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Multi-class versus binary 
classification

• For the MNIST classification problem, suppose we only 
really care about distinguishing {0} from {1, 2, …, 9}.


• This is essentially a binary classification problem (where 
{1, 2, …, 9} become a single “class”).


• But we could still train a softmax regressor on 10 
classes.


• Which approach works better?



Multi-class versus binary 
classification

• The answer to this question is ultimately empirical — 
there are no theoretical guarantees.


• Intuitive arguments:


• Binary classification is simpler, exactly matches the 
problem objective, and requires fewer parameters.


• Multi-class classification has more parameters and can 
capture more structure in the data.



Example on 4 classes
• Here’s a simulation of how multi-class classification can 

work better.


• Data points are assigned to classes based on the 
quadrant in the graph.



Example on 4 classes
• Logistic regression (1 v {2,3,4}):


• White background: set of pixels such that ŷ1 > 0.5

PC=0.909



Example on 4 classes
• Softmax regression (1 v 2 v 3 v 4):


• White background: set of pixels such that ŷ1 > 0.5

PC=0.991



Stochastic gradient 
descent



Gradient descent
• With gradient descent, we only update the weights after 

scanning the entire training set.


• This is slow.


• If the training set contains 60K examples (like in MNIST), 
then the gradient is an average over 60K images.


• How much would the gradient really change if we just 
used, say, 30K images? 15K images? 128 images?

rWfCE(Y, Ŷ;W) =
1

n
X(Ŷ �Y)

Average over entire training set.



Stochastic gradient descent

• This is the idea behind stochastic gradient descent (SGD):


• Randomly sample a small (≪ n) mini-batch (or 
sometimes just batch) of training examples.


• Estimate the gradient on just the mini-batch.


• Update weights based on mini-batch gradient estimate.


• Repeat.



Stochastic gradient descent

• In practice, SGD is usually conducted over multiple epochs.


• An epoch is a single pass through the entire training set.


• Procedure:

1. Let            equal the size of the mini-batch.

2. Randomize the order of the examples in the training set.

3. For i = 0 to                  (one epoch): 


A. Select a mini-batch containing examples:


B. Compute the gradient on this mini-batch: 


C. Update the weights based on the current mini-batch gradient.

4. Repeat (3) until the desired number of epochs is reached.
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SGD versus GD: example
• Suppose our training set contains n=8 examples.


• Here is how regular gradient descent would proceed:


• Initialize weights w(0) to random values. 

• For each round:


• Compute gradient on all n examples.


• Update weights: w(t+1) ⟵ w(t) - ϵ𝛁wf

1
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Training 
examples
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SGD versus GD: example
• Suppose our training set contains n=8 examples with    = 2.


• Here is how stochastic gradient descent would proceed:
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Stochastic gradient descent

• Despite “noise” (statistical inaccuracy) in the mini-batch 
gradient estimates, we will still converge to local minimum.


• Training can be much faster than regular gradient descent 
because we adjust the weights many times per epoch.



SGD: learning rates

• With SGD, our learning rate ∊ needs to be annealed 
(reduced slowly over time) to guarantee convergence.


• Otherwise we might just oscillate forever in weight space.


• Necessary conditions:

lim
T!1

TX

t=1

|✏t|2 < 1

Not too big: sum of squared 
learning rates converges.



SGD: learning rates

• With SGD, our learning rate ∊ needs to be annealed 
(reduced slowly over time) to guarantee convergence.


• Otherwise we might just oscillate forever in weight space.


• Necessary conditions:

lim
T!1

TX

t=1

|✏t| = 1lim
T!1

TX

t=1

|✏t|2 < 1

Not too small: sum of absolute 
learning rates grows to infinity.



• One common learning rate “schedule” is to multiply ∊ by 
                  every k rounds.


• This is called exponential decay.


• Another possibility (which avoids the issue) is to set the 
number of epochs T to a finite number.


• SGD may not fully converge, but the machine might still 
perform well.


• There are many other strategies.

SGD: learning rates

c 2 (0, 1)



Convex ML models



Convex ML models
• The two main ML models we have examined — linear 

regression and softmax regression — have loss functions 
that are convex.


• With a convex function f, every local minimum is also a 
global minimum.


• Convex functions are ideal for conducting gradient 
descent.

convex non-convex

https://plus.maths.org/content/convexity



Convexity in 1-d
• How can we tell if a 1-d function f is convex?


• What property of f ensures there is only one local 
minimum?


• From left to right, the slope of f never decreases. 
==> the derivative of the slope is always non-negative. 
==> the second derivative of f is always non-negative.

f
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Convexity in higher 
dimensions

• For higher-dimensional f, convexity is determined by the 
second derivative matrix, known as the Hessian of f.


• For                     , f is convex if the Hessian matrix is 
positive semi-definite for every input x.

f : Rm ! R



Positive semi-definite
• Positive semi-definite is the matrix analog of being “non-

negative”.


• A real symmetric matrix A is positive semi-definite (PSD) if 
(equivalent conditions):


• All its eigenvalues are ≥0.


• If A happens to be diagonal, then its eigenvalues are 
the diagonal elements.


• For every vector x:  xTAx ≥0


• Therefore: If there exists any vector x such that 
xTAx < 0, then A is not PSD.
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Positive semi-definite
• Positive semi-definite is the matrix analog of being “non-

negative”.


• A real symmetric matrix A is positive semi-definite (PSD) if 
(equivalent conditions):


• All its eigenvalues are ≥0.


• If A happens to be diagonal, then its eigenvalues are 
the diagonal elements.


• For every vector v:  vTAv ≥0


• Therefore: If there exists any vector v such that 
vTAv < 0, then A is not PSD.



Example
• Suppose f(x, y) = 3x2 + 2y2 - 2.


• Then the first derivatives are:


• The Hessian matrix is therefore:


• Notice that H for this f does not depend on (x,y).


• Also, H is a diagonal matrix (with 6 and 4 on the diagonal). 
Hence, the eigenvalues are just 6 and 4. Since they are both 
non-negative, then f is convex.
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Example
• Graph of f(x, y) = 3x2 + 2y2 - 2:


