StaticArrayExercises.java Monday, January 12, 2026, 8:26 AM

1

2import java.util.Arrays;

3

4

5public class StaticArrayExercises {

6

7 public static void main(Stringl[] args) {

8

9 // You do not need to handle the User Interface
(UI) first.

10 // Instead you can run the JUnit test cases found
in StaticArrayTest.java

11

12 // Construct and initialize an array of random
integer values, then pass into the methods ...

13 //double mean = calculateMean(/* Pass array into
method *x/ );

14 //double median = calculateMedian(/x Pass array
into method *x/ );

15 //double mode = calculateMode(/* Pass array into
method *x/ );

16

17 // Keep going ...

18

19

20

21

22

23

24

25

26 s

27

28 VESS

29 * Calculates the mean of a given static integer
array of positive values

30 * @param values an array of positive integer values

31 * @return the mean

32 */

Page 1



StaticArrayExercises.java Monday, January 12, 2026, 8:26 AM

33 public static double calculateMean(int[] values) {

34 double mean = 0;

35 if (values.length == 0) {

36 return mean;

37 }

38 int sum = 0;

39 for (int i = @0; i < values.length; i++)

40 sum = sum + values[i];

41 mean = (double)sum/values.length;

42 return mean;

43

44

45

46 I3

47

48 /*%

49 * Calculates the median of a given static integer
array of positive values

50 * @param values an array of positive integer values

51 * @return the mode

52 */

53 public static double calculateMedian(int[] values) A
54 double median = 0;

55 //to look at array

56 // System.out.println(Arrays.toString(values));

57 //to sort array

58 Arrays.sort(values);

59 System.out.print(Arrays.toString(values));

60

61 if (values.length == 0) {

62 return median;

63 ¥

64

65 else if (values.length %2 == 0) {

66 int medianpos = (values.length)/2;

67 int secondmedianpos = ((values.length)/2) -
1;

68 median = (values[medianpos] +

values[secondmedianpos]) / 2.0;

Page 2



StaticArrayExercises.java Monday, January 12, 2026, 8:26 AM

69 return median;
70 ¥
71
72 else {
73 int pos = ((values.length - 1) / 2);
74 median = values[pos];
75 return median;
76 ¥
77 ¥
78
79 VESS
80 * Calculates the mode of a given static integer
array of positive values
81 * It is technically possible for a list of numbers
to have ®multiple modes® or &no mode®.
82 * For this assignment you are not concerned with
either of these cases.
83 * @param values an array of positive integer values
84 * @return the mode
85 */
86 public static int calculateMode(int[] values) {
87 Arrays.sort(values);
88 int 1 = 0;
89 int x = 1;
90 int realmode = values[0];
91 int storedmode = 1;
92
93 while (i < (values.length - 1)) {
94 if (values[i] == values[i+1]) {
95 X = x + 1;
96 I
97
98 else {
99 x = 1;
100 ¥
101
102 if (x > storedmode) {
103 storedmode = Xx;
104 realmode = values[il];

Page 3



StaticArrayExercises.java Monday, January 12, 2026, 8:26 AM

105 ¥

106 i = 1i+1;

107

108 ¥

109

110 return realmode;

111

112 ¥

113

114

115

116

117 VESS

118 * Determine if the number that the user entered 1is
in the array of values.

119 * @param values an array of integer values

120 * @param valToFind the integer to find

121 * @return true if valToFind is in array values;
false otherwise

122 *x/

123 public static boolean linearSearch(int[] values, int
valToFind) {

124 boolean found = false; // Assume the value is not
in the array

125 for (int i = 0; i< values.length; i++)

126 if (valToFind == values[i]) {

127 found = true;

128 ¥

129

130 return found;

131 ¥

132

133 / k%

134 * Find the position of the first element that is
larger than 30

135 * @param values an array of integer values

136 * @return the position (starting from @) of the

first element that is larger than 30, -1 if not found
137 */

Page 4



StaticArrayExercises.java Monday, January 12, 2026, 8:26 AM

138 public static int positionFind(int[] values) <

139 int position = -1; // Assume a value larger than
30 is not in the array

140

141 for (int i = 0; i< values.length; i++)

142 if (values[i]>30) {

143 position = 1ij;

144 break;

145 ¥

146 return position;

147 }

148

149

150 VA=

151 * A run is a sequence of adjacent repeated values.

152 * Write a program that generates a sequence of 20
random die tosses and that prints the die values,

153 * marking the runs by including them in parentheses,
like this:

154 12 (55)31243(2222)361(55)631

155 * @param values an array with 20 random die tosses
between 1 and 6, inclusive

156 */

157 public static String runs(int[] values) <

158 String result = new String();

159 int x = 0;

160 if (values[@]==values[1]) {

161 result += "(";

162 }

163 result += values[0];

164

165 for (x = 1; x < values.length-1; x++) {

166

167 if (values[x]==values[x-1] && values[x] !=
values[x+1]) {

168 result += values[x]:

169 result += ")";

170 }

171

Page 5



StaticArrayExercises.java Monday, January 12, 2026, 8:26 AM

172 else if (values[x]!=values[x-1] &&
values[x]==values [x+1]) {

173 result += "(";

174 result += values[x];

175 }

176

177 else {

178 result += values[x];

179 ¥

180

181 }

182

183 if (values[values.length-1] ==
values[values.length-21) {

184 result += values[values.length-1];

185 result += ")";

186 }

187 else {

188 result += values[values.length-1];

189 }

190 return result;

191 Iy

192 / k%

193 * An n X n matrix that is filled with the numbers 1,
2, 3, &, n2 is

194 * a magic square if the sum of the elements in each
row, in each column, and in the two diagonals is the same
value

195 * @param n the size of the magic square where n 1is
odd

196 * @return a magic square of size n-by-n where n 1is
odd, or null otherwise

197 */

198 public static int[][] generateMagicSquare(int n) {
199

200 if (n % 2 == @) return null; // only odd n
201

202 int[]1[] magic = new int[n][n];

203 int i = n - 1;

Page ©



StaticArrayExercises.java Monday, January 12, 2026, 8:26 AM

204 int j = (n-1) / 2;

205

206 for (int x = 1; x <= n x n; x++) {
207 magic[i]l [j] = x;

208

209 int newi = (1 + 1) % n;

210 int newj = (j + 1) % n;

211

212 if (magiclnewil [newjl '= @) {
213 newi = (i =1+ n) % n;
214 newj = j;

215 ¥

216

217 1 = newi;

218 j = newj;

219 }

220

221 return magic;

222 +

223}

Page 7



