
LineArt.java Monday, January 12, 2026, 8:28 AM

1import java.awt.Dimension;
2import java.awt.Graphics;
3import javax.swing.JPanel;
4import javax.swing.JFrame;
5
6public class LineArt extends JPanel {
7
8 // Unique version ID for this class to ensure saved 
objects can be loaded safely

9 private static final long serialVersionUID = 1L;
10
11 // Initial width of height of the starting rectangle
12 private static int width = 980;
13 private static int height = 630;
14
15 // main method to launch the program as a standalone 

application - no need to
16 // modify
17 public static void main(String[] args) {
18 LineArt panel = new LineArt();
19 panel.setPreferredSize(new Dimension(width + 20, 

height + 20)); // content size window dimensions
20
21 JFrame frame = new JFrame("Line Art"); // Title 

of frame
22

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
23 frame.add(panel);
24 frame.pack();
25 frame.setVisible(true);
26 }
27
28 /**
29  * Draw the four corners of line art.  Line art 

displays straight lines inside a rectangle from one side 
to

30  * a perpendicular side. The lines must be drawn in 
such a way that both the starting points of the lines on

31  * one side and the ending points on the other side 
are equi-distant along the sides.  The size of the 
rectangle Page 1



LineArt.java Monday, January 12, 2026, 8:28 AM
31  * one side and the ending points on the other side 

are equi-distant along the sides.  The size of the 
rectangle

32  * is 980 pixels wide by 630 pixels high.
33  * 
34  * @param g the Graphics object used for drawing 

shapes, text, and images
35  */
36 public void drawLineArt(Graphics g) {
37
38 // Draw the initial rectangle
39 g.drawRect(10, 10, width, height);
40
41 // Draw bottom-left corner
42
43 // Draw bottom-right corner
44
45 int x = 990; 
46 int y = 20;
47
48 while (x <= 990 && x >= 20 && y <= 630 && y>=20) 

{
49
50 g.drawLine(x, 640, 990, y);
51
52 x = x - 20;
53 y = y + 13;
54
55
56 }
57
58
59 int w = 10; 
60 int z = 20;
61
62 while (w <= 990 && w >= 10 && z <= 630 && z>=20) 

{
63
64 g.drawLine(w, 640, 10, z);
65

Page 2



LineArt.java Monday, January 12, 2026, 8:28 AM

66 w = w + 20;
67 z = z + 13;
68
69
70 }
71
72 int k = 10; 
73 int p = 630;
74
75 while (k <= 990 && k >= 10 && p <= 630 && p>=10) 

{
76
77 g.drawLine(k, 10, 10, p);
78
79 k = k + 20;
80 p = p - 13;
81
82
83 }
84
85
86 int i = 990; 
87 int m = 630;
88
89 while (i <= 990 && i >= 10 && m <= 630 && m>=10) 

{
90
91 g.drawLine(i, 10, 990, m);
92
93 i = i - 20;
94 m = m - 13;
95
96
97 }
98
99 //Seperating between large and small

100
101
102 int a = 770; 

Page 3



LineArt.java Monday, January 12, 2026, 8:28 AM

103 int b = 180;
104
105 while (a <= 770 && a >= 230 && b <= 470 && 

b>=180) {
106
107 g.drawLine(a, 470, 770, b);
108
109 a = a - 20;
110 b = b + 13;
111
112
113 }
114
115
116 int c = 230; 
117 int d = 180;
118
119 while (c <= 770 && c >= 230 && d <= 470 && d >= 

180) {
120
121 g.drawLine(c, 470, 230, d);
122
123 c = c + 20;
124 d = d + 13;
125
126
127 }
128
129 int e = 230; 
130 int f = 470;
131
132 while (e <= 770 && e >= 230 && f <= 470 && 

f>=180) {
133
134 g.drawLine(e, 180, 230, f);
135
136 e = e + 20;
137 f = f - 13;
138

Page 4



LineArt.java Monday, January 12, 2026, 8:28 AM

139
140 }
141
142
143 int j = 770; 
144 int h = 470;
145
146 while (j <= 770 && j >= 230 && h <= 470 && 

h>=180) {
147
148 g.drawLine(j, 180, 770, h);
149
150 j = j - 20;
151 h = h - 13;
152
153
154 }
155
156
157
158 // Draw top-right corner
159
160 // Draw top-left corner
161
162 }
163
164 /**
165  * Overrides JPanel's paintComponent method to 

perform custom drawing.
166  * 
167  * @param g the Graphics object used for drawing 

shapes, text, and images
168  */
169 @Override
170 protected void paintComponent(Graphics g) {
171 super.paintComponent(g); // Clears the panel 

before drawing
172 drawLineArt(g);
173 }

Page 5



LineArt.java Monday, January 12, 2026, 8:28 AM

174
175}
176

Page 6


