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Abstract—We propose and evaluate a neural network archi-
tecture for predicting when human teachers shift their eye-gaze
to look at their students during 1-on-1 math tutoring sessions.
Such models may be useful when developing affect-sensitive
intelligent tutoring systems (ITS) because they can function as
an attention model that informs the ITS when the student’s
face, body posture, and other visual cues are most important
to observe. Our approach combines both feed-forward (FF) and
recurrent (LSTM) components for predicting gaze shifts based
on the history of tutoring actions (e.g., request assistance from
the teacher, pose a new problem to the student, give a hint, etc.),
as well as the teacher’s prior gaze events. Despite the challenging
nature of the task – we are asking the network to predict whether
or not the teacher will shift her/his eye gaze during the next one-
second time interval – the network achieves an AUC (averaged
over 2 teachers) of 0.75. In addition, we identify some of the
factors that the human teachers in our study used when making
gaze decisions and show evidence that the two teachers’ gaze
patterns share common characteristics.

Index Terms—eye gaze prediction

I. INTRODUCTION

Since the early 2000s [1], [2], [3], [4], one of the chief goals
of the intelligent tutoring systems (ITS) community has been
to develop affect-sensitive ITS that can perceive and respond to
their students’ affective states, e.g., frustration, boredom, and
engagement. Due to tremendous, contemporaneous progress in
machine learning and computer vision research, the accuracy
of automatic detectors of emotions from images and video,
both in general (e.g., basic emotions) and educational settings
(e.g., detection of student engagement [5], [6]), has increased
to the point that they are becoming practical. However, much
less research has been done on how automatic affective sensor
measurements should be integrated into the ITS’ decision-
making process.

One key question is: During which specific moments of the
tutoring session are the students’ emotions most important to
perceive and respond to? While it is sometimes feasible simply
to run an array of detectors on every frame of the videostream
(captured from one or even multiple cameras), there are
reasons why this is not a good idea: (1) Computational cost:
as of 2017, the most accurate object detection and recognition
systems (e.g., [7], [8], [9]), based on deep convolutional neural
networks, are computationally very intensive, more so than
“previous generation” detectors such as the classic Viola-
Jones [10] approach. In order to maintain real-time respon-

siveness and low energy cost (particularly relevant for ITS
on mobile devices), it may be preferable to sacrifice temporal
resolution (i.e., run the detectors less frequently) in exchange
for higher recognition accuracy. (2) Redundancy: there is a
strong correlation between emotion estimates over time. (3)
Data overload: Estimating a variety of facial expression and
emotional states in every video frame can result in a huge
amount of data that the ITS must somehow analyze and use
to teach more effectively. The magnitude of this data may
increase the challenge of training of downstream systems –
e.g., a control system that uses “engagement” estimates to
adjust the difficulty of the curriculum. It may instead make
more sense to attend only to specific moments; indeed, the
trend in recent deep-learning research on image- and video-
based event recognition is to deploy neural attention models
[11], [12] that automatically select dynamically which parts
of an image or video are most salient, based on information
contained in the image/video itself. In particular, if the salient
moments (when full analysis of all sensors is necessary) can
be determined using just a few less computationally expensive,
lower-bandwidth sensor readings – e.g., audio rather than
video, or low-resolution peripheral vision [13] rather than
high-resolution direct gaze – then it is possible that significant
computation could be saved.

Human visual attention in one-on-one tutoring: Even
in one-on-one tutoring settings, the teacher does not look
at her/his pupil during the entire session. In contexts where
the student and teacher share a common workspace – e.g., a
piece of paper on which to write – the teacher divides her/his
attention between the student, workspace, and other objects
around the room. The choice of where the teacher decides to
look is motivated by several factors, including: (1) Privacy:
it would likely be uncomfortable for the student to be stared
at the entire time; (2) Information transmission: From the
psychology literature, there is evidence that increased eye gaze
by the teacher is associated with more efficient encoding and
subsequent recall of information [14], [15], [16] by the student.
(3) Information gathering: The teacher looks at the student at
moments that she/he judges to be most informative for making
tutoring decisions. As an example of how these factors can
influence visual attention, the teacher might generally avoid
looking at the student (to maintain privacy) but decide to
“check in” if, after asking her/him to tackle a math problem,
the student pauses for a long time without giving any cue that978-1-5386-2335-0/18/$31.00 c©2018 IEEE



she/he is trying to solve it. This can both help the teacher to
know whether the student is confused (information gathering),
and it may also cue the student that the teacher is waiting for
a response (information transmission).

When developing an ITS that selectively perceives its
students’ emotions, it is necessary to develop an algorithm
that decides when to look. One approach might be based
on reinforcement learning. However, tutoring sessions are
relatively expensive and slow to conduct compared to the
robotics settings in which reinforcement learning is usually
used, likely rendering it impractical. An alternative paradigm,
which we pursue in this paper, is to train a model of visual
attention using supervised learning from one-on-one tutoring
sessions collected from human tutors. To the extent that skilled
human tutors employ sensible visual attention strategies, this
approach could help an affect-sensitive ITS to look at the
student during the most important moments.

Human tutors may decide how to shift their eye-gaze based
on the high-level actions of the tutoring session – e.g., the
student has asked the teacher to help her/him in solving a
problem – as well as visual cues such as hand gestures, facial
expressions, etc. Tutors’ visual attention may also exhibit
temporal patterns, e.g., if the teacher just ascertained that the
student was “engaged” one second ago, then it might not be
necessary to check again during the next second. To date, there
has been scant research on how tutors decide when to look at
their students (see Related Work); one of the goals of our
paper is to start to fill this gap. In one sentence: the purpose
of our work is to explore the extent to which machine
learning can be used to predict human tutors’ future eye-
gaze events, using high-level actions, behavioral cues, as
well as the history of prior eye-gaze events, as predictors.

We emphasize that we are not trying to estimate the tutor’s
current eye-gaze (i.e., gaze following [17]) by examining an
image of the tutor’s face or eye region – this is an interesting
and important problem but arguably easier (most human
observers can solve this problem easily) than ours. Instead, we
are trying to predict whether the tutor will change her/his eye-
gaze during the next time-step. In particular, we assume that
the teacher has knowledge of the high-level actions (defined
in Section II-A) of the session (e.g., give an explanation,
request assistance, attempt a problem, etc.); such actions could
be obtained, for example, by analyzing the measurements
from low-bandwidth (compared to full video) sensors such as
speech. We also assume that the teacher knows the history of
gaze events she/he has executed so far. Our research harnesses
a tutoring video dataset (described below) of two teachers,
each of whom tutors 10 middle-school students in a math topic
(for a total of 20 unique students), which has been densely
annotated for the teachers’ (as well as the students’) eye-gaze.
The focus of our work is on modeling the decision process of
human tutors, as well as exploring computational architectures
for deciding when to look.

A. Related Work

There is a large body of literature [18], [19], [20] on
visual saliency and attention prediction. While much of this
research focuses on predicting where subjects will look within
a single image, there has also been significant prior work on
predicting gaze shifts in interactive settings, e.g. an airplane
flight simulator [21], multi-party conversations [22], and urban
driving [23]. To date, there have only been a few studies on
visual saliency within educational settings: Penaloza, et al.
[24] built a model of the student’s visual attention to enable
a robot to more accurately emulate the cognitive development
of infants. We are aware of only 2 prior studies that explicitly
model how the teacher attends to the student. One is by
Dykstra, et al. [25]: on a dataset of 1 teacher with 10 students,
they developed a logistic regression-based model that predicts
eye gaze shift events (similar to our work) based on the joint
actions taken by the tutor and student in one-on-one tutoring
sessions. The other is a behavioral study by van den Bogert, et
al.[26], who compare expert versus novice teacher’s eye-gaze
in traditional classrooms (not tutoring sessions).

II. SDMATH DATASET

The San Diego Multimodal Adaptive Tutoring Human-to-
human (which we call SDMATH) dataset consists of labeled
video recordings of 20 one-on-one tutoring sessions. There
are 2 tutors in the dataset, one female, one male, both of
whom are accredited middle-school math teachers. Each tutor
taught 10 students (5 male, 5 female each; no student was
taught by both teachers), who were all 8th grade students
of 13 years of age. There were 20 unique students in total.
Before participating in the tutoring session, both the teachers
and the students (and parents) gave informed consent/assent
to participate, be videorecorded, and have their face images
published in scientific publications (University of California,
San Diego’s IRB: 090920).

All sessions were captured using both frontal camera to
capture student and teacher and an overhead camera to capture
the scratch paper which both participants shared as a common
workspace (see Fig. 4, right). Each tutoring session was ap-
proximately one hour in duration and consisted of a 10-minute
pretest, 40-minute tutoring session, and finally a 10-minute
posttest. The teachers were instructed to teach naturally in
order to help each student to practice and learn the material as
effectively as possible. The students were instructed simply to
do the best they could. The “fundamentals of logarithms” were
chosen as the topic of instruction. Logarithms were selected
since they were expected to be challenging for the students
(since they are typically taught to students in higher grade-
levels than the participants in our study) but still learnable to
significant degree within a 40-minute tutoring session.

A. Annotation

The SDMATH dataset was annotated for multiple channels
(see Figure 1 for a schematic):

Actions: Based both on the teachers’ and students’ speech,
head nods and shakes, as well as the content of what they
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Fig. 1: A moment from the SDMATH dataset showing both (a) frontal and (b) overhead views. The labels underneath show
the teacher’s utterances, the corresponding teacher speech action labels, and teacher and student eye gaze labels. The dashed
red line indicates the moment at which the image was extracted from the video.

wrote on the paper, each tutoring session was coded for the
actions that were taken by each participant at each moment
in time. There were 13 possible labels for the teachers’
actions (explanation, present problem, solicit content, solicit
explanation, solicit procedure, request for participation, pro-
vide hint, check for comprehension, direct negation, indirect
negation, confirmation, encouragement, and socializing) and 7
for the student (correct attempt, incorrect attempt, incomplete
attempt, request assistance, express lack of comprehension,
socializing).

Gesture: Hand gestures were coded separately for the left
hand and right hand of both the teacher and the student, for
all 20 tutoring sessions. Hand gestures were labeled as one of
four types (see [27]): Deictic (pointing) gestures are used to
direct a listener’s attention to a referent (e.g., writing on the
paper). Beat gestures are small hand movements resembling
flicks and occur with the rhythm of the speech, mostly placed
on stressed syllables. Iconic gestures exhibit physical aspects
of the scene described by speech. Metaphoric gestures are
associated with abstract ideas and represent a metaphor of the
speaker’s idea or feeling about an object or concept.

Eye Gaze: The object of fixation of student and teacher
eye gaze was labeled throughout each tutoring session. Dis-
tinctions were made between three mutually exclusive gaze
fixations: (1) the paper workspace shared by the teacher and
student, (2) the other tutoring session participant (teacher
or student depending on the subject of labeling), and (3)
elsewhere, defined as all eye gaze which does not fall into one
of the first two categories. The median (over all 10 sessions
per teacher) fractions of time that the teachers gazed at their
students was 6% and 26% for Teachers 1 and 2, respectively.

III. PROPOSED EYE-GAZE PREDICTION MODEL

We developed a neural network (see Figure 2) to predict
the binary outcome of whether the teacher shifts her/his eye-
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Fig. 2: Proposed neural network, consisting of both
feed-forward (FF) and LSTM components, for predicting
whether or not the teacher shifts her/his eye-gaze from
{“paper”,“elsewhere”} to “student”, at time t+1. The FF net-
work analyzes features computed from a fixed-length window
in the pink block; the LSTM analyzes the entire history of
the teacher’s prior eye-gaze events. The final prediction is the
combination of the probabilities of FF NN and LSTM RNN.

gaze to look at the student during the next time-step, based
on the history of the student’s and teacher’s actions (e.g.,
hand gestures) as well as the prior eye-gaze events of both
the student and teacher. In order to capture the entire history,
we use an LSTM recurrent neural network (see Figure 3): the
input [xt; ft] consists of the current eye-gaze xt at time t,
along with the feature vector ft describing the teacher’s and
student’s actions; the output is the prediction x̂RNN

t+1 of what
the teacher’s eye-gaze xt+1 (at time t+ 1) will be, over all 3
eye-gaze targets (paper, student, elsewhere).

In addition, since simple feed-forward (FF) neural networks
are often easier to train (compared to LSTM) without overfit-
ting, we also use a two-layer FF network to analyze the same
set of features (student’s and teacher’s actions) from the recent
history over a fixed time-window [t− h, t]. The output of the
network is a softmax over 2 categories (shift to student, do
not shift to student). This is equivalent to logistic regression
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Fig. 3: LSTM subnetwork we used for eye-gaze prediction.
During training, the target value at each timestep t is the
ground-truth value of the next timestep t+ 1.

and is equivalent to the approach used by [25] (though with a
different feature set).

The final prediction of the network is the average of the
two networks’ predictions (x̂FF

t+1, x̂
RNN
t+1 ).

A. Training

FF: We used as positive examples every time-point at which
the teacher shifted her/his eye-gaze from not looking at the
student (i.e., looking either at the paper or “elsewhere”), to
looking at the student. A set of negative examples was created
by sampling random timepoints when the teacher was likewise
not looking at the student and also did not immediately shift
her/his gaze to the student, subject to the constraint that every
such negative example was at least 1 second before the onset
and 1 second after the end of every time period during which
the teacher gazed at the student. Based on this procedure, there
were a total (over all 20 tutoring sessions) of 1836 and 3292
positive examples, and 3652 and 6584 negative examples, for
Teacher 1 and Teacher 2, respectively. The value of h was
optimized for each teacher to maximize prediction accuracy;
this resulted in h = 0.3sec for Teacher 1 and h = 0.2sec
for Teacher 2. The weights of the FF network were also
regularized with a ridge term of strength 0.001.

LSTM: In SDMATH, eye-gaze labels are annotated using a
real-valued clock (e.g., the teacher shifts her/his gaze at time
3.25sec from the paper to “elsewhere”). However, the LSTM
recurrent neural network in our design uses a discrete clock
(each t corresponds to 1 second of wall-clock time). When
training the LSTM, we thus set the ground-truth label xt+1 that
the network is trying to predict at time t to be the proportion
of time, within the time interval [t, t + 1), that the teacher
gazed at each of the 3 targets. At test time, the outputs x̂RNN

t+1

were converted (to match the format of x̂FF
t+1) into a probability

vector over just 2 categories by summing the probabilities of
“paper” and “elsewhere”; the result was then added to x̂FF

t+1

to produce the network’s final eye-gaze estimate of whether
or not the teacher gazes at the student. We trained the LSTM
using the Adam optimizer (learning rate was 0.01) over 40
epochs. To optimize the number of hidden units in the LSTM
layer (over the set {2,4,8,16,32}), we used subject-independent
double cross-validation; the optimal number was 16.

Teachers’ eye-gaze prediction accuracy (AUC)
FF LSTM Combination

Teacher 1 0.77 0.76 0.79
Teacher 2 0.68 0.67 0.70

TABLE I: Eye-gaze prediction performance on the SDMATH
dataset, using either the FF, LSTM, or combined networks.
Results for each teacher are averaged over his/her 10 students.

IV. RESULTS

We used SDMATH to estimate the accuracy of the network
described above, for each teacher separately, using leave-one-
session-out cross-validation. We measured accuracy separately
for the FF and LSTM components, as well as of the overall
network (combined predictions). To enable a fair comparison
between the FF (real-valued clock) and LSTM (discrete clock)
approaches, we tested the network at all timepoints t such
that the time interval [t, t + 1) contained one of the positive
or negative examples used for training+evaluating the FF
network. Accuracy was measured using the Area Under the
receiver operating characteristics Curve (AUC). Recall that
the AUC of a classifier that guesses is 0.5, no matter what
the prior class probabilities are.

A. Results: Predicting teachers’ eye-gaze shifts

Results (averaged over all 10 students of each teacher)
are shown in Table I. The FF network was more accurate
than the LSTM network, suggesting that – possibly due to
the simplicity of the 2-layer FF network architecture – the
short-term history of students’ and teachers’ actions is more
easily capturable using the FF approach than the LSTM
approach. However, we did observe evidence that the long-
term history of events, as captured by the LSTM, can be
helpful: the combined network (FF+LSTM) was statistically
significant more accurate (0.79 versus 0.77 AUC for teacher 1,
t(9) = 3.949, p = 0.0036; 0.70 versus 0.68 AUC for teacher
2, t(9) = 2.4512, p = 0.03668) than just the FF network
by itself (i.e., the approach used in [25]), suggesting that
long temporal windows can be useful for modeling human
eye gaze and developing attention models for ITS. Using the
combined network, the average AUC over both teachers was
0.75. Clearly, this would not be a high value for an object
recognition problem such as gaze following. However, our
problem is about prediction and is arguably more challenging.

B. Results: Predicting students’ eye-gaze shifts

In addition to modeling teachers’ eye-gaze, we also ”re-
verse” the prediction problem and train models to predict when
the student shifts her/his gaze to the teacher. This allows us
to train predictive models for not just 2 teachers but also on
20 students, and to gain greater confidence in the ability of
our model to generalize to new subjects. Using just the LSTM
network (not the FF component, for simplicity), and using the
same subject-independent cross-validation scheme (separately
for each teacher), we trained predictive models of a student not



Fig. 4: Left,middle: Teacher 2 before/after shifting eye gaze
to student. Right: Teacher 2’s deictic hand gesture (pointing
to an equation on the paper) before shifting eye gaze.

seen during training. The AUC for predicting students’ eye-
gaze, averaged over all 10 students of teacher 1, was 0.83;
the average AUC over all 10 students of teacher 2 was 0.80.
These numbers are consistent with the accuracies of predicting
teachers’ eye-gaze.

V. IDENTIFYING THE MOST PREDICTIVE FEATURES

What particular semantic and behavioral features did the
teachers in SDMATH respond to when making decisions of
where to look? To answer this question, we trained the FF
neural network we used sequential additive logistic regression
(similar to the FF network described above): For each teacher,
we started with an empty feature set and iteratively added
the feature (from the pool of 83 features) that maximized
the increase in training accuracy, conditional on the already
selected features. Selection was repeated for 10 iterations.

Results: The top 10 most predictive features of gaze-to-
student events are shown in the tables below, along with the
associated logistic regression coefficient:

Teacher 1
Cumulative

# Person Feature Coef. AUC
1 Teacher deictic gesture (left) +.26 0.6231
2 Teacher explanation +.24 0.6745
3 Teacher prompting +.11 0.6917
4 Teacher check for comprehension +.14 0.7113
5 Teacher beat gesture (left) +.13 0.7194
6 Teacher iconic gesture (left) +.12 0.7256
7 Teacher present problem −.11 0.7320
8 Teacher iconic gesture (both) +.11 0.7369
9 Teacher deictic gesture (both) +.10 0.7430

10 Student correct attempt +.07 0.7471

Teacher 2
Cumulative

# Person Feature Coef. AUC
1 Teacher present problem −.25 0.5739
2 Teacher explanation +.13 0.6025
3 Teacher prompting +.17 0.6318
4 Teacher request for participation −.08 0.6398
5 Teacher check for comprehension +.12 0.6473
6 Teacher beat gesture (left) +.13 0.6543
7 Student eye gaze to paper −.05 0.6600
8 Teacher deictic gesture (left) +.10 0.6646
9 Teacher iconic gesture (both) +.14 0.6694

10 Teacher beat gesture (both) +.08 0.6739

Seven out of the 10 features (shown in bold) overlap
for the two teachers. The last column shows, for each selected
feature, the cumulative accuracy on training data. Over
both teachers, most of the top 10 features were positively

correlated with gaze-to-student, meaning the presence of the
feature increased the probability of the teacher shifting his/her
gaze to the student. For example, the teachers were more
likely to shift their gaze to the student after having started an
explanation; this is intuitive since the teacher would likely
want to sense the student’s reaction to what he/she is saying.
Similarly, there is a increased probability of gaze-to-student
when the teacher prompts the student to answer a question,
possibly because the teacher is now waiting for the student
to deliver a response.

More interesting is that deictic hand gestures were positively
correlated with the teacher shifting his/her eye gaze to the
student. In Figure 4, Teacher 2 is shown just before and just
after she shifts her eye gaze from the paper to the student,
along with the overhead view of the paper just before she
shifts her gaze. At this moment, the teacher is making a deictic
gesture with her left hand to point to the number 10 on the
paper. One interpretation is that the teacher needs to gaze at
the student to ascertain whether the student is attending to
where the teacher had pointed. This suggests that it may be
beneficial for an ITS, when pointing out a particular mistake
that the student had made in a math derivation, to verify that
the student is in fact attending to the tutor’s explanation.

VI. CONCLUSION

We have proposed a neural network, combining both LSTM
and FF components, for predicting whether the teacher in one-
on-one tutoring sessions will shift her/his eye gaze to look at
the student during the next timestep. This is a challenging
problem that requires the model to predict future human
behavior. The model was trained and evaluated on a dataset of
20 one-on-one math tutoring sessions from 2 human teachers
and exhibited an overall accuracy (averaged over the two
teachers) of 0.75 – this corresponds to a reduction in prediction
error of about 50% (relative to the baseline guess AUC of 0.5).
The accuracy of the overall neural network, comprising both
an FF and LSTM component, was statistically significantly
higher than just the FF subnetwork, suggesting that long-
range temporal dependencies can be useful to capture for
predicting eye-gaze events. In addition, we have identified
particular high-level semantic actions and behavioral features
that the teachers (implicitly) used to make their visual attention
decisions. In future work it would be interesting to integrate
into an affect-sensitive ITS the kind of neural attention model
we have developed, and to explore what level of attention pre-
diction accuracy is necessary for the ITS to teach effectively.
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