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Model complexity



Model complexity

• With polynomial regression, we saw an easy way to 
increase the complexity of our ML model.


• With higher degree d, our model becomes strictly more 
powerful.


• With larger coefficients, the regression line becomes 
more flexible.



Model complexity
• ML models can fail (i.e., exhibit poor accuracy) due to two 

reasons:


1.Bias: the model is too simple to fit the data distribution 
==>  underfitting.


• This can result in low training accuracy.

underfitting



Model complexity
• ML models can fail (i.e., exhibit poor accuracy) due to two 

reasons:


2.Variance: the model is too complex and is prone to 
overfitting. Re-training on different datasets will result in 
very different weight values.


• This can result in low testing accuracy.

overfitting



Model complexity

• Note that the degree of polynomial regression is just one 
kind of model complexity.


• Others:


• Size of the input (24x24? 36x36?) to the machine.


• Number of layers in a neural network (more later).



Model complexity
• In general: the more training data you have…


• …the higher will be the testing accuracy of your trained 
machine.


• …the more complex of a model you can use without 
overfitting.


• … the less you need to regularize.


• Therefore, as your training dataset grows, you might 
decide to switch to a more powerful architecture.
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Illustration
• Simulation:


• Ground-truth: y = -0.1x5 + 0.1x4 + 0.8x3 - 1.8x2 + 0.2x


• At each round, we add 4 more data points.


• We compare polynomial regressors of degree 3 and 5.

Ground-truth 
Poly5 
Poly3
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Illustration
• Simulation:


• Ground-truth: y = -0.1x5 + 0.1x4 + 0.8x3 - 1.8x2 + 0.2x


• At each round, we add 4 more data points.


• We compare polynomial regressors of degree 3 and 5.

Ground-truth 
Poly5 
Poly3

By this point, the poly5 
regressor is better than 

the poly3 regressor.



Logistic regression



Using linear regression for 
classification

• In homework 2, you are using linear regression for 
classification.


• Regression: predict any real number.


• Classification: choose from a finite set (e.g., {0, 1}).


• While not incorrect, this is somewhat unnatural.



Using linear regression for 
classification

• During training, we penalize the linear regression model 
based on the MSE:


• Since every y is either 1 or 0, why let ŷ ever be greater 
than 1 or less than 0?


• Why not “squash” the output to always lie in (0,1)?

1

2n

nX

i=1

(y(i) � ŷ(i))2



Sigmoid: a “squashing” 
function

• A sigmoid function is an “s”-shaped, monotonically 
increasing and bounded function.


• Here is the logistic sigmoid function σ:
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Sigmoid: a “squashing” 
function

• A sigmoid function is an “s”-shaped, monotonically 
increasing and bounded function.


• Here is the logistic sigmoid function σ:

ex � e�x

ex + e�x
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1.

4.

Which function(s) 
describe(s) the curve?

tanh

Similar but not 
quite right.



Sigmoid: a “squashing” 
function

• A sigmoid function is an “s”-shaped, monotonically 
increasing and bounded function.


• Here is the logistic sigmoid function σ:

1

1 + e�x
4.

Which function(s) 
describe(s) the curve?

σ



Logistic sigmoid
• The logistic sigmoid function σ has some nice properties:


• σ(-z) = 1 - σ(z)
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Logistic sigmoid
• The logistic sigmoid function σ has some nice properties:


• σ'(z) = σ(z)(1 - σ(z))
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1
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Logistic regression
• With logistic regression, our predictions are defined as:


• Hence, they are forced to be in (0,1).


• For classification, we can interpret the real-valued outputs as 
probabilities that express how confident we are in a 
prediction, e.g.:


• ŷ=0.95: very confident that the class is a smile.


• ŷ=0.45: not very confident that the class is a non-smile.

ŷ = �
�
x>w

�



Logistic regression

• How to train? Unlike linear regression, logistic regression 
has no analytical solution.


• We can use gradient descent instead.


• We have to apply the chain-rule of differentiation to 
handle the sigmoid function.



Gradient descent for 
logistic regression

• Let’s compute the gradient of fMSE for logistic regression.


• For simplicity, we’ll consider just a single example:

fMSE(w) =
1
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Gradient descent for 
logistic regression

• Let’s compute the gradient of fMSE for logistic regression.


• For simplicity, we’ll consider just a single example:
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Notice the extra multiplicative terms compared to 
the gradient for linear regression: x(ŷ - y)



Attenuated gradient
• What if the weights w are initially chosen badly, so that ŷ 

is very close to 1, even though y = 0 (or vice-versa)?


• Then ŷ(1 - ŷ) is close to 0.


• In this case, the gradient: 
 
 
 
will be very close to 0.


• If the gradient is 0, then no learning will occur!

rwfMSE(w) = x (ŷ � y) ŷ (1� ŷ)



Different cost function
• For this reason, logistic regression is typically trained 

using a different cost function from fMSE.


• One particularly well-suited cost function uses logarithms.


• Logarithms and the logistic sigmoid interact well:
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Different cost function
• For this reason, logistic regression is typically trained 

using a different cost function from fMSE.


• One particularly well-suited cost function uses logarithms.


• Logarithms and the logistic sigmoid interact well:
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The gradient of log(σ) is surprisingly simple.



Logarithm function

log(ŷ) is undefined for ŷ =0…but 
that’s ok since ŷ ∈ (0,1).



Log loss
• How could we define a “log-loss” function flog so that:


• flog(y, ŷ) is small when ŷ ≈ y and large when they are far 
apart.

�y log ŷ � (1� y) log ŷ

�y log ŷ � ŷ log y

�y log ŷ � (1� y) log(1� ŷ)

�(1� y) log ŷ � y log(1� ŷ)

1.

2.

3.

4.
log(ŷ)



Log loss
• How could we define a “log-loss” function flog so that:


• flog(y, ŷ) is small when ŷ ≈ y and large when they are far 
apart.

3.

log(ŷ)

This expression is known as the log-loss. 
 

The y or (1-y) “selects” which term in the expression 
is active, based on the ground-truth label.

�y log ŷ � (1� y) log(1� ŷ)



Gradient descent for logistic 
regression with log-loss
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Gradient descent for logistic 
regression with log-loss
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Linear regression versus 
logistic regression

Linear regression Logistic regression

Primary use Regression Classification

Prediction (ŷ) ŷ = xTw ŷ = σ(xTw)

Loss fMSE flog

Gradient x(ŷ - y) x(ŷ - y)



Linear regression versus 
logistic regression

Linear regression Logistic regression

Primary use Regression Classification

Prediction (ŷ) ŷ = xTw ŷ = σ(xTw)

Loss fMSE flog

Gradient x(ŷ - y) x(ŷ - y)

• Logistic regression is used primarily for classification even though it’s called 
“regression”.


• Logistic regression is an instance of a generalized linear model — a linear 
model combined with a link function (e.g., logistic sigmoid).


• In neural networks, link functions are typically called activation functions.



Multi-class 
(“polychotomous”) 

classification



Multi-class classification
• So far we have talked about classifying only 2 classes (e.g., 

smile versus non-smile).


• This is sometimes called binary classification.


• But there are many settings in which multiple (>2) classes 
exist, e.g., emotion recognition, hand-written digit recognition:

10 classes (0-9)6 classes (fear, anger, sadness, 
happiness, disgust, surprise)



Classification versus 
regression

• Note that, even though the hand-written digit recognition 
(“MNIST”) problem has classes called “0” , “1”, …, “9”, 
there is no sense of “distance” between the classes.


• Misclassifying a 1 as a 2 is just as “bad” as 
misclassifying a 1 as a 9.



Multi-class classification

• It turns out that logistic regression can easily be extended 
to support an arbitrary number (>2) of classes.


• The multi-class case is called softmax regression.


• How to represent the ground-truth y and prediction ŷ?


• Instead of just a scalar y, we will use a vector y.



Example: 2 classes
• Suppose we have a dataset of 3 examples, where the 

ground-truth class labels are 0, 1, 0.


• Then we would define our ground-truth vectors as: 
 
 
 
 
 
 

• This is called one-hot encoding of the class label.

y(1) =


1
0

�

y(3) =


1
0

�
y(2) =


0
1

�


