
CS 453X: Class 9
Jacob Whitehill

Multi-class versus
binary classification

Multi-class versus binary
classification

• For the MNIST classification problem, suppose we only
really care about distinguishing {0} from {1, 2, …, 9}.

• This is essentially a binary classification problem (where
{1, 2, …, 9} become a single “class”).

• But we could still train a softmax regressor on 10
classes.

• Which approach works better?

Multi-class versus binary
classification

• The answer to this question is ultimately empirical —
there are no theoretical guarantees.

• Intuitive arguments:

• Binary classification is simpler, exactly matches the
problem objective, and requires fewer parameters.

• Multi-class classification has more parameters and can
capture more structure in the data.

Example on 4 classes
• Here’s a simulation of how multi-class classification can

work better.

• Data points are assigned to classes based on the
quadrant in the graph.

Example on 4 classes
• Logistic regression (1 v {2,3,4}):

• White background: set of pixels such that ŷ1 > 0.5

PC=0.909

Example on 4 classes
• Softmax regression (1 v 2 v 3 v 4):

• White background: set of pixels such that ŷ1 > 0.5

PC=0.991

Stochastic gradient
descent

Gradient descent
• With gradient descent, we only update the weights after

scanning the entire training set.

• This is slow.

• If the training set contains 60K examples (like in MNIST),
then the gradient is an average over 60K images.

• How much would the gradient really change if we just
used, say, 30K images? 15K images? 128 images?

rWfCE(Y, Ŷ;W) =
1

n
X(Ŷ �Y)

Average over entire training set.

Stochastic gradient descent

• This is the idea behind stochastic gradient descent (SGD):

• Randomly sample a small (≪ n) mini-batch (or
sometimes just batch) of training examples.

• Estimate the gradient on just the mini-batch.

• Update weights based on mini-batch gradient estimate.

• Repeat.

Stochastic gradient descent

• In practice, SGD is usually conducted over multiple epochs.

• An epoch is a single pass through the entire training set.

• Procedure:

1. Let equal the size of the mini-batch.

2. Randomize the order of the examples in the training set.

3. For i = 0 to (one epoch):

A. Select a mini-batch containing examples:

B. Compute the gradient on this mini-batch:

C. Update the weights based on the current mini-batch gradient.

4. Repeat (3) until the desired number of epochs is reached.

Stochastic gradient descent

• In practice, SGD is usually conducted over multiple epochs.

• An epoch is a single pass through the entire training set.

• Procedure:

1. Let equal the size of the mini-batch.

2. Randomize the order of the examples in the training set.

3. For i = 0 to (one epoch):

A. Select a mini-batch containing examples:

B. Compute the gradient on this mini-batch:

C. Update the weights based on the current mini-batch gradient.

4. Repeat (3) until the desired number of epochs is reached.

ñ ⌧ n

Stochastic gradient descent

• In practice, SGD is usually conducted over multiple epochs.

• An epoch is a single pass through the entire training set.

• Procedure:

1. Let equal the size of the mini-batch.

2. Randomize the order of the examples in the training set.

3. For i = 0 to (one epoch):

A. Select a mini-batch containing examples:

B. Compute the gradient on this mini-batch:

C. Update the weights based on the current mini-batch gradient.

4. Repeat (3) until the desired number of epochs is reached.

ñ ⌧ n

(dn/ñe � 1)

Stochastic gradient descent

• In practice, SGD is usually conducted over multiple epochs.

• An epoch is a single pass through the entire training set.

• Procedure:

1. Let equal the size of the mini-batch.

2. Randomize the order of the examples in the training set.

3. For i = 0 to (one epoch):

A. Select a mini-batch containing the next examples.

B. Compute the gradient on this mini-batch:

C. Update the weights based on the current mini-batch gradient.

4. Repeat (3) until the desired number of epochs is reached.

ñ ⌧ n

(dn/ñe � 1)

J ñ

Stochastic gradient descent

• In practice, SGD is usually conducted over multiple epochs.

• An epoch is a single pass through the entire training set.

• Procedure:

1. Let equal the size of the mini-batch.

2. Randomize the order of the examples in the training set.

3. For i = 0 to (one epoch):

A. Select a mini-batch containing the next examples.

B. Compute the gradient on this mini-batch:

C. Update the weights based on the current mini-batch gradient.

4. Repeat (3) until the desired number of epochs is reached.

ñ ⌧ n

(dn/ñe � 1)

1

ñ

X

i2J
rWf(y(i), ŷ(i);W)

J ñ

Stochastic gradient descent

• In practice, SGD is usually conducted over multiple epochs.

• An epoch is a single pass through the entire training set.

• Procedure:

1. Let equal the size of the mini-batch.

2. Randomize the order of the examples in the training set.

3. For i = 0 to (one epoch):

A. Select a mini-batch containing the next examples.

B. Compute the gradient on this mini-batch:

C. Update the weights based on the current mini-batch gradient.

4. Repeat (3) until the desired number of epochs is reached.

ñ ⌧ n

(dn/ñe � 1)

1

ñ

X

i2J
rWf(y(i), ŷ(i);W)

J ñ

Stochastic gradient descent

• In practice, SGD is usually conducted over multiple epochs.

• An epoch is a single pass through the entire training set.

• Procedure:

1. Let equal the size of the mini-batch.

2. Randomize the order of the examples in the training set.

3. For i = 0 to (one epoch):

A. Select a mini-batch containing the next examples.

B. Compute the gradient on this mini-batch:

C. Update the weights based on the current mini-batch gradient.

4. Repeat (3) until the desired number of epochs is reached.

ñ ⌧ n

(dn/ñe � 1)

1

ñ

X

i2J
rWf(y(i), ŷ(i);W)

J ñ

SGD versus GD: example
• Suppose our training set contains n=8 examples.

• Here is how regular gradient descent would proceed:

• Initialize weights w(0) to random values.

• For each round:

• Compute gradient on all n examples.

• Update weights: w(t+1) ⟵ w(t) - ϵ𝛁wf

1
2
3

4
5
6
7
8

Training
examples

SGD versus GD: example
• Suppose our training set contains n=8 examples.

• Here is how regular gradient descent would proceed:

• Initialize weights w(0) to random values.

• For each round:

• Compute gradient on all n examples.

• Update weights: w(t+1) ⟵ w(t) - ϵ𝛁wf

1
2
3

4
5
6
7
8

Training
examples

SGD versus GD: example
• Suppose our training set contains n=8 examples.

• Here is how regular gradient descent would proceed:

• Initialize weights w(0) to random values.

• For each round:

• Compute gradient on all n examples.

• Update weights: w(t+1) ⟵ w(t) - ϵ𝛁wf

1
2
3

4
5
6
7
8

Training
examples

SGD versus GD: example
• Suppose our training set contains n=8 examples.

• Here is how regular gradient descent would proceed:

• Initialize weights w(0) to random values.

• For each round:

• Compute gradient on all n examples.

• Update weights: w(t+1) ⟵ w(t) - ϵ𝛁wf

1
2
3

4
5
6
7
8

Training
examples

SGD versus GD: example
• Suppose our training set contains n=8 examples.

• Here is how regular gradient descent would proceed:

• Initialize weights w(0) to random values.

• For each round:

• Compute gradient on all n examples.

• Update weights: w(t+1) ⟵ w(t) - ϵ𝛁wf

1
2
3

4
5
6
7
8

Training
examples

SGD versus GD: example
• Suppose our training set contains n=8 examples with = 2.

• Here is how stochastic gradient descent would proceed:

• Initialize weights w(0) to random values.

• Randomize the order of the training data.

• For each epoch:

• For each round:

• Compute gradient on next examples.

• Update weights: w(t+1) ⟵ w(t) - ϵ𝛁wf

Training
examples

ñ

1
2
3

4
5
6
7
8

SGD versus GD: example
• Suppose our training set contains n=8 examples with = 2.

• Here is how stochastic gradient descent would proceed:

• Initialize weights w(0) to random values.

• Randomize the order of the training data.

• For each epoch:

• For each round:

• Compute gradient on next examples.

• Update weights: w(t+1) ⟵ w(t) - ϵ𝛁wf

4
1
3

5
7
6
8
2

Training
examples

ñ

SGD versus GD: example
• Suppose our training set contains n=8 examples with = 2.

• Here is how stochastic gradient descent would proceed:

• Initialize weights w(0) to random values.

• Randomize the order of the training data.

• For each epoch (e=1, …, E):

• For each round (r=1, …,):

• Compute gradient on next examples.

• Update weights: w(t+1) ⟵ w(t) - ϵ𝛁wf

4
1
3

5
7
6
8
2

Training
examples

ñ

ñ

dn/ñe

e=1

SGD versus GD: example
• Suppose our training set contains n=8 examples with = 2.

• Here is how stochastic gradient descent would proceed:

• Initialize weights w(0) to random values.

• Randomize the order of the training data.

• For each epoch (e=1, …, E):

• For each round (r=1, …,):

• Compute gradient on next examples.

• Update weights: w(t+1) ⟵ w(t) - ϵ𝛁wf

4
1
3

5
7
6
8
2

Training
examples

ñ

ñ

~

dn/ñe

e=1

SGD versus GD: example
• Suppose our training set contains n=8 examples with = 2.

• Here is how stochastic gradient descent would proceed:

• Initialize weights w(0) to random values.

• Randomize the order of the training data.

• For each epoch (e=1, …, E):

• For each round (r=1, …,):

• Compute gradient on next examples.

• Update weights: w(t+1) ⟵ w(t) - ϵ𝛁wf

4
1
3

5
7
6
8
2

Training
examples

ñ

ñ

~

dn/ñe

e=1

SGD versus GD: example
• Suppose our training set contains n=8 examples with = 2.

• Here is how stochastic gradient descent would proceed:

• Initialize weights w(0) to random values.

• Randomize the order of the training data.

• For each epoch (e=1, …, E):

• For each round (r=1, …,):

• Compute gradient on next examples.

• Update weights: w(t+1) ⟵ w(t) - ϵ𝛁wf

4
1
3

5
7
6
8
2

Training
examples

ñ

ñ

~

dn/ñe

e=1

SGD versus GD: example
• Suppose our training set contains n=8 examples with = 2.

• Here is how stochastic gradient descent would proceed:

• Initialize weights w(0) to random values.

• Randomize the order of the training data.

• For each epoch (e=1, …, E):

• For each round (r=1, …,):

• Compute gradient on next examples.

• Update weights: w(t+1) ⟵ w(t) - ϵ𝛁wf

4
1
3

5
7
6
8
2

Training
examples

ñ

ñ

~

dn/ñe

e=1

SGD versus GD: example
• Suppose our training set contains n=8 examples with = 2.

• Here is how stochastic gradient descent would proceed:

• Initialize weights w(0) to random values.

• Randomize the order of the training data.

• For each epoch (e=1, …, E):

• For each round (r=1, …,):

• Compute gradient on next examples.

• Update weights: w(t+1) ⟵ w(t) - ϵ𝛁wf

4
1
3

5
7
6
8
2

Training
examples

ñ

ñ

~

dn/ñe

e=1

SGD versus GD: example
• Suppose our training set contains n=8 examples with = 2.

• Here is how stochastic gradient descent would proceed:

• Initialize weights w(0) to random values.

• Randomize the order of the training data.

• For each epoch (e=1, …, E):

• For each round (r=1, …,):

• Compute gradient on next examples.

• Update weights: w(t+1) ⟵ w(t) - ϵ𝛁wf

Training
examples

ñ

ñ

~

dn/ñe

4
1
3

5
7
6
8
2

e=1

SGD versus GD: example
• Suppose our training set contains n=8 examples with = 2.

• Here is how stochastic gradient descent would proceed:

• Initialize weights w(0) to random values.

• Randomize the order of the training data.

• For each epoch (e=1, …, E):

• For each round (r=1, …,):

• Compute gradient on next examples.

• Update weights: w(t+1) ⟵ w(t) - ϵ𝛁wf

4
1
3

5
7
6
8
2

Training
examples

ñ

ñ

~

dn/ñe

e=1

SGD versus GD: example
• Suppose our training set contains n=8 examples with = 2.

• Here is how stochastic gradient descent would proceed:

• Initialize weights w(0) to random values.

• Randomize the order of the training data.

• For each epoch (e=1, …, E):

• For each round (r=1, …,):

• Compute gradient on next examples.

• Update weights: w(t+1) ⟵ w(t) - ϵ𝛁wf

4
1
3

5
7
6
8
2

Training
examples

ñ

ñ

~

dn/ñe

e=2

SGD versus GD: example
• Suppose our training set contains n=8 examples with = 2.

• Here is how stochastic gradient descent would proceed:

• Initialize weights w(0) to random values.

• Randomize the order of the training data.

• For each epoch (e=1, …, E):

• For each round (r=1, …,):

• Compute gradient on next examples.

• Update weights: w(t+1) ⟵ w(t) - ϵ𝛁wf

4
1
3

5
7
6
8
2

Training
examples

ñ

ñ

~

dn/ñe

e=2

…

Stochastic gradient descent

• Despite “noise” (statistical inaccuracy) in the mini-batch
gradient estimates, we will still converge to local minimum.

• Training can be much faster than regular gradient descent
because we adjust the weights many times per epoch.

SGD: learning rates

• With SGD, our learning rate ∊ needs to be annealed
(reduced slowly over time) to guarantee convergence.

• Otherwise we might just oscillate forever in weight space.

• Necessary conditions:

lim
T!1

TX

t=1

|✏t|2 < 1

Not too big: sum of squared
learning rates converges.

SGD: learning rates

• With SGD, our learning rate ∊ needs to be annealed
(reduced slowly over time) to guarantee convergence.

• Otherwise we might just oscillate forever in weight space.

• Necessary conditions:

lim
T!1

TX

t=1

|✏t| = 1lim
T!1

TX

t=1

|✏t|2 < 1

Not too small: sum of absolute
learning rates grows to infinity.

• One common learning rate “schedule” is to multiply ∊ by 
 every k rounds.

• This is called exponential decay.

• Another possibility (which avoids the issue) is to set the
number of epochs T to a finite number.

• SGD may not fully converge, but the machine might still
perform well.

• There are many other strategies.

SGD: learning rates

c 2 (0, 1)

Convex ML models

Convex ML models
• The two main ML models we have examined — linear

regression and softmax regression — have loss functions
that are convex.

• With a convex function f, every local minimum is also a
global minimum.

• Convex functions are ideal for conducting gradient
descent.

convex non-convex

https://plus.maths.org/content/convexity

Convexity in 1-d
• How can we tell if a 1-d function f is convex?

• What property of f ensures there is only one local
minimum?

• From left to right, the slope of f never decreases. 
==> the derivative of the slope is always non-negative. 
==> the second derivative of f is always non-negative.

f

Convexity in 1-d
• How can we tell if a 1-d function f is convex?

• What property of f ensures there is only one local
minimum?

• From left to right, the slope of f never decreases. 
==> the derivative of the slope is always non-negative. 
==> the second derivative of f is always non-negative.

f

Convexity in 1-d
• How can we tell if a 1-d function f is convex?

• What property of f ensures there is only one local
minimum?

• From left to right, the slope of f never decreases. 
==> the derivative of the slope is always non-negative. 
==> the second derivative of f is always non-negative.

f

Convexity in 1-d
• How can we tell if a 1-d function f is convex?

• What property of f ensures there is only one local
minimum?

• From left to right, the slope of f never decreases. 
==> the derivative of the slope is always non-negative. 
==> the second derivative of f is always non-negative.

f

Convexity in higher
dimensions

• For higher-dimensional f, convexity is determined by the
second derivative matrix, known as the Hessian of f.

• For , f is convex if the Hessian matrix is
positive semi-definite for every input x.

f : Rm ! R

Positive semi-definite
• Positive semi-definite is the matrix analog of being “non-

negative”.

• A real symmetric matrix A is positive semi-definite (PSD) if
(equivalent conditions):

• All its eigenvalues are ≥0.

• If A happens to be diagonal, then its eigenvalues are
the diagonal elements.

• For every vector x: xTAx ≥0

• Therefore: If there exists any vector x such that 
xTAx < 0, then A is not PSD.

Positive semi-definite
• Positive semi-definite is the matrix analog of being “non-

negative”.

• A real symmetric matrix A is positive semi-definite (PSD) if
(equivalent conditions):

• All its eigenvalues are ≥0.

• If A happens to be diagonal, then its eigenvalues are
the diagonal elements.

• For every vector x: xTAx ≥0

• Therefore: If there exists any vector x such that 
xTAx < 0, then A is not PSD.

Positive semi-definite
• Positive semi-definite is the matrix analog of being “non-

negative”.

• A real symmetric matrix A is positive semi-definite (PSD) if
(equivalent conditions):

• All its eigenvalues are ≥0.

• If A happens to be diagonal, then its eigenvalues are
the diagonal elements.

• For every vector v: vTAv ≥0

• Therefore: If there exists any vector v such that 
vTAv < 0, then A is not PSD.

Example
• Suppose f(x, y) = 3x2 + 2y2 - 2.

• Then the first derivatives are:

• The Hessian matrix is therefore:

• Notice that H for this f does not depend on (x,y).

• Also, H is a diagonal matrix (with 6 and 4 on the diagonal).
Hence, the eigenvalues are just 6 and 4. Since they are both
non-negative, then f is convex.

@f
@x = 6x @f

@y = 4y

H =

"
@2f
@x@x

@2f
@x@y

@2f
@y@x

@2f
@y@y

#
=


6 0
0 4

�

Example
• Graph of f(x, y) = 3x2 + 2y2 - 2:

