins did not immediately flip to align themselves with the
magnetic field. Instead most of the spins remained up and the mean values of the magnetization
and energy did not change appreciably for many Monte Carlo steps per spin. We say that the
system is in a metastable state. The reason that the spins do not flip as soon as the field is flipped
is that if the field is not too large, it costs energy for a spin to flip because it would likely no longer
be parallel with its neighbors. If we wait long enough, we will see isolated “droplets” of spins
pointing in the stable (down) direction. If a droplet is too small, it will likely shrink and vanish. In
contrast, if the droplet is bigger than a critical size (see Figure 5.22), it will grow and the system
will quickly reach its stable equilibrium state. If the droplet has a certain critical size, then it will
grow with a probability of 50%. This droplet is called the nucleating droplet. The initial decay of
the metastable state is called nucleation.

Metastable states occur often in nature and in the laboratory. For example, if you take a
container of distilled (very pure) water with no dirt, pollen, or other impurities, you can supercool
it below the freezing temperature of 0◦C. The supercooled water will remain a liquid unless there
is a spontaneous density fluctuation. More likely, an external disturbance will create the neces-
sary fluctuation. Search <youtube.com> for supercooled water to see some great demonstrations.
Metastable states are important in forming crystalline metals from a molten liquid as well as in
biological systems and the inflationary scenario of the early universe.

To determine the size of the nucleating droplet consider nucleation at low temperatures so
that we can ignore the entropy.18 A compact droplet (circular in two dimensions and spherical in
three dimensions) minimizes the energy cost of creating a droplet of down spins. The energy is

18At higher temperatures we would consider the free energy.

<youtube.com>
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Figure 5.22: Example of a nucleating droplet. The simulation was done for the Ising model on a
square lattice with L = 64, T = 1, and |H | = 0.7. The magnetic field was originally up (in the
direction of the lighter sites). The nucleating droplet appeared at t ≈ 50mcs after the flip of the
field and is the largest cluster of down (dark) sites.

decreased by aligning the spins of a droplet with the field. This energy decrease is proportional to
the area (volume in three dimensions) of the droplet. Hence,

Ebulk = −aHrd, (5.179)

where r is the radius of the droplet, d is the spatial dimension, and a is a constant.

Creating a surface costs energy. The associated energy cost is proportional to the circumference
(surface area in three dimensions) of the droplet, and hence

Esurf = σrd−1, (5.180)

where σ is the energy cost per unit length (or per unit area in three dimensions). This quantity is
known as the surface tension.

The total energy cost of creating a droplet of radius r is

E(r) = −aHrd + σrd−1. (5.181)

The energy cost of the droplet increases as a function of r until a critical radius rc (see Figure 5.23).

The radius of the nucleating droplet can be obtained by determining the value of r for which
E(r) has a maximum:

dE

dr

∣

∣

∣

r=rc

= −adHrd−1
c + (d− 1)σrd−2

c = 0, (5.182)

or
− adHrc + (d− 1)σ = 0, (5.183)
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Figure 5.23: The energy cost E(r) of a droplet of radius r from (5.181) for d = 3 (with a = 1,
σ = 0.5, and H = 0.1 chosen for convenience).

and

rc =
(d− 1)σ

adH
. (5.184)

The energy cost of creating the nucleating droplet is Ec = bσd/(aH)d−1, where b depends on d.
The probability of creating the nucleating droplet is proportional to e−βEc . The lifetime of the
metastable state, that is, the time before the nucleating droplet occurs, is proportional to the
inverse of this probability.

Note that we used equilibrium considerations to estimate the radius of the nucleating droplet
and the lifetime of the metastable state. This assumption of equilibrium is justified only if the
lifetime of the metastable state is long. Hence, we must have Ec/kT ≫ 1, that is, small fields or
low temperatures.
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Ising model, exchange constant J , domain wall
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hysteresis, metastable state, nucleating droplet
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Figure 5.24: The direction of µ is determined by the angles θ and φ of a spherical coordinate
system.

Additional Problems

Problem 5.32. Classical paramagnet

The energy of interaction of a classical magnetic dipole with the magnetic field B is given by
E = −µ ·B. In the absence of an external field the dipoles are randomly oriented so that the mean
magnetization is zero. The goal of this problem is to find the mean magnetization as a function of
B and T . The direction of the magnetization is parallel to B.

The sum over microstates becomes an integral over all directions of µ. The direction of µ

in three dimensions is given by the angles θ and φ of a spherical coordinate system as shown in
Figure 5.24. The integral is over the solid angle element dΩ = sin θdθdφ. In this coordinate system
the energy of the dipole is given by E = −µB cos θ.

(a) Choose spherical coordinates and show that the probability p(θ, φ)dθdφ that the dipole is
between the angles θ and θ + dθ and φ and φ+ dφ is given by

p(θ, φ)dθdφ =
eβµB cos θ

Z1
sin θdθdφ, (5.185)

where Z1 is given by

Z1 =

∫ 2π

0

∫ π

0

eβµB cos θ sin θ dθ dφ. (5.186)

(b) How is cos θ related to Z1?
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(c) Show that the mean magnetization is given by

M = NµL
(

βµB
)

, (5.187)

where the Langevin function L(x) is given by

L(x) =
ex + e−x

ex − e−x
− 1

x
= cothx− 1

x
. (5.188)

(d) For |x| < π L(x) can be expanded as

L(x) =
x

3
− x3

45
+ . . .+

22nB2n

(2n)!
+ . . . , (x≪ 1) (5.189)

where Bn is the Bernoulli number of order n (see Appendix A). What is M and the suscepti-
bility in the limit of high T ?

(e) For large x, L(x) is given by

L(x) ≈ 1 − 1

x
+ 2e−2x. (x≫ 1) (5.190)

What is the behavior of M in the limit of low T ?

(f) What is the mean energy and the entropy of a system of N noninteracting magnetic dipoles?
Is the behavior of the entropy at low temperatures consistent with the third law of thermody-
namics?

Problem 5.33. Arbitrary spin

The magnetic moment of an atom or nucleus is associated with its angular momentum which
is quantized. If the angular momentum is J , the magnetic moment along the direction of B is
restricted to (2J + 1) orientations. We write the energy of an individual atom as

E = −gµ0 J ·B = −gµ0JzB. (5.191)

The values of µ0 and g depend on whether we are considering a nucleus, an atom, or an electron.
The values of Jz are restricted to −J , −J + 1, −J + 2, . . . , J − 1, J . Hence, the partition function
for one atom contains (2J + 1) terms:

Z1 =

J
∑

m=−J

e−β(−gµ0mB). (5.192)

The summation index m ranges from −J to J in steps of +1.

To simplify the notation, we let α = βgµ0B, and write Z1 as a finite geometrical series:

Z1 =

J
∑

m=−J

emα, (5.193a)

= e−αJ(1 + eα + e2α + . . .+ e2Jα). (5.193b)
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The sum of a finite geometrical series is given by

Sn =

n
∑

p=0

xp =
xn+1 − 1

x− 1
. (5.194)

Given that there are (2J + 1) terms in (5.193b), show that

Z1 = e−αJ e
(2J+1)α − 1

eα − 1
= e−αJ [1 − e(2J+1)α]

1 − eα
. (5.195)

Use the above relations to show that

M = Ngµ0JBJ(α), (5.196)

where the Brillouin function BJ (α) is defined as

BJ(α) =
1

J

[

(J + 1/2) coth(J + 1/2)α− 1

2
cothα/2

]

. (5.197)

What is the limiting behavior of M for high and low T for fixed B? What is the limiting behavior
of M for J = 1/2 and J ≫ 1?

∗Problem 5.34. Density of states

In Problem 4.40 the density of states was given without proof for the one-dimensional Ising model
for even N and toroidal boundary conditions:

Ω(E,N) = 2

(

N

i

)

= 2
N !

i! (N − i)!
, (i = 0, 2, 4, . . . , N) (4.18)

with E = 2 i−N . Use this form of Ω and the relation

ZN =
∑

E

Ω(E,N)e−βE (5.198)

to find the partition function for small values of (even) N .

Problem 5.35. Sample microstates

The five microstates shown in Figure 5.25 for the Ising chain were generated using the Metropolis
algorithm (see Sections 4.11 and 5.5.3) at βJ = 2 using toroidal boundary conditions. On the
basis of this limited sample, estimate the mean value of E/J and the magnetization. Calculate
the spin-spin correlation function G(r) for r = 1, 2, and 3, using as your origin the third spin, and
then repeat for the sixth spin. Remember that the Metropolis algorithm simulates a system in
equilibrium with a heat bath at temperature T with the correct weight. Explain why your results
are not accurate.

Problem 5.36. Enumeration of microstates of the two-dimensional Ising model
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(a)

(b)

(c)

(d)

(e)

Figure 5.25: Five microstates of the Ising chain with N = 10 spins with toroidal boundary condi-
tions generated by the Metropolis algorithm at βJ = 2 and H = 0.

(a) Calculate the partition function for the Ising model on a square lattice for N = 4 spins in the
presence of an external magnetic field H . Assume that the system is in equilibrium with a
heat bath at temperature T . Choose toroidal boundary conditions.

(b) Determine Ω(E), the number of states with energyE, and discuss its dependence onE. Assume
that H = 0.

(c) Calculate the mean energy, the heat capacity, and the zero field susceptibility as a function of
T and discuss their qualitative behavior on T . Do you see any hint of a phase transition for
zero external magnetic field? If time permits, do a similar calculation for a 3× 3 lattice. (You
might find it easier to write a short program to enumerate all the microstates.)

(d) The 42 = 16 microstates of the two-dimensional Ising model for N = 4 can be grouped into
four “ordered” states with energies ±J and 12 “disordered” states with zero energy. Test the
hypothesis that the phase transition occurs when the partition function of the disordered states
equals that of the ordered states. What is the resulting value of Tc? This simple reasoning
does not work as well for the Ising model in three dimensions.

Problem 5.37. Form of P (E) for the Ising model

Consider the two-dimensional Ising model in equilibrium with a heat bath at temperature T .

(a) On the basis of general considerations, what is the form of the probability P (E)∆E that the
system has energy between E and E + ∆E?

(b) Why is this form not applicable at the critical point?
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Problem 5.38. The Ising model and cooperative phenomena

Explore the analogy between the behavior of the Ising model and the behavior of a large group
of people. Under what conditions would a group of people act like a collection of individuals each
doing their “own thing?” Under what conditions might they act as a group? What factors could
cause a transition from one behavior to the other? The relation of the Ising model to models
of economic opinions, urban segregation, and language change is discussed by Stauffer (see the
references).

Problem 5.39. The demon and the Ising chain

(a) Consider a demon that exchanges energy with the Ising chain by flipping single spins. Show
that the possible changes in the energy in zero magnetic field are 0 and ±4J . Confirm that
the possible demon energies are Ed = 4nJ , where n = 0,, 1, 2, . . .

(b) Derive an expression for the mean demon energy as a function of the temperature of the
system.

∗Problem 5.40. Applications of the transfer matrix method

(a) Consider a one-dimensional Ising-type model with si = 0,±1. Use the transfer matrix method
to calculate the dependence of the energy on T for H = 0. The solution requires the differen-
tiation of the root of a cubic equation that you might wish to do numerically.

(b) Use the transfer matrix method to find the thermodynamic properties of the q = 3 Potts model
in one dimension.

Problem 5.41. Finite size scaling and critical exponents

Although a finite system cannot exhibit a true phase transition characterized by divergent physical
quantities, we expect that if the correlation length ξ(T ) is less than the linear dimension L of the
system, our simulations will yield results comparable to an infinite system. However, if T is close
to Tc, the results of simulations will be limited by finite size effects. Because we can only simulate
finite lattices, it is difficult to obtain estimates for the critical exponents α, β, and γ by using their
definitions in (5.95), (5.97), and (5.98) directly.

The effects of finite system size can be made quantitative by the following argument which is
based on the fact that the only important length near the critical point is the correlation length.
Consider for example, the critical behavior of χ. If the correlation length ξ ≫ 1,19 but is much less
than L, the power law behavior given by (5.98) is expected to hold. However, if ξ is comparable
to L, ξ cannot change appreciably and (5.98) is no longer applicable. This qualitative change in
the behavior of χ and other physical quantities occurs for

ξ ∼ L ∼ |T − Tc|−ν . (5.199)

19All lengths are measured in terms of the lattice spacing.
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We invert (5.199) and write
|T − Tc| ∼ L−1/ν . (5.200)

Hence, if ξ and L are approximately the same size, we can replace (5.98) by the relation

χ(T = Tc) ∼ [L−1/ν ]−γ ∼ Lγ/ν . (5.201)

The relation (5.201) between χ and L at T = Tc is consistent with the fact that a phase transition
is defined only for infinite systems. We can use the relation (5.201) to determine the ratio γ/ν.
This method of analysis is known as finite size scaling.

(a) Use program Ising2D to estimate χ at T = Tc for different values of L. Make a log-log plot
of χ versus L and use the scaling relation (5.201) to determine the ratio γ/ν. Use the exact
result ν = 1 to estimate γ. Then use the same reasoning to determine the exponent β and
compare your estimates for β and γ with the exact values given in Table 5.1.

(b) Make a log-log plot of C versus L. If your data for C is sufficiently accurate, you will find
that the log-log plot of C versus L is not a straight line but shows curvature. The reason is
that the exponent α equals zero for the two-dimensional Ising model, and C ∼ C0 lnL. Is your
data for C consistent with this form? The constant C0 is approximately 0.4995.

Problem 5.42. Low temperature behavior in mean-field theory

(a) Write (5.108) in the form βqJm = tanh−1m = (1/2) ln[(1 +m)/(1 −m)] and show that

m(T ) ≈ 1 − 2e−βqJ as T → 0. (5.202)

(b) Determine the low temperature behavior of χ. Does it approach zero for T ≪ Tc?

Problem 5.43. Verification of (5.149)

Verify the validity of the identity (5.149) by considering the different possible values of sisj and
using the identities 2 coshx = ex + e−x and 2 sinhx = ex − e−x.

∗Problem 5.44. Lifetime of metastable state

In Section 5.10.6 we discussed some of the features of metastable states in the Ising model. Suppose
that we flip the magnetic field as in Problem 5.31 and define the lifetime of the metastable state as
the number of Monte Carlo steps per spin from the time of the change of the field to the occurrence
of the nucleating droplet. Because the system can be treated by equilibrium considerations while
it is in a metastable state, the probability of occurence of the nucleating droplet during any time
interval ∆t is independent of time. What is the form of the probability p(t)∆t that the lifetime of
the metastable state is between t and t+ ∆t (see Section 3.9)?
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