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ABSTRACT
Deep learning has shown impressive performance on hard percep-
tual problems. However, researchers found deep learning systems
to be vulnerable to small, specially crafted perturbations that are
imperceptible to humans. Such perturbations cause deep learning
systems to mis-classify adversarial examples, with potentially dis-
astrous consequences where safety or security is crucial. Prior de-
fenses against adversarial examples either targeted specific attacks
or were shown to be ineffective.

We proposeMagNet, a framework for defending neural network
classifiers against adversarial examples. MagNet neither modifies
the protected classifier nor requires knowledge of the process for
generating adversarial examples. MagNet includes one or more
separate detector networks and a reformer network. The detector
networks learn to differentiate between normal and adversarial ex-
amples by approximating the manifold of normal examples. Since
they assume no specific process for generating adversarial exam-
ples, they generalize well. The reformer network moves adversar-
ial examples towards the manifold of normal examples, which is
effective for correctly classifying adversarial examples with small
perturbation.We discuss the intrinsic difficulties in defending against
whitebox attack and propose a mechanism to defend against gray-
box attack. Inspired by the use of randomness in cryptography,
we use diversity to strengthen MagNet. We show empirically that
MagNet is effective against the most advanced state-of-the-art at-
tacks in blackbox and graybox scenarios without sacrificing false
positive rate on normal examples.

CCS CONCEPTS
• Security and privacy → Domain-specific security and pri-
vacy architectures; •Computingmethodologies→Neural net-
works;
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Figure 1: An illustration of the reformer’s effect on adver-
sarial perturbations. The second rowdisplays adversarial ex-
amples generated from the original normal examples in the
first row by Carlini’s L∞ attack. The third row shows their
perturbations against the original examples, and these per-
turbations lackprominent patterns. The fourth rowdisplays
the adversarial examples after being reformed by MagNet.
The fifth row displays the remaining perturbations in the
reformed examples against their original examples in the
first row, and these perturbations have the shapes of their
original examples.

1 INTRODUCTION
In recent years, deep learning demonstrated impressive performance
on many tasks, such as image classification [9] and natural lan-
guage processing [16]. However, recent research showed that an at-
tacker could generate adversarial examples to fool classifiers [34, 5,
24, 19]. Their algorithms perturbed benign examples, which were
correctly classified, by a small amount that did not affect human
recognition but that caused neural networks to mis-classify. We
call theses neural networks target classifiers.

Current defenses against adversarial examples follow three ap-
proaches: (1) Training the target classifier with adversarial exam-
ples, called adversarial training [34, 5]; (2) Training a classifier to
distinguish between normal and adversarial examples [20]; and (3)
Making target classifiers hard to attack by blocking gradient path-
way, e.g., defensive distillation [25].

However, all these approaches have limitations. Both (1) and (2)
require adversarial examples to train the defense, so the defense
is specific to the process for generating those adversarial exam-
ples. For (3), Carlini et al. showed that defensive distillation did
not significantly increase the robustness of neural networks [2].
Moreover, this approach requires changing and retraining the tar-
get classifier, which adds engineering complexities.
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We propose MagNet1, a defense against adversarial examples
with two novel properties. First, it neither modifies the target clas-
sifier nor relies on specific properties of the classifier, so it can be
used to protect a wide range of neural networks. MagNet uses the
target classifier as a blackbox: MagNet reads the output of the clas-
sifier’s last layer, but neither reads data on any internal layer nor
modifies the classifier. Second, MagNet is independent of the pro-
cess for generating adversarial examples, as it requires only normal
examples for training.

1.1 Adversarial examples
A normal example x for a classification task is an example that oc-
curs naturally. In other words, the physical process for this clas-
sification task generates x with non-negligible probability. For ex-
ample, if the task is classifying handwritten digits, then the data
generation process rarely generates an image of a tiger. An adver-
sarial example y for a classifier is not a normal example and the
classifier’s decision on y disagrees with human’s prevailing judg-
ment. See Section 3.1 for a more detailed discussion.

Researchers speculate that formanyAI tasks, their relevant data
lie on a manifold that is of much lower dimension than the full
sample space [23]. This suggests that the normal examples for a
classification task are on a manifold, and adversarial examples are
off the manifold with high probability.

1.2 Causes of mis-classification and solutions
A classifier mis-classifies an adversarial example for two reasons.

(1) The adversarial example is far from the boundary of the
manifold of the task. For example, the task is handwritten
digit classification, and the adversarial example is an image
containing no digit, but the classifier has no option to reject
this example and is forced to output a class label.

(2) The adversarial example is close to the boundary of theman-
ifold. If the classifier generalizes poorly off the manifold in
the vicinity of the adversarial example, thenmis-classification
occurs.

We propose MagNet to mitigate these problems. To deal with
the first problem, MagNet uses detectors to detect how different a
test example is from normal examples. A detector learns a function
f : X → {0, 1}, where X is the set of all examples. f (x) tries to
measure the distance between the example x and the manifold. If
this distance is greater than a threshold, then the detector rejects
x .

To deal with the second problem, MagNet uses a reformer to re-
form adversarial examples. For this we use autoencoders, which are
neural networks trained to attempt to copy its input to its output.
Autoencoders leverage simpler hidden representation to introduce
regularization to uncover useful properties of the data [6, 35, 36].
We train an autoencoder with adequate normal examples for it to
learn an approximate manifold of the data. Given an adversarial
example x close to the boundary of the manifold, we expect the
autoencoder to output an example y on the manifold where y is

1Imagine the manifold of normal examples as a magnet and test examples as iron
particles in a high-dimensional space. The magnet is able to attract and move nearby
particles (illustrating the effect of the reformer) but is unable to move distant particles
(illustrating the effect of the detectors).

close to x . This way, the autoencoder reforms the adversarial ex-
ample x to a similar normal example y. Figure 1 shows the effect
of the reformer.

Since MagNet is independent of the target classifier, we assume
that the attacker always knows the target classifier and its param-
eters. In the case of blackbox attack on MagNet, the attacker does
not know the defense parameters. In this setting, we evaluated
MagNet on popular attacks [26, 22, 2]. On the MNIST dataset, Mag-
Net achieved more than 99% classification accuracy on adversar-
ial examples generated by nine out of ten attacks considered. On
the CIFAR-10 dataset, the classification accuracy improvementwas
also significant. Particularly, MagNet achieved high accuracy on
adversarial examples generated by Carlini’s attack, the most pow-
erful attack known to us, across a wide range of confidence levels
of the attack on both datasets. Note that we trained our defense
without using any adversarial examples generated by the attack.
In the case of whitebox attack, the attacker knows the parameters
of MagNet. In this case, the attacker could view MagNet and the
target classifier as a new composite classifier, and then generate
adversarial examples against this composite classifier. Not surpris-
ingly, we found that the performance of MagNet on whitebox at-
tack degraded sharply. When we trained Carlini’s attack on our re-
former, the attack was able to generate adversarial examples that
all fooled our reformer. In fact, we can view any defense against
adversarial examples as enhancing the target classifier. As long as
the enhanced classifier is imperfect (i.e., unable tomatch human de-
cisions), adversarial examples are guaranteed to exist. One could
make it difficult to find these examples, e.g., by hiding the defense
mechanism or its parameters, but these are precluded in whitebox
attack.

We advocate defense via diversity and draw inspiration from
cryptography. The security of a good cipher relies on the diver-
sity of its keys, as long as there is no better attack than searching
the key space by brute force and this search is computationally
infeasible. Adopting a similar approach, we create a number of dif-
ferent defenses and randomly pick one at run time. This way, we
defend against graybox attack (Section 3.3). In our implementation,
we trained a number of different autoencoders as described above.
If the attacker cannot predict which of these autoencoders is used
at run time, then he has to generate adversarial examples that can
fool all of them. As the diversity of these autoencoders grows, it be-
comes more difficult for the attacker to find adversarial examples.
Section 5.4 will show that this technique raises the classification ac-
curacy on Carlini’s adversarial examples from 0 (whitebox attack)
to 80% (graybox attack).

We may also take advantage of these diverse autoencoders to
build another detector, which distinguishes between normal and
adversarial examples. The insight is that since normal examples
are on the manifold, their classification decisions change little af-
ter being transformed by an autoencoder. By contrast, since adver-
sarial examples are not on the manifold, their classification results
change more significantly after being transformed by the autoen-
coder. We use the similarity between an example and its output
from an autoencoder as a metric. But in contrast to the previous
detector, which computes the distance between a test example and
the manifold without consulting the target classifer, here we enlist
the help from the target classifier. We assume that the classifier

2
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outputs the probability distribution of the test example on each la-
bel. Let this distribution be p(y;x) for the original test example x ,
and q(y;ae(x)) for the output of the autoencoder ae on x , where y
is the random variable for class labels. We use the Jensen-Shannon
divergence between p and q as the similarity measure. Note that
although this approach uses the target classifier, during training it
does not depend on any specific classifier. It uses the classifier to
compute the similarity measure only during testing. We found this
detector more sensitive than the previous detector on powerful at-
tacks (Section 5.3).

1.3 Contributions
We make the following contributions.

• We formally define adversarial example andmetrics for eval-
uating defense against adversarial examples (Section 3.1).

• We propose a defense against adversarial examples. The de-
fense is independent of either the target classifier or the pro-
cess for generating adversarial examples (Section 4.1, Sec-
tion 4.2).

• We argue that it would be very difficult to defend against
whitebox attacks. Therefore, we propose the graybox threat
model and advocate defending against such attacks using di-
versity. We demonstrate our approach using diversity (Sec-
tion 4.3).

2 BACKGROUND AND RELATEDWORK
2.1 Deep learning systems in adversarial

environments
Deep learning systems play an increasingly important role in mod-
ern world. They are used in autonomous control for robots and ve-
hicles [1, 3, 4], financial systems [32], medical treatments [31], in-
formation security [12, 29], and human-computer interaction [11,
13]. These security-critical domains require better understanding
of neural networks from the security perspective.

Recent work has demonstrated the feasibility of attacking such
systems with carefully crafted input for real-world systems [2, 28,
8]. More specifically, researchers showed that it was possible to
generate adversarial examples to fool classifiers [34, 5, 24, 19]. Their
algorithms perturbed normal examples by a small volume that did
not affect human recognition but that caused mis-classification
by the learning system. Therefore, how to protect such classifiers
from adversarial examples is a real concern.

2.2 Distance metrics
By definition, adversarial examples and their normal counterparts
should be visually indistinguishable by humans. Since it is hard
to model human perception, researchers proposed three popular
metrics to approximate human’s perception of visual difference,
namely L0, L2, and L∞ [2]. These metrics are special cases of the
Lp norm:

∥x ∥p =
( n∑
i=1

|xi |p
) 1
p

These three metrics focus on different aspects of visual signifi-
cance. L0 counts the number of pixels with different values at cor-
responding positions in the two images. It answers the question of
how many pixels are changed. L2 measures the Euclidean distance
between the two images. L∞ measures the maximum difference for
all pixels at corresponding positions in the two images.

Since there is no consensus on which metric is the best, we eval-
uated our defense on all these three metrics.

2.3 Existing attacks
Since the discovery of adversarial examples for neural networks in
[34], researchers have found adversarial examples on various net-
work architectures. For example, feedforward convolutional classi-
fication networks [2], generative networks [14], and recurrent net-
works [27]. These adversarial examples threaten a wide range of
applications, e.g., classification[22] and semantic segmentation [37].
Researchers developed several methods for generating adversarial
examples, most of which leveraged gradient based optimization
from normal examples [2, 34, 5]. Moosavi et al. showed that it was
even possible to find one effective universal adversarial perturba-
tion that, when applied, turned many images adversarial [21].

To simplify the discussion, we only focus on attacks targeting
neural network classifiers. We evaluated our defense against four
popular, and arguably most advanced, attacks. We now explain
these attacks.

2.3.1 Fast gradient sign method(FGSM). Given a normal image
x , fast gradient sign method [5] looks for a similar image x ′ in
the L∞ neighborhood of x that fools the classifier. It defines a loss
function Loss(x , l) that describes the cost of classifying x as label l .
Then, it transforms the problem to maximizing Loss(x ′, lx ) which
is the cost of classifying image x ′ as its ground truth label lx while
keeping the perturbation small. Fast gradient sign method solves
this optimization problem by performing one step gradient update
from x in the image space with volume ϵ . The update step-width ϵ
is identical for each pixel, and the update direction is determined
by the sign of gradient at this pixel. Formally, the adversarial ex-
ample x ′ is calculated as:

x ′ = x + ϵ · siдn(∇xLoss(x , lx ))
Although this attack is simple, it is fast and can be quite pow-

erful. Normally, ϵ is set to be small. Increasing ϵ usually leads to
higher attack success rate. For this paper, we use FGSM to refer to
this attack.

2.3.2 Iterative gradient sign Method. [17] proposed to improve
FGSM by using a finer iterative optimization strategy. For each it-
eration, the attack performs FGSM with a smaller step-width α ,
and clips the updated result so that the updated image stays in the
ϵ neighborhood of x . Such iteration is then repeated for several
times. For the ith iteration, the update process is:

x ′i+1 = clipϵ,x (x
′
i + α · siдn(∇xLoss(x , lx )))

This update strategy can be used for both L∞ and L2 metrics
and greatly improves the success rate of FGSM attack. We refer to
this attack as the iterative method for the rest of the paper.

3
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2.3.3 DeepFool. DeepFool is also an iterative attack but formal-
izes the problem in a different way [22]. The basic idea is to find
the closest decision boundary from a normal image x in the im-
age space, and then to cross that boundary to fool the classifier.
It is hard to solve this problem directly in the high-dimensional
and highly non-linear space in neural networks. So instead, it iter-
atively solves this problem with a linearized approximation. More
specifically, for each iteration, it linearizes the classifier around the
intermediate x ′ and derives an optimal update direction on this
linearized model. It then updates x ′ towards this direction by a
small step α . By repeating the linearize-update process until x ′
crosses the decision boundary, the attack finds an adversarial ex-
ample with small perturbation. We use the L∞ version of the Deep-
Fool attack.

2.3.4 Carlini attack. Carlini recently introduced a powerful at-
tack that generates adversarial exampleswith small perturbation [2].
The attack can be targeted or untargeted for all three metrics L0,
L2, and L∞. We take the untargeted L2 version as an example here
to introduce its main idea.

Wemay formalize the attack as the following optimization prob-
lem:

minimize
δ

∥δ ∥2 + c · f (x + δ )

such that x + δ ∈ [0, 1]n

For a fixed input image x , the attack looks for a perturbation δ
that is small in length(∥ · ∥ term in objective) and fools the clas-
sifier(the f (·) term in objective) at the same time. c is a hyper-
parameter that balances the two. Also, the optimization has to sat-
isfy the box constraints to be a valid image.

f (·) is designed in such a way that f (x ′) ⩽ 0 if and only if the
classifier classifies x ′ incorrectly, which indicates that the attack
succeeds. f (x ′) has hinge loss form and is defined as

f (x ′) = max(Z (x ′)lx −max{Z (x ′)i : i , lx },−κ)
whereZ (x ′) is the pre-softmax classification result vector (called

logits) and lx is the ground truth label. κ is a hyper-parameter
called confidence. Higher confidence encourages the attack to search
for adversarial examples that are stronger in classification confi-
dence. High-confidence attacks often have larger perturbation and
better transferability.

In this paper, we show that our defense is effective against Car-
lini’s attack across a wide range of confidence levels (Section 5.3).

2.4 Existing defense
Defense on neural networks ismuch harder comparedwith attacks.
We summarize some ideas of current approaches to defense and
compare them to our work.

2.4.1 Adversarial training. One idea of defending against adver-
sarial examples is to train a better classifier [30]. An intuitive way
to build a robust classifier is to include adversarial information in
the training process, which we refer to as adversarial training. For
example, one may use a mixture of normal and adversarial exam-
ples in the training set for data augmentation [34, 22], or mix the
adversarial objective with the classification objective as regular-
izer [5]. Though this idea is promising, it is hard to reason about

what attacks to train on and how important the adversarial com-
ponent should be. Currently, these questions are still unanswered.

Meanwhile, our approach is orthogonal to this branch of work.
MagNet is an additional defense framework that does not require
modification to the target classifier in any sense. The design and
training of MagNet is independent from the target classifier, and
is therefore faster and more flexible. MagNet may benefit from a
robust target classifier (section 5).

2.4.2 Defensive distillation. Defensive distillation [25] trains the
classifier in a certain way such that it is nearly impossible for gra-
dient based attacks to generate adversarial examples directly on
the network. Defensive distillation leverages distillation training
techniques [10] and hides the gradient between the pre-softmax
layer (logits) and softmax outputs. However, [2] showed that it is
easy to bypass the defense by adopting one of the three following
strategies: (1) choose a more proper loss function (2) calculate gra-
dient directly from pre-softmax layer instead of from post-softmax
layer (3) attack an easy-to-attack network first and then transfer
to the distilled network.

We argue that in whitebox attack where the attacker knows
the parameters of the defense network, it is very difficult to pre-
vent adversaries from generating adversarial examples that defeat
the defense. Instead, we propose to study defense in the graybox
model (Section 3.3), where we introduce a randomization strategy
to make it hard for the attacker to generate adversarial examples.

2.4.3 Detecting adversarial examples. Another idea of defense
is to detect adversarial examples with hand-crafted statistical fea-
tures [7] or separate classification networks [20]. An representa-
tive work of this idea is [20]. For each attack generating method
considered, it constructed a deep neural network classifier (detec-
tor) to tell whether an input is normal or adversarial. The detector
was directly trained on both normal and adversarial examples. The
detector showed good performance when the training and testing
attack examples were generated from the same process and the per-
turbation was large enough, but it did not generalize well across
different attack parameters and attack generation processes.

MagNet also employs onemoremore detectors. Contrary to pre-
vious work, however, we do not train our detectors on any ad-
versarial examples. Instead, MagNet tries to learn the manifold
of normal data and makes decision based on the relationship be-
tween a test example and the manifold. Further, MagNet includes
a reformer that pushes hard-to-detect adversarial examples (with
small perturbation) towards the manifold. Since MagNet is inde-
pendent of any process for generating adversarial examples, it gen-
eralizes well.

3 PROBLEM DEFINITION
3.1 Adversarial examples
We define the following sets:

• S: the set of all examples in the sample space (e.g., all im-
ages).

• Ct : the set ofmutually exclusive classes for the classification
task t . E.g., if t is handwritten digit classification, then C =
{0, 1, . . . , 9}.

4
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• Nt = {x |x ∈ S and x occurs naturally with regard to the
classification task t }. Each classification task t assumes a
data generation process that generates each example x ∈
S with probability p(x). x occurs naturally if p(x) is non-
negligible. Researchers believe thatNt constitute amanifold
that is of much lower dimension than S [23]. Since we do
not know the data generation process, we approximate Nt
by the union of natural datasets for t , such as CIFAR and
MNIST for image recognition.

Definition 3.1. A classifier for a task t is a function ft : S→ Ct
Definition 3.2. The ground-truth classifier for a task t represents

human’s prevailing judgment. We represent it by a function дt :
S → Ct ∪ {⊥} where ⊥ represents the judgment that the input x
is unlikely from t ’s data generation process.

Definition 3.3. An adversarial example x for a task t and a clas-
sifier ft is one where:

• ft (x) , дt (x), and
• x ∈ S \ Nt

The first condition indicates that the classifier makes a mistake,
but this in itself is not adequate formaking the example adversarial.
Since no classifier is perfect, there must exist natural examples that
a classifier mis-classifies, so an attacker could try to find these ex-
amples. But these are not interesting adversarial examples for two
reasons. First, traditionally they are considered as testing errors as
they reflect poor generalization of the classifier. Second, finding
these examples by brute force in large collections of natural exam-
ples is inefficient and laborious, because it would require humans
to collect and label all the natural examples. Therefore, we add the
second condition above to limit adversarial examples to only ex-
amples generated artificially by the attacker to fool the classifier.2

3.2 Defense and evaluation
Definition 3.4. A defense against adversarial examples for a clas-

sifier ft is a function dft : S→ Ct ∪ {⊥}

The defense dft extends the classifier ft to make it robust. The
defense algorithm in dft may use ft in three different ways:

• The defense algorithm does not read data in ft or modify
parameters in ft .

• The defense algorithm reads data in ft but does not modify
parameters in ft .

• The defense algorithm modifies parameters in ft .
When evaluating the effectiveness of a defense dft , we cannot

merely evaluate whether it classifies each example correctly, i.e.,
whether its decision agrees with that of the ground truth classifier
дt . After all, the goal of the defense is to improve the accuracy of
the classifier on adversarial examples rather than on normal exam-
ples.

Definition 3.5. The defense dft makes a correct decision on an
example x if either of the following applies:

2Kurakin et al. showed that many adversarial images generated artificially remain
adversarial after being printed and then captured by a camera [17]. We still consider
these as adversarial examples because although they occurred in physical forms, they
were not generated by the natural process for generating normal examples.

• x is a normal example, and dft and the ground-truth classi-
fier дt agree on x ’s class, i.e., x ∈ Nt and dft (x) = дt (x).

• x is an adversarial example, and either dft decides that x
is adversarial or that dft and the ground-truth classifier дt
agree on x ’s class, i.e., x ∈ S\Nt and (dft (x) = ⊥ ordft (x) =
дt (x)).

3.3 Threat model
We assume that the attacker knows everything about the classifier
ft that she wishes to attack, called target classifier, such as its struc-
ture, parameters, and training procedure. Depending on whether
the attacker knows the defense dft , there are two scenarios:

• Blackbox attack: the attacker does not know the parameters
of dft .

• Whitebox attack: the attacker knows the parameters of dft .
• Graybox attack: except for the parameters, the attacker knows
everything else aboutdft , such as its structure, hyper-parameters,
training set, training epochs. If we train a neural network
multiple times while fixing these variables, we often get dif-
ferent model parameters each time because of random ini-
tialization.We can view that we get a different network each
time. To push this one step further, we can train these dif-
ferent networks at the same time and force them to be suffi-
ciently different by penalizing their resemblance. Section 4.3
for an example. The defense can be trained with different
structures and hyper-parameters for even greater diversity.

We assume that the defense knows nothing about how the at-
tacker generates adversarial examples.

4 DESIGN
MagNet is a framework for defending against adversarial exam-
ples (Figure 2). In Section 1.2 we provided two reasons why a clas-
sifier mis-classifies an adversarial example: (1) The example is far
from the boundary of the manifold of normal examples, but the
classifier has no option to reject it; (2) The example is close to the
boundary of the manifold, but the classifier generalizes poorly off
the manifold in the vicinity of the example. Motivated by these ob-
servations, MagNet consists of two components: (1) a detector that
rejects examples that are far from the manifold boundary, and (2)
a reformer that, given an example x , strives to find an example x ′
on or close to the manifold where x ′ is a close approximation to
x , and then gives x ′ to the target classifier. Figure 3 illustrates the
effect of the detector and reformer in a 2-D sample space.

4.1 Detector
The detector is a function d : S→ {0, 1} that decides whether the
input is adversarial. As an example of this approach, a recent work
trained a classifier to distinguish between normal and adversarial
examples [20]. However, it has the fundamental limitation that it
requires the defender to model the attacker, by either acquiring ad-
versarial examples or knowing the process for generating adversar-
ial examples. Therefore, it unlikely generalizes to other processes
for generating adversarial examples. For example, [20] used a basic
iterative attack based on the L2 norm. Its results showed that if its
detector was trained with slightly perturbed adversarial samples,
the detector had high false positive rates because it decided many

5
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Figure 2: MagNet workflow in test phase. MagNet includes
one or more detectors. It considers a test example x adver-
sarial if any detector considers x adversarial. If x is not con-
sidered adversarial, MagNet reforms it before feeding it to
the target classifier.

Figure 3: Illustration of how detector and reformer work in
a 2-D sample space. We represent the manifold of normal
examples by a curve, and depict normal and adversarial ex-
amples by green dots and red crosses, respectively.We depict
the transformation by autoencoder using arrows. The detec-
tormeasures reconstruction error and rejects exampleswith
large reconstruction errors (e.g. cross (3) in the figure), and
the reformer finds an example near the manifold that ap-
proximates the original example (e.g. cross (1) in the figure).

normal examples as adversarial. On the other hand, if the detector
was trained with significantly perturbed examples, it would not be
able to detect slightly perturbed adversarial examples.

4.1.1 Detector based on reconstruction error. To avoid the prob-
lem of requiring adversarial examples, MagNet’s detector models
only normal examples, and estimates the distance between the test
example and boundary of the manifold of normal examples. Our
implementation uses an autoencoder as the detector and uses the
reconstruction error to approximate the distance between the in-
put and the manifold of normal examples. An autoencoder ae =
d ◦ e contains two components: an encoder e : S → H and a de-
coder d : H→ S, where S is the input space and H is the space of
hidden representation.We train the autoencoder tominimize a loss
function over the training set, where the loss function commonly

is mean squared error:

L(Xtrain) =
1

|Xtrain |
∑

x ∈Xtrain

∥x − ae(x))∥2

The reconstruction error on a test example x is

E(x) = ∥x − ae(x))∥p
An autoencoder learns the features of the training set so that

the encoder can encode the input with hidden representation of
certain properties, and the decoder tries to reconstruct the input
from the hidden representation. If an input is drawn from the same
data generation process as the training set, then we expect a small
reconstruction error. Otherwise, we expect a larger reconstruction
error. Hence, we use reconstruction error to estimate how far a
test example is from the manifold of normal examples. Since re-
construction error is a continuous value, we must set a threshold
tre for deciding whether the input is normal. This threshold is a
hyper-parameter of an instance of detector. It should be as low as
possible to detect slightly perturbed adversarial examples, but not
too low to falsely flag normal examples. We decide tre by a valida-
tion set containing normal examples, where we select the highest
tre such that the detector’s false positive rate on the validation set
is below a threshold tfp. This threshold tfp should be decided cater-
ing for the requirement of the system.

When calculating reconstruction errors, it is important to choose
suitable norms. Though reconstruction error based detectors are
attack-independent, the norm choosen for detection do influence
the sharpness of detection results. Intuitively, p-norm with larger
p is more sensitive to the maximum difference among all pixels,
while smaller p averages its concentration to each pixel. Empiri-
cally, we found it sufficient to use two reconstruction error based
detectors with L1 and L2 norms respectively to cover both ends.

4.1.2 Detector based on probability divergence. The detector de-
scribed in Section 4.1.1 is effective in detecting adversarial exam-
ples whose reconstruction errors are large. However, it becomes
less effective on adversarial examples whose reconstruction errors
are small. To overcome this problem, we take advantage of the tar-
get classifier.

Most neural network classifiers implement the softmax function
at the last layer

softmax(l)i =
exp(li )∑n
j=1 exp(lj )

The output of softmax is a probability mass function over the
classes. The input to softmax is a vector l called logit. Let rank(l , i)
be the index of the element that is ranked the ith largest among
all the elements in l . Given a normal example whose logit is l , the
goal of the attacker is to perturb the example to get a new logit l ′
such that rank(l , 1) , rank(l ′, 1).

Let f (x) be the output of the last layer (softmax) of the neu-
ral network f on the input x . Let ae(x) be the output of the au-
toencoder ae that was trained on normal examples. If x is a nor-
mal example, since ae(x) is very close to x , the probability mass
functions f (x) and f (ae(x)) are similar. By contrast, if x ′ is an
adversarial example, ae(x ′) is significantly different from x ′. We
observed that even when the reconstruction error on x ′ is small,
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f (x ′) and f (ae(x ′)) can be significantly different. This indicates
that the divergence between f (x) and f (ae(x)) reflects how likely
x is from the same data generation process as normal examples.
We use Jensen-Shannon divergence:

JSD(P ∥ Q) = 1
2
DKL(P ∥ M) + 1

2
DKL(Q ∥ M)

where
DKL(P ∥ Q) =

∑
i
P(i) log P(i)

Q(i)
and

M =
1
2
(P +Q)

When we implemented this, we encountered a numerical prob-
lem. Let l(x) be the logit of the input x . When the largest element
in l(x) is much larger than its second largest element, softmax(l(x))
saturates, i.e., the largest element in softmax(l(x)) is very close to
1. When this happens, we observed that softmax(l(ae(x))) also sat-
urates on the same element. This will make the Jensen-Shannon di-
vergence between softmax(l(x)) and softmax(l(ae(x))) very small.
To overcome this numerical problem, we add a temperature T > 1
when calculating softmax:

softmax(l)i =
exp(li/T )∑n
j=1 exp(lj/T )

4.2 Reformer
The reformer is a function r : S → Nt that tries to reconstruct
the test input. The output of the reformer is then fed to the tar-
get classifier. Note that we do not use the reformer when training
the target classifier, but use the reformer only when deploying the
target classifier. An ideal reformer:

(1) should not change the classification results of normal exam-
ples.

(2) should change adversarial examples adequately so that the
reconstructed examples are close to normal examples. In
other words, it should reform adversarial examples.

4.2.1 Noise-based reformer. A naive reformer is a function that
adds random noise to the input. If we use Gaussian noise, we get
the following reformer

r (x) = clip(x + ϵ · y)
where y~N(y; 0, I) is the normal distribution with zero mean and
identity covariance matrix, ϵ scales the noise, and clip is a function
that clips each element of its input vector to be in the valid range.

A shortcoming of this noise-based reformer is that it fails to
take advantage of the distribution of normal examples. Therefore,
it changes both normal and adversarial examples randomly and
blindly, but our ideal reformer should barely change normal exam-
ples but should move adversarial examples towards normal exam-
ples.

4.2.2 Autoencoder-based reformer. We propose to use autoen-
coders as the reformer. We train the autoencoder to minimize the
reconstruction error on the training set and ensures that it gener-
alizes well on the validation set. Afterwards, when given a normal
example, which is from the same data generating process as the
training examples, the autoencoder is expected to output a very

similar example. But when given an adversarial example, the au-
toencoder is expected to output an example that approximates the
adversarial example and that is closer to themanifold of the normal
examples. In this way,MagNet improves the classification accuracy
of adversarial examples while keeping the classification accuracy
of normal examples unchanged.

4.3 Use diversity to mitigate graybox attacks
In blackbox attacks, the attacker knows the parameters of the tar-
get classifier but not those of the detector or reformer. Our evalua-
tion showed that MagNet was highly effective in defending against
blackbox attacks (Section 5.2).

However, in whitebox attacks, where the attacker also knows
the parameters of the detector and reformer, our evaluation showed
that MagNet became less accurate. This is not surprising because
we can view that MagNet transforms the target classifier ft into a
new classifier f ′t . In whitebox attacks, the attacker knows all the
parameters of f ′t , so he can use the same method that he used on
ft to find adversarial examples for f ′t . If such adversarial exam-
ples did not exist or were negligible, then it would mean that f ′t
agrees with the ground-truth classifier on almost all the examples
off the manifold of normal example. Since there is no evidence that
we could find this perfect classifier anytime soon, non-negligibly
number of adversarial examples exist for any classifier, including
f ′t .

Although we cannot eliminate adversarial examples, we could
make it difficult for attackers to find them. One approach would be
to create a robust classifier such that even if the attacker knows all
the parameters of the classifier, it would be difficult for her to find
adversarial example [25]. However, [2] showed that it was actually
easy to find adversarial examples for the classifier hardened in [25].
We do not know how to find such robust classifiers, or even if they
exist.

We take a different approach. We draw inspirations from cryp-
tography, which uses randomness to make it computationally dif-
ficult for the attacker to find secrets, such as secret keys. We use
the same idea to diversify our defense. In our implementation, we
create a large number of autoencoders as candidate detectors and
reformers. MagNet randomly picks one of these autoencoders for
each defensive device for every session, every test set, or even ev-
ery test example. Assume that the attacker cannot predict which
autoencoder we pick for her adversarial example and that success-
ful adversarial examples trained on one autoencoder succeed on
another autoencoderswith lowprobability, then the attackerwould
have to train her adversarial examples to work on all the autoen-
coders in our collection. We can increase the size and diversity of
this collection to make the attack harder to perform. This way, we
defend against graybox attack as defined in Section 3.3.

A key question is how to find large number of diverse autoen-
coders such that transfer attacks on target classifiers succeed with
low probability. Rigorous theoretical analysis of the question is be-
yond the scope of this paper. Instead, we show a method for con-
structing these autoencoders and empirical evidence of its effec-
tiveness.

We train n autoencoders of the same or different architectures
at the same timewith random initialization. During training, in the
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Table 1: Architecture of the classifiers to be protected

MNIST CIFAR

Conv.ReLU 3 × 3 × 32 Conv.ReLU 3 × 3 × 96
Conv.ReLU 3 × 3 × 32 Conv.ReLU 3 × 3 × 96
Max Pooling 2 × 2 Conv.ReLU 3 × 3 × 96
Conv.ReLU 3 × 3 × 64 Max Pooling 2 × 2
Conv.ReLU 3 × 3 × 64 Conv.ReLU 3 × 3 × 192
Max Pooling 2 × 2 Conv.ReLU 3 × 3 × 192
Dense.ReLU 200 Conv.ReLU 3 × 3 × 192
Dense.ReLU 200 Max Pooling 2 × 2
Softmax 10 Conv.ReLU 3 × 3 × 192

Conv.ReLU 1 × 1 × 192
Conv.ReLU 1 × 1 × 10
Global Average Pooling
Softmax 10

Table 2: Training parameters of classifiers to be protected

Parameters MNIST CIFAR

Optimization Method SGD SGD
Learning Rate 0.01 0.01
Batch Size 128 32
Epochs 50 350
Data Augmentation - Shifting + Horizontal Flip

cost function we add a regularization term to penalize the resem-
blance of these autoencoders

L(x) =
n∑
i=1

MSE(x ,aei (x)) − α
n∑
i=1

MSE(aei (x),
1
n

n∑
j=1

aej (x)) (1)

where aei is the ith autoencoder, MSE is the mean squared error
function, and α > 0 is a hyper-parameter that reflects the trade-
off between reconstruction error and autoencoder diversity. When
α becomes larger, it encourages autoencoder diversity but also in-
creases reconstruction error. We will evaluate this approach in Sec-
tion 5.4.

5 IMPLEMENTATION AND EVALUATION
We evaluated the accuracy and properties of our defense described
in section 4 on two standard dataset:MNIST [18] andCIFAR-10 [15].

5.1 Setup
On MNIST, we selected 55 000 examples for the training set, 5 000
for the validation set, and 1 000 for the test set. We trained a clas-
sifier using the setting in [2] and got an accuracy of 99.4%. On
CIFAR-10, we selected 45 000 examples for training set, 5 000 for
the validation set, and 10 000 for the test set. We used the archi-
tecture in [33] and got an accuracy of 90.6%. The accuracy of both
these classifiers is near the state of the art on these datasets. Ta-
ble 1 and Table 2 show the architecture and training parameters of
these classifiers. We used a scaled range of [0, 1] instead of [0, 255]
for simplicity.

Table 3: Defensive devices architectures used for MNIST, in-
cluding both encoders and decoders.

Detector I & Reformer Detector II

Conv.Sigmoid 3 × 3 × 3 Conv.Sigmoid 3 × 3 × 3
AveragePooling 2 × 2 Conv.Sigmoid 3 × 3 × 3
Conv.Sigmoid 3 × 3 × 3 Conv.Sigmoid 3 × 3 × 1
Conv.Sigmoid 3 × 3 × 3
Upsampling 2 × 2
Conv.Sigmoid 3 × 3 × 3
Conv.Sigmoid 3 × 3 × 1

In the rest of this section, first we evaluate the robustness of
MagNet in blackbox attack, where the attacker does not know the
parameters used in MagNet. To understand why MagNet works
and when it works well, we analyze the impact of the detector and
the reformer, respectively, on the accuracy of MagNet against Car-
lini’s attack. Finally, we evaluate the use of diversity to mitigate
graybox attack, where we use the same classifier architecture but
train it to get many classifiers of different parameters.

Wemay divide attacks using adversarial examples into two types.
In targeted attack, the attacker chooses a particular class and then
creates adversarial examples that the victim classifiermis-classifies
into that class. In untargeted attack, the attacker does not care
which class the victim classifier outputs as long as it is different
from the ground truth. Previous work showed that untargeted at-
tack is easier to succeed, results in smaller perturbations, and trans-
fers better to different models [19, 2]. Since untargeted attack is
more difficult to defend against, we evaluate MagNet on untar-
geted attack to show its worst case performance.

5.2 Overall performance against blackbox
attacks

We tested MagNet against attacks using fast gradient sign method,
iterative gradient sign method, DeepFool, and Carlini’s method.
For fast gradient sign method and iterative gradient sign method,
we used the implementation of Cleverhans [26]. For DeepFool and
Carlini’s attack, we used their authors’ open source implementa-
tions [22, 2].

In principle, MagNet works better when we deploy several in-
stances of both reconstruction error based detectors and probabil-
ity divergence based detectors. Diversified autoencoder architec-
ture also boosts defense performance. In our implementation, we
try to simplify the setup by limiting our detector usage and sharing
architectures among autoencoders. This is for convenience rather
than mandatory. More specifically, for MNIST dataset, we only use
two reconstruction error based detectors of two unique architec-
tures. For CIFAR-10 dataset, we share the same structure among all
autoencoders. Table 3, Table 4, and Table 5 show the architectures
and training hyper-parameters of the autoencoder for MNIST and
CIFAR-10. We tune the network to make sure it works, but make
no further effort to optimize these settings.
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Table 4: Defensive devices architecture used for CIFAR-10,
including both encoders and decoders.

Detectors & Reformer

Conv.Sigmoid 3 × 3 × 3
Conv.Sigmoid 3 × 3 × 3
Conv.Sigmoid 3 × 3 × 1

Table 5: Training parameters for defensive devices.

Parameters MNIST CIFAR

Optimization Method Adam Adam
Learning Rate 0.001 0.001
Batch Size 256 256
Epochs 100 400
Regularization L2(10−9) Noise

Below we use the criteria described and justified in Section 3.2
to evaluate the accuracy of MagNet on normal and adversarial ex-
amples.

5.2.1 MNIST. Compared to CIFAR-10,MNIST is an easier dataset
for classifiers. We trained a classifier to achieve an accuracy of
99.4%, which is close to the state of the art. We found that we
needed only the reconstruction error-based detector and reformer
to become highly accurate against adversarial examples generated
fromMNIST. Therefore, we did not include the probability divergence-
based detector in MagNet in this evaluation. Detector II and detec-
tor I(see Table 3) used the L2 and L1 norm to measure reconstruc-
tion error, respectively.We selected the threshold of reconstruction
error such that the false positive rate of the detector on the valida-
tion set is at most 0.001, i.e., each detector mistakenly rejects no
more than 0.1% examples in the validation set.

Effect on normal examples. On the test set, without MagNet, the
accuracy of the classifier is 99.4%; with MagNet, the accuracy is
reduced to 99.1%. This small reduction is negligible.

Effect on adversarial examples. Table 6a shows that the accuracy
of MagNet is above 99% on all the attacks considered except Car-
lini attack with L0 norm(92.0%). Note that we achieved such high
accuracy without training MagNet on any of these attacks.

5.2.2 CIFAR-10. Compared to MNIST, CIFAR-10 is more chal-
lenging for classifiers. We trained a classifier to achieve an accu-
racy of 90.6%, which is close to the state of the art. For CIFAR-10,
MagNet consists of a reformer, a reconstruction error-based detec-
tor, and two probability divergence-based detectors with temper-
ature T of 10 and 40, respectively. We trained the autoencoder as
a denoising autoencoder with unit Gaussian noise with volume
0.025. Error based detector uses the L1 norm tomeasure reconstruc-
tion error. Again, we set a threshold of false positive rate tfp on the
validation set to find the threshold of reconstruction error. We set
tfp to 0.005 for the reconstruction error-based detector, and 0.01 for
the probability divergence-based detector.

Table 6: Classification accuracy of MagNet on adversar-
ial examples generated by different attack methods. Some
of these attacks have different parameters on MNIST and
CIFAR-10 because they need to adjust their parameters ac-
cording to datasets.

(a) MNIST

Attack Norm Parameter No Defense With Defense

FGSM L∞ ϵ = 0.005 96.8% 100.0%
FGSM L∞ ϵ = 0.010 91.1% 100.0%
Iterative L∞ ϵ = 0.005 95.2% 100.0%
Iterative L∞ ϵ = 0.010 72.0% 100.0%
Iterative L2 ϵ = 0.5 86.7% 99.2%
Iterative L2 ϵ = 1.0 76.6% 100.0%
Deepfool L∞ 19.1% 99.4%
Carlini L2 0.0% 99.5%
Carlini L∞ 0.0% 99.8%
Carlini L0 0.0% 92.0%

(b) CIFAR

Attack Norm Parameter No Defense With Defense

FGSM L∞ ϵ = 0.025 46.0% 99.9%
FGSM L∞ ϵ = 0.050 40.5% 100.0%
Iterative L∞ ϵ = 0.010 28.6% 96.0%
Iterative L∞ ϵ = 0.025 11.1% 99.9%
Iterative L2 ϵ = 0.25 18.4% 76.3%
Iterative L2 ϵ = 0.50 6.6% 83.3%
Deepfool L∞ 4.5% 93.4%
Carlini L2 0.0% 93.7%
Carlini L∞ 0.0% 83.0%
Carlini L0 0.0% 77.5%

Effect on normal examples. On the test set, without MagNet, the
accuracy of the classifier is 90.6%; with MagNet, the accuracy is
reduced to 86.8%. The reduction in accuracy is small.

Effect on adversarial examples. Table 6b shows that the accuracy
of MagNet on 10 different attacks. MagNet is not as accurate on
CIFAR-10 as onMNIST, because the target classifier is not as strong
on CIFAR-10 and leaves less space for MagNet to take effect. Mag-
Net achieved an accuracy above 75% on all the attacks, and above
90% on more than half attacks. This provides empirical evidence
that MagNet is effective and generalizes well to different attacks
and different parameters of the same attack.

5.3 Case study on Carlini attack, why does
MagNet work?

Carlini showed that it was viable to mount transfer attack with
higher confidence on MNIST [2]. Among the attacks that we eval-
uated, Carlini’s attack is the most interesting because it is the most
effective on the distillation defense [25] and there is no known ef-
fective defense prior to our work. This attack is also interesting
because the attacker can change the attack strength by adjusting
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Figure 4: Defense performance with different confidence of
Carlini’s L2 attack on MNIST dataset. The performance is
measured as the percentage of adversarial examples that are
either detected by the detector, or classified correctly by the
classifier.

the confidence level when generating adversarial examples. The
higher confidence is, the stronger classification confidence is, and
the larger distortion gets. At a confidence level of 40, the attack
achieved a success rate of close to 100% on classifier with distilla-
tion defense even by conducting transfer attack.

We evaluated the impact of different confidence levels in Car-
lini’s attack on MagNet. For MNIST, we used the same classifier as
in Carlini’s paper [2] for generating adversarial examples and as
the target classifier in our evaluation. We generated adversarial ex-
amples with confidence levels in the range of [0, 40]. For CIFAR-10,
[2] did not evaluate the impact of confidence level, but we picked
confidence levels in the range of [0, 100]. We use the classifier in
Section 5.2 for CIFAR-10 as target classifier. We keep the defense
setting in Section 5.2 unchanged for both datasets.

Figure 4 shows the performance of the detector and reformer
on MNIST. Without MagNet, the attack succeeded almost 100%,
i.e., the classification accuracy rate is close to 0. With MagNet, the
classification accuracy rate is above 99% on adversarial examples
generated at all confidence levels tested. This indicates that Mag-
Net blocks Carlini attack completely in blackbox scenario.

Figure 5 shows the classification accuracy of MagNet on CIFAR-
10. The attack also gets near 100% success rate for all confidences.
A striking revelation in Figure 5 is that the detector and reformer
compensate each other to achieve an overall high accuracy at all
confidence levels. At high confidence level, the adversarial exam-
ple is far from the manifold of normal examples, so it likely has
a high reconstruction error, and therefore will be rejected by the
detector. At low confidence level, the adversarial example is close
to the manifold of normal examples, so the reconstructed example
by the reformer is more likely to lie on the manifold and therefore
to be classified correctly. In other words, as the confidence level of
the adversarial example goes up, the reformer becomes less effec-
tive but the detector becomes more effective, so there is a dip in
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Figure 5: Defense performance on different confidence of
Carlini’s L2 attack on CIFAR-10 dataset. The performance
is measured as the percentage of adversarial examples that
are either detected by the detector, or classified correctly by
the classifier.

the mid range on the curve of the overall classification accuracy as
shown in Figure 5. This dip is an window of opportunity for the
attacker, as it is where the effectiveness of the reformer begins to
wane but the power of detectors have not started. In Figure 5, even
though this window of opportunity exists, MagNet still achieves
classification accuracy above 80% at all confidence levels.

Same dip should have appeared in Figure 4, but the classifier
and MagNet is strong enough to fill the dip.

Figure 6 shows the effect of the temperatureT on the accuracy of
the probability divergence-based detector. Low temperaturemakes
the detector more accurate on adversarial examples at low confi-
dence level, and high temperature makes the detector more accu-
rate on adversarial examples at high confidence level.

Note again that we did not train MagNet with Carlini’s attack
or any other attacks, so we conjecture that the results likely gen-
eralize to other attacks.

5.4 Defend against graybox attacks
In graybox attack, except for the parameters, the attacker knows
everything else about the defense, such as network structure, train-
ing set, and training procedure. If we assume that (1) the attacker
cannot predict the parameters that the defender useswhen classify-
ing her adversarial examples; and (2) the attacker cannot feasibly
mislead all possible defense when generating her adversarial ex-
amples, then we can defend against attackers by diversifying our
defensive network.

We show an example defense against graybox attack. In this ex-
ample, we provide diversity by training n different autoencoders
for the reformer in MagNet. In our proof-of-concept implementa-
tion, we used the same architecture, a convolutional autoencoder
with 3 × 3 × 8 hidden layers and ReLU activation, to obtain eight
autoencoders of different parameters. During training, we used
the same hyper-parameters as in Section 5.2 except that we first
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Figure 6: Defense performance on different confidence of
Carlini’s L2 attack on CIFAR-10 dataset. The performance
is measured as the percentage of adversarial examples that
are either detected by the detector, or classified correctly by
the classifier.

trained the eight autoencoders independently for 3 epochs using
the standard mean squared error loss. Then, we continued train-
ing these autoencoders using the loss in Equation 1 for another
10 epochs, where we chose α = 0.2 empirically. At test time, we
randomly picked one of the eight autoencoders as the reformer.

We chose Carlini’s attack to evaluate this defense. However, Car-
lini’s attack models only one network and uses the decision of the
network to decide how to perturb the candidate adversarial exam-
ple. But MagNet contains at least two networks, a reformer and
one (or more) detector, that make independent decisions. There-
fore, the attack as described in [2] cannot handle MagNet. To over-
come this obstacle, we removed the detectors from MagNet and
kept only the reformer to allow Carlini’s attack to generate adver-
sarial examples. But in this case, it would not fair to test MagNet
with adversarial examples at high confidence level, because Mag-
Net relies on the detector to reject adversarial examples at high
confidence level (Figure 5). Therefore, we ran Carlini attack to gen-
erate adversarial examples at confidence level 0. We chose only
CIFAR-10 because Carlini’s attack is more effective on it than on
MNIST.

Table 7 shows the classification accuracy of MagNet on adver-
sarial examples generated by Carlini’s attack. We name each au-
toencoder A through H. Each column corresponds to an autoen-
coder that the attack is generated on, and each row corresponds
to an autoencoder that is used during testing. The last row, ran-
dom, means that MagNet picks a random one from its eight au-
toencoders. The diagonal shows that MagNet’s classification accu-
racy drops to mostly 0 when the autoencoder on which Carlini’s
attack was trained is also the one that MagNet used during testing.
However, when these two autoencoders differ, the classification
accuracy jumps to above 90%. The last row shows a more realistic
scenario when the attacker chooses a random autoencoder during
training and MagNet also chooses a random autoencoder during

Table 7: Classification accuracy in percentage on adversar-
ial examples generated by graybox attack on CIFAR-10. We
name each autoencoder A through H. Each column corre-
sponds to an autoencoder that the attack is trained on, and
each row corresponds to an autoencoder that is used during
testing. The last row, random, means that MagNet picks a
random one from its eight autoencoders.

A B C D E F G H

A 0.0 92.8 92.5 93.1 91.8 91.8 92.5 93.6
B 92.1 0.0 92.0 92.5 91.4 92.5 91.3 92.5
C 93.2 93.8 0.0 92.8 93.3 94.1 92.7 93.6
D 92.8 92.2 91.3 0.0 91.7 92.8 91.2 93.9
E 93.3 94.0 93.4 93.2 0.0 93.4 91.0 92.8
F 92.8 93.1 93.2 93.6 92.2 0.0 92.8 93.8
G 92.5 93.1 92.0 92.2 90.5 93.5 0.1 93.4
H 92.3 92.0 91.8 92.6 91.4 92.3 92.4 0.0
Random 81.1 81.4 80.8 81.3 80.3 81.3 80.5 81.7

Table 8: Classification accuracy in percentage on the test set
for CIFAR-10. Each column corresponds to a different au-
toencoder chosen during testing. “Rand” means that Mag-
Net randomly chooses an autoencoder during testing.

AE A B C D E F G H Rand

Acc 89.2 88.7 89.0 89.0 88.7 89.3 89.2 89.1 89.0

testing from the eight candidate autoencoders. In this case, Mag-
Net maintains classification accuracy above 80%.

Table 8 shows the classifier accuracy of these autoencoders on
the test set for CIFAR-10. Compared to the accuracy of the target
classifier, 90.6%, these autoencoders barely reduce the accuracy of
the target classifier.

There is much room for improvement on how to diversify Mag-
Net. We could use autoencoders of different architectures, tune au-
toencoderswith different training parameters, increase the amount
of autoencoders, and encourage the difference between these au-
toencoders. We leave these for future work.

6 DISCUSSION
The effectiveness of MagNet against adversarial examples depends
on the following assumptions:

• There exist detector functions that measure the distance be-
tween its input and the manifold of normal examples.

• There exist reformer functions that output an example x ′

that is perceptibly close to the input x , and x ′ is closer to
the manifold than x .

We chose autoencoder for both the reformer and the two types
of detectors in MagNet. MagNet’s high accuracy against the state-
of-the-art attacks provides empirical evidence that our assump-
tions are likely correct. However, before we find stronger justifi-
cation or proof, we cannot dismiss the possibility that our good re-
sults occurred because the state-of-the-art attacks are not powerful
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enough. We hope that our results would motivate further research
on finding more powerful attacks or more powerful detectors and
reformers.

7 CONCLUSION
We proposedMagNet, a framework for defending against adversar-
ial perturbation of examples for neural networks. MagNet handles
untrusted input using two methods. It detects adversarial exam-
ples with large perturbation using detector networks, and pushes
examples with small perturbation towards the manifold of normal
examples. These two methods work jointly to enhance the clas-
sification accuracy. Moreover, by using autoencoder as detector
networks, MagNet learns to detect adversarial examples without
requiring either adversarial examples or the knowledge of the pro-
cess for generating them, which leads to better generalization. Ex-
periments show that MagNet defended against the state-of-art at-
tacks effectively. In case that the attacker knows the training ex-
amples of MagNet, we described a new graybox threat model and
used diversity to defend against this attack effectively.

We advocate that defense against adversarial examples should
be attack-independent. Instead of finding properties of adversarial
examples from specific generation processes, a defense would be
more transferable by finding intrinsic common properties among
all adversarial generation processes. MagNet is a first step towards
this end and demonstrated good performance empirically.
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