
StaticArrayExercises.java Monday, January 12, 2026, 8:26 AM

1
2import java.util.Arrays;
3
4
5public class StaticArrayExercises {
6
7 public static void main(String[] args) {
8
9 // You do not need to handle the User Interface
(UI) first.

10 // Instead you can run the JUnit test cases found
in StaticArrayTest.java

11
12 // Construct and initialize an array of random

integer values, then pass into the methods ...
13 //double mean = calculateMean(/* Pass array into

method */);
14 //double median = calculateMedian(/* Pass array

into method */);
15 //double mode = calculateMode(/* Pass array into

method */);
16
17 // Keep going ...
18
19
20
21
22
23
24
25
26 }
27
28 /**
29 * Calculates the mean of a given static integer

array of positive values
30 * @param values an array of positive integer values
31 * @return the mean
32 */

Page 1

StaticArrayExercises.java Monday, January 12, 2026, 8:26 AM

33 public static double calculateMean(int[] values) {
34 double mean = 0;
35 if (values.length == 0) {
36 return mean;
37 }
38 int sum = 0;
39 for (int i = 0; i < values.length; i++)
40 sum = sum + values[i];
41 mean = (double)sum/values.length;
42 return mean;
43
44
45
46 }
47
48 /**
49 * Calculates the median of a given static integer

array of positive values
50 * @param values an array of positive integer values
51 * @return the mode
52 */
53 public static double calculateMedian(int[] values) {
54 double median = 0;
55 //to look at array
56 // System.out.println(Arrays.toString(values));
57 //to sort array
58 Arrays.sort(values);
59 System.out.print(Arrays.toString(values));
60
61 if (values.length == 0) {
62 return median;
63 }
64
65 else if (values.length %2 == 0) {
66 int medianpos = (values.length)/2;
67 int secondmedianpos = ((values.length)/2) -

1;
68 median = (values[medianpos] +

values[secondmedianpos]) / 2.0;

Page 2

StaticArrayExercises.java Monday, January 12, 2026, 8:26 AM

69 return median;
70 }
71
72 else {
73 int pos = ((values.length - 1) / 2);
74 median = values[pos];
75 return median;
76 }
77 }
78
79 /**
80 * Calculates the mode of a given static integer

array of positive values
81 * It is technically possible for a list of numbers

to have �multiple modes� or �no mode�.
82 * For this assignment you are not concerned with

either of these cases.
83 * @param values an array of positive integer values
84 * @return the mode
85 */
86 public static int calculateMode(int[] values) {
87 Arrays.sort(values);
88 int i = 0;
89 int x = 1;
90 int realmode = values[0];
91 int storedmode = 1;
92
93 while (i < (values.length - 1)) {
94 if (values[i] == values[i+1]) {
95 x = x + 1;
96 }
97
98 else {
99 x = 1;

100 }
101
102 if (x > storedmode) {
103 storedmode = x;
104 realmode = values[i];

Page 3

StaticArrayExercises.java Monday, January 12, 2026, 8:26 AM

105 }
106 i = i+1;
107
108 }
109
110 return realmode;
111
112 }
113
114
115
116
117 /**
118 * Determine if the number that the user entered is

in the array of values.
119 * @param values an array of integer values
120 * @param valToFind the integer to find
121 * @return true if valToFind is in array values;

false otherwise
122 */
123 public static boolean linearSearch(int[] values, int

valToFind) {
124 boolean found = false; // Assume the value is not

in the array
125 for (int i = 0; i< values.length; i++)
126 if (valToFind == values[i]) {
127 found = true;
128 }
129
130 return found;
131 }
132
133 /**
134 * Find the position of the first element that is

larger than 30
135 * @param values an array of integer values
136 * @return the position (starting from 0) of the

first element that is larger than 30, -1 if not found
137 */

Page 4

StaticArrayExercises.java Monday, January 12, 2026, 8:26 AM

138 public static int positionFind(int[] values) {
139 int position = -1; // Assume a value larger than

30 is not in the array
140
141 for (int i = 0; i< values.length; i++)
142 if (values[i]>30) {
143 position = i;
144 break;
145 }
146 return position;
147 }
148
149
150 /**
151 * A run is a sequence of adjacent repeated values.
152 * Write a program that generates a sequence of 20

random die tosses and that prints the die values,
153 * marking the runs by including them in parentheses,

like this:
154 * 1 2 (5 5) 3 1 2 4 3 (2 2 2 2) 3 6 (5 5) 6 3 1
155 * @param values an array with 20 random die tosses

between 1 and 6, inclusive
156 */
157 public static String runs(int[] values) {
158 String result = new String();
159 int x = 0;
160 if (values[0]==values[1]) {
161 result += "(";
162 }
163 result += values[0];
164
165 for (x = 1; x < values.length-1; x++) {
166
167 if (values[x]==values[x-1] && values[x] !=

values[x+1]) {
168 result += values[x];
169 result += ")";
170 }
171

Page 5

StaticArrayExercises.java Monday, January 12, 2026, 8:26 AM

172 else if (values[x]!=values[x-1] &&
values[x]==values[x+1]) {

173 result += "(";
174 result += values[x];
175 }
176
177 else {
178 result += values[x];
179 }
180
181 }
182
183 if (values[values.length-1] ==

values[values.length-2]) {
184 result += values[values.length-1];
185 result += ")";
186 }
187 else {
188 result += values[values.length-1];
189 }
190 return result;
191 }
192 /**
193 * An n x n matrix that is filled with the numbers 1,

2, 3, � , n2 is
194 * a magic square if the sum of the elements in each

row, in each column, and in the two diagonals is the same
value

195 * @param n the size of the magic square where n is
odd

196 * @return a magic square of size n-by-n where n is
odd, or null otherwise

197 */
198 public static int[][] generateMagicSquare(int n) {
199
200 if (n % 2 == 0) return null; // only odd n
201
202 int[][] magic = new int[n][n];
203 int i = n - 1;

Page 6

StaticArrayExercises.java Monday, January 12, 2026, 8:26 AM

204 int j = (n - 1) / 2;
205
206 for (int x = 1; x <= n * n; x++) {
207 magic[i][j] = x;
208
209 int newi = (i + 1) % n;
210 int newj = (j + 1) % n;
211
212 if (magic[newi][newj] != 0) {
213 newi = (i - 1 + n) % n;
214 newj = j;
215 }
216
217 i = newi;
218 j = newj;
219 }
220
221 return magic;
222 }
223}

Page 7

