
CS 453X: Class 8
Jacob Whitehill



Softmax regression 
(aka multinomial logistic 

regression)



Multi-class classification
• So far we have talked about classifying only 2 classes (e.g., 

smile versus non-smile).


• This is sometimes called binary classification.


• But there are many settings in which multiple (>2) classes 
exist, e.g., emotion recognition, hand-written digit recognition:

10 classes (0-9)6 classes (fear, anger, sadness, 
happiness, disgust, surprise)



Classification versus 
regression

• Note that, even though the hand-written digit recognition 
(“MNIST”) problem has classes called “0” , “1”, …, “9”, 
there is no sense of “distance” between the classes.


• Misclassifying a 1 as a 2 is just as “bad” as 
misclassifying a 1 as a 9.



Multi-class classification

• It turns out that logistic regression can easily be extended 
to support an arbitrary number (≥2) of classes.


• The multi-class case is called softmax regression or 
sometimes multinomial logistic regression.


• How to represent the ground-truth y and prediction ŷ?


• Instead of just a scalar y, we will use a vector y.



Example: 2 classes
• Suppose we have a dataset of 3 examples, where the 

ground-truth class labels are 0, 1, 0.


• Then we would define our ground-truth vectors as: 
 
 
 
 
 
 

• Exactly 1 coordinate of each y is 1; the others are 0.

y(1) =


1
0

�

y(3) =


1
0

�
y(2) =


0
1

�



Example: 2 classes
• Suppose we have a dataset of 3 examples, where the 

ground-truth class labels are 0, 1, 0.


• Then we would define our ground-truth vectors as: 
 
 
 
 
 
 

• This is called a one-hot encoding of the class label.

y(1) =


1
0

�

y(3) =


1
0

�
y(2) =


0
1

�

This “slot” is for class 0.



Example: 2 classes
• Suppose we have a dataset of 3 examples, where the 

ground-truth class labels are 0, 1, 0.


• Then we would define our ground-truth vectors as: 
 
 
 
 
 
 

• This is called a one-hot encoding of the class label.

y(1) =


1
0

�

y(3) =


1
0

�
y(2) =


0
1

�
This “slot” is for class 1.



Example: 2 classes
• The machine’s predictions ŷ about each example’s label are 

also probabilistic.


• They could consist of: 
 
 
 
 
 
 

• Each coordinate of ŷ is a probability.

Machine’s “belief” that the label is 0.
ŷ(1) =


0.93
0.07

�

ŷ(2) =


0.4
0.6

�

ŷ(3) =


0.99
0.01

�



Example: 2 classes
• The machine’s predictions ŷ about each example’s label are 

also probabilistic.


• They could consist of: 
 
 
 
 
 
 

• The sum of the coordinates in each ŷ is 1.

ŷ(1) =


0.93
0.07

�

ŷ(2) =


0.4
0.6

�

ŷ(3) =


0.99
0.01

�

Machine’s “belief” that the label is 1.



Cross-entropy loss

• We need a loss function that can support c≥2 classes.


• We will use the cross-entropy loss (aka negative log-
likelihood):

fCE = �
nX

i=1

cX

k=1

y(i)
k log ŷ(i)

k



fCE = �
1X

k=0

yk log ŷk

= �y1 log ŷ1 � y0 log ŷ0

= �y1 log ŷ1 � (1� y1) log(1� ŷ1)

= �y log ŷ � (1� y) log(1� ŷ)

= flog

Cross-entropy loss
• Note that the flog (for logistic regression) is a special case 

of fCE (for softmax regression) for c=2.


• To see how, consider just a simple example:



fCE = �
1X

k=0

yk log ŷk

= �y1 log ŷ1 � y0 log ŷ0

= �y1 log ŷ1 � (1� y1) log(1� ŷ1)

= �y log ŷ � (1� y) log(1� ŷ)

= flog

Cross-entropy loss
• Note that the flog (for logistic regression) is a special case 

of fCE (for softmax regression) for c=2.


• To see how, consider just a simple example:

Note: the sum from k=1 to c is 
renumbered from 0 to c-1.



fCE = �
1X

k=0

yk log ŷk

= �y1 log ŷ1 � y0 log ŷ0

= �y1 log ŷ1 � (1� y1) log(1� ŷ1)

= �y log ŷ � (1� y) log(1� ŷ)

= flog

Cross-entropy loss
• Note that the flog (for logistic regression) is a special case 

of fCE (for softmax regression) for c=2.


• To see how, consider just a simple example:



fCE = �
1X

k=0

yk log ŷk

= �y1 log ŷ1 � y0 log ŷ0

= �y1 log ŷ1 � (1� y1) log(1� ŷ1)

= �y log ŷ � (1� y) log(1� ŷ)

= flog

Cross-entropy loss
• Note that the flog (for logistic regression) is a special case 

of fCE (for softmax regression) for c=2.


• To see how, consider just a simple example:

ŷ(1) =


0.93
0.07

� Recall that the sum over all coordinates 
of each ŷ (and each y) must equal 1. 
Since there are only 2 classes, then 

ŷ0 =1 - ŷ1 (and y0 = 1 - y1).



fCE = �
1X

k=0

yk log ŷk

= �y1 log ŷ1 � y0 log ŷ0

= �y1 log ŷ1 � (1� y1) log(1� ŷ1)

= �y log ŷ � (1� y) log(1� ŷ)

= flog

Cross-entropy loss
• Note that the flog (for logistic regression) is a special case 

of fCE (for softmax regression) for c=2.


• To see how, consider just a simple example:

For c=2 classes, we can define ŷ 
(and y) simply as probability that 

the example is class 1.



fCE = �
1X

k=0

yk log ŷk

= �y1 log ŷ1 � y0 log ŷ0

= �y1 log ŷ1 � (1� y1) log(1� ŷ1)

= �y log ŷ � (1� y) log(1� ŷ)

= flog

Cross-entropy loss
• Note that the flog (for logistic regression) is a special case 

of fCE (for softmax regression) for c=2.


• To see how, consider just a simple example:



Softmax activation function
• Logistic regression outputs a scalar probabilistic class label ŷ.


• We needed just a single weight vector w, so that ŷ = σ(xTw)


• Softmax regression outputs a vector of probabilistic class 
labels ŷ containing c components.


• We need c different vectors of weights w(1), …, w(c).



Softmax activation function
• With softmax regression, we first compute:


• We then normalize across all c classes so that:

1. Each output ŷk is non-negative.

2. The sum of ŷk over all c classes is 1.

…

z1 = x>w(1)

z2 = x>w(2)

zc = x>w(c)

I will refer to the z’s as “pre-activation scores”.



Softmax activation function
• With softmax regression, we first compute:


• We then normalize across all c classes so that:

1. Each output ŷk is non-negative.

2. The sum of ŷk over all c classes is 1.

…

z1 = x>w(1)

z2 = x>w(2)

zc = x>w(c)



ŷk =
exp(zk)Pc

k0=1 exp(zk0)

Normalization of the ŷk
1. To enforce non-negativity, we can exponential each zk:



2. To enforce that the ŷk sum to 1, we can divide each entry 
by the sum:

Normalization of the ŷk

ŷk =
exp(zk)Pc

k0=1 exp(zk0)



Softmax regression diagram

ŷz

...

... ...
w(1)

1

w(1)
2

w(1)
m

...

... ...

w(c)
1

w(c)
2

w(c)
m

...

... ...

x
W
w(1)

1

w(1)
2

w(c)
m

w(2)
m

x1

ŷc

ŷ2

ŷ1

x2

xm
zc

z2

z1

x1

ŷc

ŷ2

ŷ1

x2

xm
zc

z2

z1

x1

ŷc

ŷ2

ŷ1

x2

xm
zc

z2

z1

z1 =
mX

j=1

xjw
(1)
j = x>w(1)

• With softmax regression, we first compute:
z1 = x>w(1)



Softmax regression diagram

ŷz

...

... ...

w(1)
1

w(1)
2

w(1)
m

...

... ...

w(c)
1

w(c)
2

w(c)
m

...

... ...

x
W
w(1)

1

w(1)
2

w(c)
m

w(2)
m

x1

ŷc

ŷ2

ŷ1

x2

xm
zc

z2

z1

x1

ŷc

ŷ2

ŷ1

x2

xm
zc

z2

z1

x1

ŷc

ŷ2

ŷ1

x2

xm
zc

z2

z1

zc =
mX

j=1

xjw
(c)
j = x>w(c)

• With softmax regression, we first compute:
z1 = x>w(1)

zc = x>w(c)
…



Softmax regression diagram

ŷz

...

... ...

w(1)
1

w(1)
2

w(1)
m

...

... ...

w(c)
1

w(c)
2

w(c)
m

...

... ...

x
W
w(1)

1

w(1)
2

w(c)
m

w(2)
m

x1

ŷc

ŷ2

ŷ1

x2

xm
zc

z2

z1

x1

ŷc

ŷ2

ŷ1

x2

xm
zc

z2

z1

x1

ŷc

ŷ2

ŷ1

x2

xm
zc

z2

z1

so
ftm

ax

ŷk =
exp(zk)Pc

k0=1 exp(zk0)

• We then normalize across all c classes.



Illustration
• Let m=2, c=3.


• Let:


• Which class will have highest estimated probability?

w(2) =


1
2

�
x =


�1
1

�

w(3) =


1
0

�
w(1) =


�2.5
�1

�

z =

2

4
1.5
1
�1

3

5



Illustration
• Let m=2, c=3.


• Let:


• Which class will have highest estimated probability?

w(2) =


1
2

�
x =


�1
1

�

w(3) =


1
0

�
w(1) =


�2.5
�1

�

z =

2

4
1.5
1
�1

3

5



Illustration
• Let m=2, c=3.


• Let:


• Which class will have highest estimated probability?

w(2) =


1
2

�
x =


�1
1

�

w(3) =


1
0

�
w(1) =


�2.5
�1

�

z =

2

4
1.5
1
�1

3

5 ŷ =

2

4
.592
.359
.049

3

5



Softmax regression: 
vectorization

ŷz

...

... ...

w(1)
1

w(1)
2

w(1)
m

...

... ...

w(c)
1

w(c)
2

w(c)
m

...

... ...

x
W
w(1)

1

w(1)
2

w(c)
m

w(2)
m

x1

ŷc

ŷ2

ŷ1

x2

xm
zc

z2

z1

x1

ŷc

ŷ2

ŷ1

x2

xm
zc

z2

z1

x1

ŷc

ŷ2

ŷ1

x2

xm
zc

z2

z1

so
ftm

ax
• We can represent each layer as a vector (x, z, ŷ).



ŷz

...

... ...

w(1)
1

w(1)
2

w(1)
m

...

... ...

w(c)
1

w(c)
2

w(c)
m

...

... ...

x
W
w(1)

1

w(1)
2

w(c)
m

w(2)
m

x1

ŷc

ŷ2

ŷ1

x2

xm
zc

z2

z1

x1

ŷc

ŷ2

ŷ1

x2

xm
zc

z2

z1

x1

ŷc

ŷ2

ŷ1

x2

xm
zc

z2

z1

so
ftm

ax
• We can represent the collection of all c weight 

vectors w(1), …, w(c) as a matrix W.

Softmax regression: 
vectorization



Softmax regression: 
vectorization

• Let x, z be column vectors.


• Let


• How can we compute the “pre-activation scores” z for all 
c classes in one-fell-swoop? Choose 0 or more of:

W =

2

4 w(1) . . . w(c)

3

5

z> = x>W

z = x>W

z = Wx

z = W>x

1.

2.

3.

4.

ŷz

...

... ...

w(1)
1

w(1)
2

w(1)
m

...

... ...

w(c)
1

w(c)
2

w(c)
m

...

... ...
x

W
w(1)

1

w(1)
2

w(c)
m

w(2)
m

x1

ŷc

ŷ2

ŷ1

x2

xm
zc

z2

z1

x1

ŷc

ŷ2

ŷ1

x2

xm
zc

z2

z1

x1

ŷc

ŷ2

ŷ1

x2

xm
zc

z2

z1



Softmax regression: 
vectorization

z> = x>W

z = W>x

1.

4.

ŷz

...

... ...

w(1)
1

w(1)
2

w(1)
m

...

... ...

w(c)
1

w(c)
2

w(c)
m

...

... ...
x

W
w(1)

1

w(1)
2

w(c)
m

w(2)
m

x1

ŷc

ŷ2

ŷ1

x2

xm
zc

z2

z1

x1

ŷc

ŷ2

ŷ1

x2

xm
zc

z2

z1

x1

ŷc

ŷ2

ŷ1

x2

xm
zc

z2

z1

Both of these are correct.

• Let x, z be column vectors.


• Let


• How can we compute the “pre-activation scores” z for all 
c classes in one-fell-swoop? Choose 0 or more of:

W =

2

4 w(1) . . . w(c)

3

5



Softmax regression: 
vectorization

• By vectorizing, we can compute the pre-activation scores 
for all n examples in one-fell-swoop as:


• With numpy, we can call np.exp to exponentiate every 
element of Z.


• We can then use np.sum and / (element-wise division) to 
compute the softmax.

c x n matrixZ = W>X



Softmax regression: 
vectorization

• By vectorizing, we can compute the pre-activation scores 
for all n examples in one-fell-swoop as:


• With numpy, we can call np.exp to exponentiate every 
element of Z.


• We can then use np.sum and / (element-wise division) to 
compute the softmax.

c x n matrixZ = W>X



Gradient descent for 
softmax regression

• With softmax regression, we need to conduct gradient 
descent on all c of the weights vectors.


• As usual, let’s just consider the gradient of the cross-
entropy loss for a single example x.


• We will compute the gradient w.r.t. each weight vector wk 
separately (where k = 1, …, c).



Gradient descent for 
softmax regression

• Gradient for each weight vector wk:


• This is the same expression (for each k) as for linear 
regression and logistic regression!


• We can vectorize this to compute all c gradients over all n 
examples…

rwkfCE(y, ŷ;W) = x(ŷk � yk)



Gradient descent for 
softmax regression

• Let Y and Ŷ both be n x c matrices:


• Then we can compute all c gradient vectors as:

Y =

2

664

y(1)
1 . . . y(1)

c

...

y(n)
1 . . . y(n)

c

3

775

One-hot encoded vector of 
class labels for example 1.



Gradient descent for 
softmax regression

• Let Y and Ŷ both be n x c matrices:


• Then we can compute all c gradient vectors as:

Y =

2

664

y(1)
1 . . . y(1)

c

...

y(n)
1 . . . y(n)

c

3

775One-hot encoded vector of 
class labels for example n.



Gradient descent for 
softmax regression

• Let Y and Ŷ both be n x c matrices:


• Then we can compute all c gradient vectors as:

Y =

2

664

y(1)
1 . . . y(1)

c

...

y(n)
1 . . . y(n)

c

3

775 Ŷ =

2

664

ŷ(1)
1 . . . ŷ(1)

c

...

ŷ(n)
1 . . . ŷ(n)

c

3

775

The machine’s estimates 
of the c class probabilities 

for example n.



Gradient descent for 
softmax regression

• Let Y and Ŷ both be n x c matrices:


• Then we can compute all c gradient vectors as:

Y =

2

664

y(1)
1 . . . y(1)

c

...

y(n)
1 . . . y(n)

c

3

775 Ŷ =

2

664

ŷ(1)
1 . . . ŷ(1)

c

...

ŷ(n)
1 . . . ŷ(n)

c

3

775

rWfCE(Y, Ŷ;W) =
1

n
X(Ŷ �Y)



Gradient descent for 
softmax regression

• Let Y and Ŷ both be n x c matrices:


• Then we can compute all c gradient vectors as:

Y =

2

664

y(1)
1 . . . y(1)

c

...

y(n)
1 . . . y(n)

c

3

775 Ŷ =

2

664

ŷ(1)
1 . . . ŷ(1)

c

...

ŷ(n)
1 . . . ŷ(n)

c

3

775

How far the guesses are 
from ground-truth.

rWfCE(Y, Ŷ;W) =
1

n
X(Ŷ �Y)



Gradient descent for 
softmax regression

• Let Y and Ŷ both be n x c matrices:


• Then we can compute all c gradient vectors as:

Y =

2

664

y(1)
1 . . . y(1)

c

...

y(n)
1 . . . y(n)

c

3

775 Ŷ =

2

664

ŷ(1)
1 . . . ŷ(1)

c

...

ŷ(n)
1 . . . ŷ(n)

c

3

775

The input features (e.g., 
pixel values).

rWfCE(Y, Ŷ;W) =
1

n
X(Ŷ �Y)



Softmax regression demo

• Let’s apply softmax regression to train a handwriting 
recognition system that can recognize all 10 digits (0-9).


• We will use the popular MNIST dataset consisting of 60K 
training examples and 10K testing examples:


