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Multi-class versus binary
classification

e For the MNIST classification problem, suppose we only
really care about distinguishing {0} from {1, 2, ..., 9}.

e This is essentially a binary classification problem (where
{1, 2, ..., 9} become a single “class”).

e But we could still train a softmax regressor on 10
classes.

e Which approach works better?



Multi-class versus binary
classification

* The answer to this question is ultimately empirical —
there are no theoretical guarantees.

e |ntuitive arguments:

e Binary classification is simpler, exactly matches the
problem objective, and requires fewer parameters.

e Multi-class classification has more parameters and can
capture more structure in the data.



Example on 4 classes

e Here’s a simulation of how multi-class classification can
work better.

e Data points are assigned to classes based on the
quadrant in the graph.
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Example on 4 classes

e Logistic regression (1 v {2,3,4}).

 White background: set of pixels such that y1 > 0.5
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Example on 4 classes

e Softmax regression (1 v2v 3v4):

 White background: set of pixels such that y1 > 0.5
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Stochastic gradient
descent



Gradient descent

e With gradient descent, we only update the weights after
scanning the entire training set.

e This is slow.

e |f the training set contains 60K examples (like in MNIST),
then the gradient is an average over 60K images.

e How much would the gradient really change if we just
used, say, 30K images? 15K images? 128 images?
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Stochastic gradient descent

 This is the idea behind stochastic gradient descent (SGD):

e Randomly sample a small (€ n) mini-batch (or

sometimes just batch) of training examples.
* Estimate the gradient on just the mini-batch.
 Update weights based on mini-batch gradient estimate.

* Repeat.
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Stochastic gradient descent

* |n practice, SGD is usually conducted over multiple epochs.

* An epoch is a single pass through the entire training set.

e Procedure:

1.
2.
3.

Let n < n equal the size of the mini-batch.

Randomize the order of the examples in the training set.
Fori=0to ([n/7] — 1) (one epoch):

A. Select a mini-batch J containing the next n examples.

1 Nl
B. Compute the gradient on this mini-batch: = Z Vw [y, 5% W)
1eJ
C. Update the weights based on the current mini-batch gradient.

Repeat (3) until the desired number of epochs is reached.



SGD versus GD: example

* Suppose our training set contains n=8 examples.

 Here is how regular gradient descent would proceed:

e Initialize weights w©® to random values.  ™aning
examples
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Stochastic gradient descent

 Despite “noise” (statistical inaccuracy) in the mini-batch
gradient estimates, we will still converge to local minimum.

* Training can be much faster than regular gradient descent
because we adjust the weights many times per epoch.



SGD: learning rates

With SGD, our learning rate € needs to be annealed

(reduced slowly over time) to guarantee convergence.

 Otherwise we might just oscillate forever in weight space.

Necessary conditions:
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SGD: learning rates

e One common learning rate “schedule” is to multiply € by

c € (0,1) every k rounds.
 This is called exponential decay.

 Another possibility (which avoids the issue) is to set the
number of epochs T to a finite number.

e SGD may not fully converge, but the machine might still
perform well.

* There are many other strategies.



Convex ML models



Convex ML models

e The two main ML models we have examined — linear
regression and softmax regression — have loss functions
that are convex.

 With a convex function f, every local minimum is also a
global minimum.
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e Convex functions are ideal for conducting gradient
descent.

https://plus.maths.org/content/convexity
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Convexity in 1-d

e How can we tell if a 1-d function f is convex?

 What property of f ensures there is only one local
minimum?

* From left to right, the slope of f never decreases.
==> the derivative of the slope is always non-negative.
==> the second derivative of f is always non-negative.



Convexity in higher
dimensions

* For higher-dimensional f, convexity is determined by the
second derivative matrix, known as the Hessian of 1.

0% f o f 0% f
Or:{ oxy 0o Oz Oz,
0% f o f 0% f
= Oxo 011 8;133 Ox» Oz,
82 f 02 f 3‘2 f
| Oz, Oz, Oz, Ox, Oxz

e For f : R™ — R, fis convex if the Hessian matrix is
positive semi-definite for every input x.
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Positive semi-definite

* Positive semi-definite is the matrix analog of being “non-
negative”.

* A real symmetric matrix A is positive semi-definite (PSD) if
(equivalent conditions):

e All its eigenvalues are >0.

* |f A happens to be diagonal, then its eigenvalues are
the diagonal elements.

 For every vector v: viAv >0

* Therefore: If there exists any vector v such that
VvTAv < 0, then A is not PSD.



Example

Suppose f(x, y) = 3x2 + 2y2 - 2.

Then the first derivatives are: 9/ _ g, 91 _ i,

ox oy
The Hessian matrix is therefore:
0° f 0 f - -
H — OxOx Ox 0y _ 6 0
— 02 f 0% f 10 4
OyOx oyoy _ - -

Notice that H for this f does not depend on (x,y).

Also, H is a diagonal matrix (with 6 and 4 on the diagonal).
Hence, the eigenvalues are just 6 and 4. Since they are both
non-negative, then f is convex.



Example

e Graph of f(x, y) = 3x2 + 2y2 - 2:
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