CS 453X: Class 9

Jacob Whitehill

Multi-class versus
binary classification

Multi-class versus binary
classification

e For the MNIST classification problem, suppose we only
really care about distinguishing {0} from {1, 2, ..., 9}.

e This is essentially a binary classification problem (where
{1, 2, ..., 9} become a single “class”).

e But we could still train a softmax regressor on 10
classes.

e Which approach works better?

Multi-class versus binary
classification

* The answer to this question is ultimately empirical —
there are no theoretical guarantees.

e |ntuitive arguments:

e Binary classification is simpler, exactly matches the
problem objective, and requires fewer parameters.

e Multi-class classification has more parameters and can
capture more structure in the data.

Example on 4 classes

e Here’s a simulation of how multi-class classification can
work better.

e Data points are assigned to classes based on the
quadrant in the graph.

400

200

0 200 400 600 800

Example on 4 classes

e Logistic regression (1 v {2,3,4}).

 White background: set of pixels such that y1 > 0.5

[X [] °
800 o p** e
% o
600
400 1 o8
O

200 A

Example on 4 classes

e Softmax regression (1 v2v 3v4):

 White background: set of pixels such that y1 > 0.5

[X []
800 o o°
% o
e ©
600
400 1 o8
O

200 A

200 400 600 800

Stochastic gradient
descent

Gradient descent

e With gradient descent, we only update the weights after
scanning the entire training set.

e This is slow.

e |f the training set contains 60K examples (like in MNIST),
then the gradient is an average over 60K images.

e How much would the gradient really change if we just
used, say, 30K images? 15K images? 128 images?

) 1 .
Vw/fce(Y,Y;W)=-X(Y -Y)

n

Stochastic gradient descent

 This is the idea behind stochastic gradient descent (SGD):

e Randomly sample a small (€ n) mini-batch (or

sometimes just batch) of training examples.
* Estimate the gradient on just the mini-batch.
 Update weights based on mini-batch gradient estimate.

* Repeat.

Stochastic gradient descent

* |n practice, SGD is usually conducted over multiple epochs.

* An epoch is a single pass through the entire training set.

Stochastic gradient descent

* |n practice, SGD is usually conducted over multiple epochs.

* An epoch is a single pass through the entire training set.

* Procedure:
1. Let n < n equal the size of the mini-batch.

2. Randomize the order of the examples in the training set.

Stochastic gradient descent

* |n practice, SGD is usually conducted over multiple epochs.

* An epoch is a single pass through the entire training set.

* Procedure:
1. Let n < n equal the size of the mini-batch.
2. Randomize the order of the examples in the training set.

3. Fori=0to ([n/n] —1) (one epoch):

Stochastic gradient descent

* |n practice, SGD is usually conducted over multiple epochs.

* An epoch is a single pass through the entire training set.

* Procedure:
1. Let n < n equal the size of the mini-batch.
2. Randomize the order of the examples in the training set.
3. Fori=0to ([n/fn] —1) (one epoch):

A. Select a mini-batch J containing the next n examples.

Stochastic gradient descent

* |n practice, SGD is usually conducted over multiple epochs.

* An epoch is a single pass through the entire training set.

* Procedure:
1. Let n < n equal the size of the mini-batch.
2. Randomize the order of the examples in the training set.
3. Fori=0to ([n/n] —1) (one epoch):
A. Select a mini-batch J containing the next n examples.

1 Nl
B. Compute the gradient on this mini-batch: = Z Vw [y, 5% W)
eJ

Stochastic gradient descent

* |n practice, SGD is usually conducted over multiple epochs.

* An epoch is a single pass through the entire training set.

* Procedure:
1. Let n < n equal the size of the mini-batch.
2. Randomize the order of the examples in the training set.
3. Fori=0to ([n/n] —1) (one epoch):
A. Select a mini-batch J containing the next n examples.

1 Nl
B. Compute the gradient on this mini-batch: = Z Vw [y, 5% W)
1eJ
C. Update the weights based on the current mini-batch gradient.

Stochastic gradient descent

* |n practice, SGD is usually conducted over multiple epochs.

* An epoch is a single pass through the entire training set.

e Procedure:

1.
2.
3.

Let n < n equal the size of the mini-batch.

Randomize the order of the examples in the training set.
Fori=0to ([n/7] — 1) (one epoch):

A. Select a mini-batch J containing the next n examples.

1 Nl
B. Compute the gradient on this mini-batch: = Z Vw [y, 5% W)
1eJ
C. Update the weights based on the current mini-batch gradient.

Repeat (3) until the desired number of epochs is reached.

SGD versus GD: example

* Suppose our training set contains n=8 examples.

 Here is how regular gradient descent would proceed:

e Initialize weights w©® to random values. ™aning
examples

1

I N OO0, | W(IDN

SGD versus GD: example

* Suppose our training set contains n=8 examples.

 Here is how regular gradient descent would proceed:

e |nitialize weights w© to random values. Training
examples
e For each round: 1

e Compute gradient on all n examples.

I N OO0, | W(IDN

SGD versus GD: example

* Suppose our training set contains n=8 examples.

 Here is how regular gradient descent would proceed:

e |nitialize weights w© to random values. Training
examples
e For each round: 1

e Compute gradient on all n examples.

e Update weights: w(t+1) «—— wl) - eV f

I N OO0, | W(IDN

SGD versus GD: example

* Suppose our training set contains n=8 examples.

 Here is how regular gradient descent would proceed:

e |nitialize weights w© to random values. Training
examples
e For each round: 1

e Compute gradient on all n examples.

e Update weights: wit+1) «— w() - gV f

I N OO0, | W(IDN

SGD versus GD: example

* Suppose our training set contains n=8 examples.

 Here is how regular gradient descent would proceed:

e |nitialize weights w© to random values. Training
examples
e For each round: 1

e Compute gradient on all n examples.

e Update weights: w(t+1) «—— wl) - eV f

I N OO0, | W(IDN

SGD versus GD: example

e Suppose our training set contains n=8 examples withn = 2.

* Here is how stochastic gradient descent would proceed:

* |nitialize weights w(to random values. Training
examples

1

I N OO0, | W(IDN

SGD versus GD: example

e Suppose our training set contains n=8 examples withn = 2.

* Here is how stochastic gradient descent would proceed:

* |nitialize weights w®© to random values. Training
examples
* Randomize the order of the training data. 4

N[O I NTO1 W (=

SGD versus GD: example

e Suppose our training set contains n=8 examples with” = 2.

* Here is how stochastic gradient descent would proceed:

* |nitialize weights w© to random values. Training
examples
* Randomize the order of the training data. 4

* For each epoch (e=1, ..., E):

* Foreachround (r=1, ..., [n/n|):

e Compute gradient on next 1 examples.

N[O I NTO1 W (=

SGD versus GD: example

e Suppose our training set contains n=8 examples with” = 2.

* Here is how stochastic gradient descent would proceed:

* |nitialize weights w© to random values. Training
examples
* Randomize the order of the training data. 4

* For each epoch (e=1, ..., E):

* Foreachround (r=1, ..., [n/n|):

 Compute gradient on next n examples.

o Update weights: wit+1) «—— w() - eVl

N[O I NTO1 W (=

SGD versus GD: example

e Suppose our training set contains n=8 examples with” = 2.

* Here is how stochastic gradient descent would proceed:

* |nitialize weights w© to random values. Training
examples
* Randomize the order of the training data. 4

* For each epoch (e=1, ..., E):

* Foreachround (r=1, ..., [n/n|):

e Compute gradient on next 1 examples.

o Update weights: w(t+1) «— w() - eVuf

N[O I NTO1 W (=

SGD versus GD: example

e Suppose our training set contains n=8 examples with” = 2.

* Here is how stochastic gradient descent would proceed:

* |nitialize weights w© to random values. Training
examples
* Randomize the order of the training data. 4

* For each epoch (e=1, ..., E):

* Foreachround (r=1, ..., [n/n|):

 Compute gradient on next n examples.

o Update weights: wit+1) «—— w() - eVl

N[O I NTO1 W (=

SGD versus GD: example

e Suppose our training set contains n=8 examples with” = 2.

* Here is how stochastic gradient descent would proceed:

* |nitialize weights w© to random values. Training
examples
* Randomize the order of the training data. 4

* For each epoch (e=1, ..., E):

* Foreachround (r=1, ..., [n/n|):

e Compute gradient on next 1 examples.

o Update weights: w(t+1) «— w() - eVuf

N[O | NTO1 W (=

SGD versus GD: example

e Suppose our training set contains n=8 examples with” = 2.

* Here is how stochastic gradient descent would proceed:

* |nitialize weights w© to random values. Training
examples
* Randomize the order of the training data. 4

* For each epoch (e=1, ..., E):

* Foreachround (r=1, ..., [n/n|):

 Compute gradient on next n examples.

o Update weights: wit+1) «—— w() - eVl

N[O I NTO1 W (=

SGD versus GD: example

e Suppose our training set contains n=8 examples with” = 2.

* Here is how stochastic gradient descent would proceed:

* |nitialize weights w© to random values. Training
examples
* Randomize the order of the training data. 4

* For each epoch (e=1, ..., E):

* Foreachround (r=1, ..., [n/n|):

e Compute gradient on next 1 examples.

o Update weights: w(t+1) «— w() - eVuf

N o0 O |INTO1 W (=

SGD versus GD: example

e Suppose our training set contains n=8 examples with” = 2.

* Here is how stochastic gradient descent would proceed:

* |nitialize weights w© to random values. Training
examples
* Randomize the order of the training data. 4

* For each epoch (e=1, ..., E):

* Foreachround (r=1, ..., [n/n|):

 Compute gradient on next n examples.

o Update weights: wit+1) «—— w() - eVl

N[O I NTO1 W (=

SGD versus GD: example

e Suppose our training set contains n=8 examples with” = 2.

* Here is how stochastic gradient descent would proceed:

* |nitialize weights w© to random values. Training
examples
* Randomize the order of the training data. 4

* For each epoch (e=1, ..., E):

* Foreachround (r=1, ..., [n/n|):

e Compute gradient on next n examples.

o Update weights: w(t+1) «— w() - eVuf

N[O I NTO1 W (=

SGD versus GD: example

e Suppose our training set contains n=8 examples with” = 2.

* Here is how stochastic gradient descent would proceed:

* |nitialize weights w© to random values. Training
examples
* Randomize the order of the training data. 4

* For each epoch (e=1, ..., E):

* Foreachround (r=1, ..., [n/n|):

e Compute gradient on next 1 examples.

o Update weights: w(t+1) «— w() A

N[O I NTO1 W (=

Stochastic gradient descent

 Despite “noise” (statistical inaccuracy) in the mini-batch
gradient estimates, we will still converge to local minimum.

* Training can be much faster than regular gradient descent
because we adjust the weights many times per epoch.

SGD: learning rates

With SGD, our learning rate € needs to be annealed

(reduced slowly over time) to guarantee convergence.

 Otherwise we might just oscillate forever in weight space.

Necessary conditions:

T
lim Z €] < o0
1T'— o0 1

SGD: learning rates

With SGD, our learning rate € needs to be annealed

(reduced slowly over time) to guarantee convergence.

 Otherwise we might just oscillate forever in weight space.

Necessary conditions:

T
lim Z e|* < o0 hm Z €| =
T — 00 1

SGD: learning rates

e One common learning rate “schedule” is to multiply € by

c € (0,1) every k rounds.
 This is called exponential decay.

 Another possibility (which avoids the issue) is to set the
number of epochs T to a finite number.

e SGD may not fully converge, but the machine might still
perform well.

* There are many other strategies.

Convex ML models

Convex ML models

e The two main ML models we have examined — linear
regression and softmax regression — have loss functions
that are convex.

 With a convex function f, every local minimum is also a
global minimum.

{,
AN
'\-\, *‘?;’t‘t‘:‘*‘" j;' ’,}

& PAEAT T Sy

e, w0 A T
R A AR
\\\\\\s. AT ;"";I

e

2 g
el Kty
"~

oL
B e w o g

e Convex functions are ideal for conducting gradient
descent.

https://plus.maths.org/content/convexity

Convexity in 1-d
* How can we tell if a 1-d function f is convex?
\/
 What property of f ensures there is only one local
minimum?

Convexity in 1-d

e How can we tell if a 1-d function f is convex?

 What property of f ensures there is only one local
minimum?

* From left to right, the slope of f never decreases.

Convexity in 1-d

e How can we tell if a 1-d function f is convex?

 What property of f ensures there is only one local
minimum?

* From left to right, the slope of f never decreases.
==> the derivative of the slope is always non-negative.

Convexity in 1-d

e How can we tell if a 1-d function f is convex?

 What property of f ensures there is only one local
minimum?

* From left to right, the slope of f never decreases.
==> the derivative of the slope is always non-negative.
==> the second derivative of f is always non-negative.

Convexity in higher
dimensions

* For higher-dimensional f, convexity is determined by the
second derivative matrix, known as the Hessian of 1.

0% f o f 0% f
Or:{ oxy 0o Oz Oz,
0% f o f 0% f
= Oxo 011 8;133 Ox» Oz,
82 f 02 f 3‘2 f
| Oz, Oz, Oz, Ox, Oxz

e For f : R™ — R, fis convex if the Hessian matrix is
positive semi-definite for every input x.

Positive semi-definite

* Positive semi-definite is the matrix analog of being “non-
negative”.

* A real symmetric matrix A is positive semi-definite (PSD) if
(equivalent conditions):

Positive semi-definite

* Positive semi-definite is the matrix analog of being “non-
negative”.

* A real symmetric matrix A is positive semi-definite (PSD) if
(equivalent conditions):

e All its eigenvalues are >0.

* |f A happens to be diagonal, then its eigenvalues are
the diagonal elements.

Positive semi-definite

* Positive semi-definite is the matrix analog of being “non-
negative”.

* A real symmetric matrix A is positive semi-definite (PSD) if
(equivalent conditions):

e All its eigenvalues are >0.

* |f A happens to be diagonal, then its eigenvalues are
the diagonal elements.

 For every vector v: viAv >0

* Therefore: If there exists any vector v such that
VvTAv < 0, then A is not PSD.

Example

Suppose f(x, y) = 3x2 + 2y2 - 2.

Then the first derivatives are: 9/ _ g, 91 _ i,

ox oy
The Hessian matrix is therefore:
0° f 0 f - -
H — OxOx Ox 0y _ 6 0
— 02 f 0% f 10 4
OyOx oyoy _ - -

Notice that H for this f does not depend on (x,y).

Also, H is a diagonal matrix (with 6 and 4 on the diagonal).
Hence, the eigenvalues are just 6 and 4. Since they are both
non-negative, then f is convex.

Example

e Graph of f(x, y) = 3x2 + 2y2 - 2:

t 120
T 100
T 80
T 60
T 40
T 20

