CS 453X: Class 8

Jacob Whitehill

Softmax regression (aka multinomial logistic regression)

Multi-class classification

- So far we have talked about classifying only 2 classes (e.g., smile versus non-smile).
 - This is sometimes called binary classification.
- But there are many settings in which multiple (>2) classes exist, e.g., emotion recognition, hand-written digit recognition:

6 classes (fear, anger, sadness,

happiness, disgust, surprise)

10 classes (0-9)

Classification versus regression

- Note that, even though the hand-written digit recognition ("MNIST") problem has classes called "0", "1", …, "9", there is no sense of "distance" between the classes.
 - Misclassifying a 1 as a 2 is just as "bad" as misclassifying a 1 as a 9.

Multi-class classification

- It turns out that logistic regression can easily be extended to support an arbitrary number (≥2) of classes.
 - The multi-class case is called softmax regression or sometimes multinomial logistic regression.
- How to represent the ground-truth y and prediction ŷ?
 - Instead of just a scalar y, we will use a vector y.

- Suppose we have a dataset of 3 examples, where the ground-truth class labels are 0, 1, 0.
- Then we would define our ground-truth vectors as:

$$\mathbf{y}^{(1)} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$\mathbf{y}^{(2)} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\mathbf{y}^{(3)} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

• Exactly 1 coordinate of each **y** is 1; the others are 0.

- Suppose we have a dataset of 3 examples, where the ground-truth class labels are 0, 1, 0.
- Then we would define our ground-truth vectors as:

$$\mathbf{y}^{(1)} = egin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 This "slot" is for class 0. $\mathbf{y}^{(2)} = egin{bmatrix} 0 \\ 1 \end{bmatrix}$ $\mathbf{y}^{(3)} = egin{bmatrix} 1 \\ 0 \end{bmatrix}$

• This is called a **one-hot encoding** of the class label.

- Suppose we have a dataset of 3 examples, where the ground-truth class labels are 0, 1, 0.
- Then we would define our ground-truth vectors as:

$$\mathbf{y}^{(1)} = \begin{bmatrix} 1 \\ \mathbf{0} \end{bmatrix}$$
 This "slot" is for class 1. $\mathbf{y}^{(2)} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $\mathbf{y}^{(3)} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

• This is called a **one-hot encoding** of the class label.

- The machine's predictions ŷ about each example's label are also probabilistic.
- They could consist of:

$$\hat{\mathbf{y}}^{(1)} = egin{bmatrix} 0.93 \\ 0.07 \end{bmatrix}$$
 Machine's "belief" that the label is 0. $\hat{\mathbf{y}}^{(2)} = egin{bmatrix} 0.4 \\ 0.6 \end{bmatrix}$ $\hat{\mathbf{y}}^{(3)} = egin{bmatrix} 0.99 \\ 0.01 \end{bmatrix}$

• Each coordinate of \hat{y} is a probability.

- The machine's predictions ŷ about each example's label are also probabilistic.
- They could consist of:

$$\hat{\mathbf{y}}^{(1)} = \begin{bmatrix} 0.93 \\ 0.07 \end{bmatrix}$$
 Machine's "belief" that the label is 1.
$$\hat{\mathbf{y}}^{(2)} = \begin{bmatrix} 0.4 \\ 0.6 \end{bmatrix}$$

$$\hat{\mathbf{y}}^{(3)} = \begin{bmatrix} 0.99 \\ 0.01 \end{bmatrix}$$

The sum of the coordinates in each ŷ is 1.

- We need a loss function that can support c≥2 classes.
- We will use the cross-entropy loss (aka negative log-likelihood):

$$f_{\text{CE}} = -\sum_{i=1}^{n} \sum_{k=1}^{c} \mathbf{y}_{k}^{(i)} \log \hat{\mathbf{y}}_{k}^{(i)}$$

- Note that the f_{log} (for logistic regression) is a special case of f_{CE} (for softmax regression) for c=2.
- To see how, consider just a simple example:

$$f_{\text{CE}} = -\sum_{k=0}^{1} \mathbf{y}_k \log \hat{\mathbf{y}}_k$$

- Note that the f_{log} (for logistic regression) is a special case of f_{CE} (for softmax regression) for c=2.
- To see how, consider just a simple example:

$$f_{\text{CE}} = -\sum_{k=0}^{1} \mathbf{y}_k \log \hat{\mathbf{y}}_k$$

Note: the sum from k=1 to c is renumbered from 0 to c-1.

- Note that the f_{log} (for logistic regression) is a special case of f_{CE} (for softmax regression) for c=2.
- To see how, consider just a simple example:

$$f_{\text{CE}} = -\sum_{k=0}^{1} \mathbf{y}_k \log \hat{\mathbf{y}}_k$$
$$= -\mathbf{y}_1 \log \hat{\mathbf{y}}_1 - \mathbf{y}_0 \log \hat{\mathbf{y}}_0$$

- Note that the f_{log} (for logistic regression) is a special case of f_{CE} (for softmax regression) for c=2.
- To see how, consider just a simple example:

$$f_{CE} = -\sum_{k=0}^{1} \mathbf{y}_k \log \hat{\mathbf{y}}_k$$

$$= -\mathbf{y}_1 \log \hat{\mathbf{y}}_1 - \mathbf{y}_0 \log \hat{\mathbf{y}}_0$$

$$= -\mathbf{y}_1 \log \hat{\mathbf{y}}_1 - (\mathbf{1} - \mathbf{y}_1) \log(\mathbf{1} - \hat{\mathbf{y}}_1)$$

$$\hat{\mathbf{y}}^{(1)} = \begin{bmatrix} 0.93 \\ 0.07 \end{bmatrix}$$

Recall that the sum over all coordinates $\hat{\mathbf{y}}^{(1)} = \begin{bmatrix} 0.93 \\ 0.07 \end{bmatrix} \qquad \begin{array}{c} \text{of each } \hat{\mathbf{y}} \text{ (and each y) must equal 1.} \\ \text{Since there are only 2 classes, then} \end{array}$ $\hat{y}_0 = 1 - \hat{y}_1$ (and $y_0 = 1 - y_1$).

- Note that the f_{log} (for logistic regression) is a special case of f_{CE} (for softmax regression) for c=2.
- To see how, consider just a simple example:

$$f_{CE} = -\sum_{k=0}^{1} \mathbf{y}_k \log \hat{\mathbf{y}}_k$$

$$= -\mathbf{y}_1 \log \hat{\mathbf{y}}_1 - \mathbf{y}_0 \log \hat{\mathbf{y}}_0$$

$$= -\mathbf{y}_1 \log \hat{\mathbf{y}}_1 - (1 - \mathbf{y}_1) \log(1 - \hat{\mathbf{y}}_1)$$

$$= -\mathbf{y} \log \hat{\mathbf{y}} - (1 - \mathbf{y}) \log(1 - \hat{\mathbf{y}})$$

For *c*=2 classes, we can define \hat{y} (and y) simply as probability that the example is class 1.

- Note that the f_{log} (for logistic regression) is a special case of f_{CE} (for softmax regression) for c=2.
- To see how, consider just a simple example:

$$f_{CE} = -\sum_{k=0}^{1} \mathbf{y}_{k} \log \hat{\mathbf{y}}_{k}$$

$$= -\mathbf{y}_{1} \log \hat{\mathbf{y}}_{1} - \mathbf{y}_{0} \log \hat{\mathbf{y}}_{0}$$

$$= -\mathbf{y}_{1} \log \hat{\mathbf{y}}_{1} - (1 - \mathbf{y}_{1}) \log(1 - \hat{\mathbf{y}}_{1})$$

$$= -\mathbf{y} \log \hat{\mathbf{y}} - (1 - \mathbf{y}) \log(1 - \hat{\mathbf{y}})$$

$$= f_{\log}$$

Softmax activation function

- Logistic regression outputs a scalar probabilistic class label \hat{y} .
 - We needed just a single weight vector **w**, so that $\hat{y} = \sigma(\mathbf{x}^\mathsf{T}\mathbf{w})$
- Softmax regression outputs a vector of probabilistic class labels ŷ containing c components.
 - We need c different vectors of weights $\mathbf{w}^{(1)}$, ..., $\mathbf{w}^{(c)}$.

Softmax activation function

• With softmax regression, we first compute:

$$\mathbf{z}_1 = \mathbf{x}^{\top} \mathbf{w}^{(1)}$$
 $\mathbf{z}_2 = \mathbf{x}^{\top} \mathbf{w}^{(2)}$
 $\mathbf{z}_c = \mathbf{x}^{\top} \mathbf{w}^{(c)}$

I will refer to the z's as "pre-activation scores".

Softmax activation function

With softmax regression, we first compute:

$$\mathbf{z}_1 = \mathbf{x}^{\top} \mathbf{w}^{(1)}$$
 $\mathbf{z}_2 = \mathbf{x}^{\top} \mathbf{w}^{(2)}$
 $\mathbf{z}_c = \mathbf{x}^{\top} \mathbf{w}^{(c)}$

- We then normalize across all c classes so that:
 - 1. Each output $\hat{\mathbf{y}}_k$ is non-negative.
 - 2. The sum of $\hat{\mathbf{y}}_k$ over all c classes is 1.

Normalization of the \hat{y}_k

1. To enforce non-negativity, we can exponential each \mathbf{z}_k :

$$\hat{\mathbf{y}}_k = \exp(\mathbf{z}_k)$$

Normalization of the \hat{y}_k

2. To enforce that the $\hat{\mathbf{y}}_k$ sum to 1, we can divide each entry by the sum:

$$\hat{\mathbf{y}}_k = \frac{\exp(\mathbf{z}_k)}{\sum_{k'=1}^c \exp(\mathbf{z}_{k'})}$$

Softmax regression diagram

• With softmax regression, we first compute:

$$\mathbf{z}_1 = \mathbf{x}^{\top} \mathbf{w}^{(1)}$$

Softmax regression diagram

• With softmax regression, we first compute:

$$\mathbf{z}_1 = \mathbf{x}^{\top} \mathbf{w}^{(1)}$$

• • •

$$\mathbf{z}_c = \mathbf{x}^{\top} \mathbf{w}^{(c)}$$

Softmax regression diagram

We then normalize across all c classes.

Illustration

• Let m=2, c=3.

• Let:
$$\mathbf{x} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

$$\mathbf{w}^{(1)} = \begin{bmatrix} -2.5 \\ -1 \end{bmatrix} \qquad \mathbf{w}^{(2)} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \qquad \mathbf{w}^{(3)} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$\mathbf{w}^{(2)} = \left| egin{array}{c} 1 \ 2 \end{array}
ight|$$

$$\mathbf{w}^{(3)} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Which class will have highest estimated probability?

$$\mathbf{z} = \begin{bmatrix} & & \\ & & \end{bmatrix}$$

Illustration

• Let *m*=2, *c*=3.

• Let:
$$\mathbf{x} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

$$\mathbf{w}^{(1)} = \begin{bmatrix} -2.5 \\ -1 \end{bmatrix} \qquad \mathbf{w}^{(2)} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \qquad \mathbf{w}^{(3)} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Which class will have highest estimated probability?

$$\mathbf{z} = \begin{bmatrix} 1.5 \\ 1 \\ -1 \end{bmatrix}$$

Illustration

• Let m=2, c=3.

• Let:
$$\mathbf{x} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

$$\mathbf{w}^{(1)} = \begin{bmatrix} -2.5 \\ -1 \end{bmatrix} \qquad \mathbf{w}^{(2)} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \qquad \mathbf{w}^{(3)} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$\mathbf{w}^{(2)} = \left| egin{array}{c} 1 \\ 2 \end{array}
ight|$$

$$\mathbf{w}^{(3)} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Which class will have highest estimated probability?

$$\mathbf{z} = \begin{bmatrix} 1.5 \\ 1 \\ -1 \end{bmatrix} \quad \hat{\mathbf{y}} = \begin{bmatrix} .592 \\ .359 \\ .049 \end{bmatrix}$$

Softmax regression: vectorization

• We can represent each layer as a vector $(\mathbf{x}, \mathbf{z}, \hat{\mathbf{y}})$.

Softmax regression: vectorization

• We can represent the collection of all *c* weight vectors $\mathbf{w}^{(1)}$, ..., $\mathbf{w}^{(c)}$ as a matrix \mathbf{W} .

Softmax regression: vectorizaţion

• Let x, z be column vectors.

• Let
$$\mathbf{W} = \begin{bmatrix} & & & & | \\ \mathbf{w}^{(1)} & \dots & \mathbf{w}^{(c)} \\ | & & & | \end{bmatrix}$$

 How can we compute the "pre-activation scores" z for all c classes in one-fell-swoop? Choose 0 or more of:

1.
$$\mathbf{z}^{\top} = \mathbf{x}^{\top} \mathbf{W}$$

2.
$$\mathbf{z} = \mathbf{x}^{ op} \mathbf{W}$$

3.
$$\mathbf{z} = \mathbf{W}\mathbf{x}$$

4.
$$\mathbf{z} = \mathbf{W}^{\top} \mathbf{x}$$

Softmax regression: vectorizaţion

• Let x, z be column vectors.

• Let
$$\mathbf{W} = \begin{bmatrix} & & & & | \\ \mathbf{w}^{(1)} & \dots & \mathbf{w}^{(c)} \\ & & & \end{bmatrix}$$

 How can we compute the "pre-activation scores" z for all c classes in one-fell-swoop? Choose 0 or more of:

1.
$$\mathbf{z}^{ op} = \mathbf{x}^{ op} \mathbf{W}$$

Both of these are correct.

4.
$$\mathbf{z} = \mathbf{W}^{\top} \mathbf{x}$$

Softmax regression: vectorization

 By vectorizing, we can compute the pre-activation scores for all n examples in one-fell-swoop as:

$$\mathbf{Z} = \mathbf{W}^{\top} \mathbf{X}$$
 c x n matrix

Softmax regression: vectorization

 By vectorizing, we can compute the pre-activation scores for all n examples in one-fell-swoop as:

$$\mathbf{Z} = \mathbf{W}^{\top} \mathbf{X}$$
 c x n matrix

- With numpy, we can call np.exp to exponentiate every element of Z.
- We can then use np.sum and / (element-wise division) to compute the softmax.

- With softmax regression, we need to conduct gradient descent on all c of the weights vectors.
- As usual, let's just consider the gradient of the crossentropy loss for a single example x.
- We will compute the gradient w.r.t. each weight vector \mathbf{w}_k separately (where k = 1, ..., c).

Gradient for each weight vector w_k:

$$\nabla_{\mathbf{w}_k} f_{\text{CE}}(\mathbf{y}, \hat{\mathbf{y}}; \mathbf{W}) = \mathbf{x}(\hat{\mathbf{y}}_k - \mathbf{y}_k)$$

- This is the same expression (for each k) as for linear regression and logistic regression!
- We can vectorize this to compute all c gradients over all n examples...

Let Y and Ŷ both be n x c matrices:

$$\mathbf{Y} = egin{bmatrix} \mathbf{y}_1^{(1)} & & \mathbf{y}_c^{(1)} \ & \mathbf{y}_1^{(n)} & \cdots & \mathbf{y}_c^{(n)} \ & & \vdots & \ & \mathbf{y}_1^{(n)} & \cdots & \mathbf{y}_c^{(n)} \end{bmatrix}$$
 One-hot encoded vector of class labels for example 1.

• Let **Y** and $\hat{\mathbf{Y}}$ both be $n \times c$ matrices:

$$\mathbf{Y} = egin{bmatrix} \mathbf{y}_1^{(1)} & \dots & \mathbf{y}_c^{(1)} \ & & dots \ \mathbf{y}_1^{(n)} & \dots & \mathbf{y}_c^{(n)} \end{bmatrix}$$
 One-hot encoded vector of class labels for example n .

• Let **Y** and $\hat{\mathbf{Y}}$ both be $n \times c$ matrices:

$$\mathbf{Y} = \left[egin{array}{cccc} \mathbf{y}_1^{(1)} & \dots & \mathbf{y}_c^{(1)} \\ & dots & & & \\ \mathbf{y}_1^{(n)} & \dots & \mathbf{y}_c^{(n)} \end{array}
ight] \qquad \hat{\mathbf{Y}} = \left[egin{array}{cccc} \hat{\mathbf{y}}_1^{(1)} & \dots & \hat{\mathbf{y}}_c^{(1)} \\ & dots & & & \\ \hat{\mathbf{y}}_1^{(n)} & \dots & \hat{\mathbf{y}}_c^{(n)} \end{array}
ight]$$

$$\hat{\mathbf{Y}} = egin{bmatrix} \hat{\mathbf{y}}_1^{(1)} & \dots & \hat{\mathbf{y}}_c^{(1)} \ & dots \ \hat{\mathbf{y}}_1^{(n)} & \dots & \hat{\mathbf{y}}_c^{(n)} \ \end{pmatrix}$$

The machine's estimates of the c class probabilities for example n.

• Let **Y** and $\hat{\mathbf{Y}}$ both be $n \times c$ matrices:

$$\mathbf{Y} = \left[egin{array}{cccc} \mathbf{y}_1^{(1)} & \dots & \mathbf{y}_c^{(1)} \\ & dots & & & \\ \mathbf{y}_1^{(n)} & \dots & \mathbf{y}_c^{(n)} \end{array}
ight] \qquad \hat{\mathbf{Y}} = \left[egin{array}{cccc} \hat{\mathbf{y}}_1^{(1)} & \dots & \hat{\mathbf{y}}_c^{(1)} \\ & dots & & & \\ \hat{\mathbf{y}}_1^{(n)} & \dots & \hat{\mathbf{y}}_c^{(n)} \end{array}
ight]$$

Then we can compute all c gradient vectors as:

$$\nabla_{\mathbf{W}} f_{\text{CE}}(\mathbf{Y}, \hat{\mathbf{Y}}; \mathbf{W}) = \frac{1}{n} \mathbf{X} (\hat{\mathbf{Y}} - \mathbf{Y})$$

• Let **Y** and $\hat{\mathbf{Y}}$ both be $n \times c$ matrices:

$$\mathbf{Y} = \left[egin{array}{cccc} \mathbf{y}_1^{(1)} & \dots & \mathbf{y}_c^{(1)} \\ & dots & & & \\ \mathbf{y}_1^{(n)} & \dots & \mathbf{y}_c^{(n)} \end{array}
ight] \qquad \hat{\mathbf{Y}} = \left[egin{array}{cccc} \hat{\mathbf{y}}_1^{(1)} & \dots & \hat{\mathbf{y}}_c^{(1)} \\ & dots & & & \\ \hat{\mathbf{y}}_1^{(n)} & \dots & \hat{\mathbf{y}}_c^{(n)} \end{array}
ight]$$

Then we can compute all c gradient vectors as:

$$\nabla_{\mathbf{W}} f_{\text{CE}}(\mathbf{Y}, \hat{\mathbf{Y}}; \mathbf{W}) = \frac{1}{n} \mathbf{X} (\hat{\mathbf{Y}} - \mathbf{Y})$$

How far the guesses are from ground-truth.

• Let **Y** and $\hat{\mathbf{Y}}$ both be $n \times c$ matrices:

$$\mathbf{Y} = \left[egin{array}{cccc} \mathbf{y}_1^{(1)} & \dots & \mathbf{y}_c^{(1)} \\ \vdots & & \vdots & & \\ \mathbf{y}_1^{(n)} & \dots & \mathbf{y}_c^{(n)} \end{array}
ight] \qquad \hat{\mathbf{Y}} = \left[egin{array}{cccc} \hat{\mathbf{y}}_1^{(1)} & \dots & \hat{\mathbf{y}}_c^{(1)} \\ \vdots & & \vdots & & \\ \hat{\mathbf{y}}_1^{(n)} & \dots & \hat{\mathbf{y}}_c^{(n)} \end{array}
ight]$$

Then we can compute all c gradient vectors as:

$$\nabla_{\mathbf{W}} f_{\text{CE}}(\mathbf{Y}, \hat{\mathbf{Y}}; \mathbf{W}) = \frac{1}{n} \mathbf{X} (\hat{\mathbf{Y}} - \mathbf{Y})$$

The input features (e.g., pixel values).

Softmax regression demo

- Let's apply softmax regression to train a handwriting recognition system that can recognize all 10 digits (0-9).
- We will use the popular MNIST dataset consisting of 60K training examples and 10K testing examples:

```
0123456789
0123456789
0123456789
0123456789
0123456789
```