
CS 453X: Class 7
Jacob Whitehill

Model complexity

Model complexity

• With polynomial regression, we saw an easy way to
increase the complexity of our ML model.

• With higher degree d, our model becomes strictly more
powerful.

• With larger coefficients, the regression line becomes
more flexible.

Model complexity
• ML models can fail (i.e., exhibit poor accuracy) due to two

reasons:

1.Bias: the model is too simple to fit the data distribution
==> underfitting.

• This can result in low training accuracy.

underfitting

Model complexity
• ML models can fail (i.e., exhibit poor accuracy) due to two

reasons:

2.Variance: the model is too complex and is prone to
overfitting. Re-training on different datasets will result in
very different weight values.

• This can result in low testing accuracy.

overfitting

Model complexity

• Note that the degree of polynomial regression is just one
kind of model complexity.

• Others:

• Size of the input (24x24? 36x36?) to the machine.

• Number of layers in a neural network (more later).

Model complexity
• In general: the more training data you have…

• …the higher will be the testing accuracy of your trained
machine.

• …the more complex of a model you can use without
overfitting.

• … the less you need to regularize.

• Therefore, as your training dataset grows, you might
decide to switch to a more powerful architecture.

Model complexity
• In general: the more training data you have…

• …the higher will be the testing accuracy of your trained
machine.

• …the more complex of a model you can use without
overfitting.

• … the less you need to regularize.

• Therefore, as your training dataset grows, you might
decide to switch to a more powerful architecture.

Illustration
• Simulation:

• Ground-truth: y = -0.1x5 + 0.1x4 + 0.8x3 - 1.8x2 + 0.2x

• At each round, we add 4 more data points.

• We compare polynomial regressors of degree 3 and 5.

Ground-truth
Poly5
Poly3

Illustration
• Simulation:

• Ground-truth: y = -0.1x5 + 0.1x4 + 0.8x3 - 1.8x2 + 0.2x

• At each round, we add 4 more data points.

• We compare polynomial regressors of degree 3 and 5.

Ground-truth
Poly5
Poly3

Illustration
• Simulation:

• Ground-truth: y = -0.1x5 + 0.1x4 + 0.8x3 - 1.8x2 + 0.2x

• At each round, we add 4 more data points.

• We compare polynomial regressors of degree 3 and 5.

Ground-truth
Poly5
Poly3

Illustration
• Simulation:

• Ground-truth: y = -0.1x5 + 0.1x4 + 0.8x3 - 1.8x2 + 0.2x

• At each round, we add 4 more data points.

• We compare polynomial regressors of degree 3 and 5.

Ground-truth
Poly5
Poly3

Illustration
• Simulation:

• Ground-truth: y = -0.1x5 + 0.1x4 + 0.8x3 - 1.8x2 + 0.2x

• At each round, we add 4 more data points.

• We compare polynomial regressors of degree 3 and 5.

Ground-truth
Poly5
Poly3

Illustration
• Simulation:

• Ground-truth: y = -0.1x5 + 0.1x4 + 0.8x3 - 1.8x2 + 0.2x

• At each round, we add 4 more data points.

• We compare polynomial regressors of degree 3 and 5.

Ground-truth
Poly5
Poly3

Illustration
• Simulation:

• Ground-truth: y = -0.1x5 + 0.1x4 + 0.8x3 - 1.8x2 + 0.2x

• At each round, we add 4 more data points.

• We compare polynomial regressors of degree 3 and 5.

Ground-truth
Poly5
Poly3

Illustration
• Simulation:

• Ground-truth: y = -0.1x5 + 0.1x4 + 0.8x3 - 1.8x2 + 0.2x

• At each round, we add 4 more data points.

• We compare polynomial regressors of degree 3 and 5.

Ground-truth
Poly5
Poly3

By this point, the poly5
regressor is better than

the poly3 regressor.

Logistic regression

Using linear regression for
classification

• In homework 2, you are using linear regression for
classification.

• Regression: predict any real number.

• Classification: choose from a finite set (e.g., {0, 1}).

• While not incorrect, this is somewhat unnatural.

Using linear regression for
classification

• During training, we penalize the linear regression model
based on the MSE:

• Since every y is either 1 or 0, why let ŷ ever be greater
than 1 or less than 0?

• Why not “squash” the output to always lie in (0,1)?

1

2n

nX

i=1

(y(i) � ŷ(i))2

Sigmoid: a “squashing”
function

• A sigmoid function is an “s”-shaped, monotonically
increasing and bounded function.

• Here is the logistic sigmoid function σ:

Sigmoid: a “squashing”
function

• A sigmoid function is an “s”-shaped, monotonically
increasing and bounded function.

• Here is the logistic sigmoid function σ:

ex � e�x

ex + e�x

ex + e�x

ex � e�x

1

1� e�x

1

1 + e�x

1.

2.

3.

4.

Which function(s)
describe(s) the curve?

Sigmoid: a “squashing”
function

• A sigmoid function is an “s”-shaped, monotonically
increasing and bounded function.

• Here is the logistic sigmoid function σ:

ex � e�x

ex + e�x

1

1 + e�x

1.

4.

Which function(s)
describe(s) the curve?

tanh

Similar but not
quite right.

Sigmoid: a “squashing”
function

• A sigmoid function is an “s”-shaped, monotonically
increasing and bounded function.

• Here is the logistic sigmoid function σ:

1

1 + e�x
4.

Which function(s)
describe(s) the curve?

σ

Logistic sigmoid
• The logistic sigmoid function σ has some nice properties:

• σ(-z) = 1 - σ(z)

�(z) =
1

1 + e�z

1� �(z) = 1� 1

1 + e�z

=
1 + e�z

1 + e�z
� 1

1 + e�z

=
e�z

1 + e�z

=
1

1/e�z + 1

=
1

1 + ez

= �(�z)

Logistic sigmoid
• The logistic sigmoid function σ has some nice properties:

• σ'(z) = σ(z)(1 - σ(z))

�(z) =
1

1 + e�z

@�

@z
= �0(z) = � 1

(1 + e�z)2
(e�z ⇥ (�1))

=
e�z

(1 + e�z)2

=
e�z

1 + e�z
⇥ 1

1 + e�z

=
1

1/e�z + 1
⇥ 1

1 + e�z

=
1

1 + ez
⇥ 1

1 + e�z

= �(z)(1� �(z))

Logistic regression
• With logistic regression, our predictions are defined as:

• Hence, they are forced to be in (0,1).

• For classification, we can interpret the real-valued outputs as
probabilities that express how confident we are in a
prediction, e.g.:

• ŷ=0.95: very confident that the class is a smile.

• ŷ=0.45: not very confident that the class is a non-smile.

ŷ = �
�
x>w

�

Logistic regression

• How to train? Unlike linear regression, logistic regression
has no analytical solution.

• We can use gradient descent instead.

• We have to apply the chain-rule of differentiation to
handle the sigmoid function.

Gradient descent for
logistic regression

• Let’s compute the gradient of fMSE for logistic regression.

• For simplicity, we’ll consider just a single example:

fMSE(w) =
1

2
(ŷ � y)2

=
1

2

�
�(x>w)� y

�2

rwfMSE(w) = rw


1

2

�
�(x>w)� y

�2
�

= x
�
�(x>w)� y

�
�(x>w)

�
1� �(x>w)

�

= x (ŷ � y) ŷ (1� ŷ)

Gradient descent for
logistic regression

• Let’s compute the gradient of fMSE for logistic regression.

• For simplicity, we’ll consider just a single example:

fMSE(w) =
1

2
(ŷ � y)2

=
1

2

�
�(x>w)� y

�2

rwfMSE(w) = rw


1

2

�
�(x>w)� y

�2
�

= x
�
�(x>w)� y

�
�(x>w)

�
1� �(x>w)

�

= x (ŷ � y) ŷ (1� ŷ)

Gradient descent for
logistic regression

• Let’s compute the gradient of fMSE for logistic regression.

• For simplicity, we’ll consider just a single example:

fMSE(w) =
1

2
(ŷ � y)2

=
1

2

�
�(x>w)� y

�2

rwfMSE(w) = rw


1

2

�
�(x>w)� y

�2
�

= x
�
�(x>w)� y

�
�(x>w)

�
1� �(x>w)

�

= x (ŷ � y) ŷ (1� ŷ)

Gradient descent for
logistic regression

• Let’s compute the gradient of fMSE for logistic regression.

• For simplicity, we’ll consider just a single example:

fMSE(w) =
1

2
(ŷ � y)2

=
1

2

�
�(x>w)� y

�2

rwfMSE(w) = rw


1

2

�
�(x>w)� y

�2
�

= x
�
�(x>w)� y

�
�(x>w)

�
1� �(x>w)

�

= x (ŷ � y) ŷ (1� ŷ)

Gradient descent for
logistic regression

• Let’s compute the gradient of fMSE for logistic regression.

• For simplicity, we’ll consider just a single example:

fMSE(w) =
1

2
(ŷ � y)2

=
1

2

�
�(x>w)� y

�2

rwfMSE(w) = rw


1

2

�
�(x>w)� y

�2
�

= x
�
�(x>w)� y

�
�(x>w)

�
1� �(x>w)

�

= x (ŷ � y) ŷ (1� ŷ)

Notice the extra multiplicative terms compared to
the gradient for linear regression: x(ŷ - y)

Attenuated gradient
• What if the weights w are initially chosen badly, so that ŷ

is very close to 1, even though y = 0 (or vice-versa)?

• Then ŷ(1 - ŷ) is close to 0.

• In this case, the gradient: 
 
 
 
will be very close to 0.

• If the gradient is 0, then no learning will occur!

rwfMSE(w) = x (ŷ � y) ŷ (1� ŷ)

Different cost function
• For this reason, logistic regression is typically trained

using a different cost function from fMSE.

• One particularly well-suited cost function uses logarithms.

• Logarithms and the logistic sigmoid interact well:

@

@w

⇥
log �(x>w)

⇤
=

1

�(x>w)
�(x>w)

�
1� �(x>w)

�

= 1� �(x>w)

Different cost function
• For this reason, logistic regression is typically trained

using a different cost function from fMSE.

• One particularly well-suited cost function uses logarithms.

• Logarithms and the logistic sigmoid interact well:

@

@w

⇥
log �(x>w)

⇤
=

1

�(x>w)
�(x>w)

�
1� �(x>w)

�

= 1� �(x>w)

Different cost function
• For this reason, logistic regression is typically trained

using a different cost function from fMSE.

• One particularly well-suited cost function uses logarithms.

• Logarithms and the logistic sigmoid interact well:

@

@w

⇥
log �(x>w)

⇤
=

1

�(x>w)
�(x>w)

�
1� �(x>w)

�

= 1� �(x>w)

The gradient of log(σ) is surprisingly simple.

Logarithm function

log(ŷ) is undefined for ŷ =0…but
that’s ok since ŷ ∈ (0,1).

Log loss
• How could we define a “log-loss” function flog so that:

• flog(y, ŷ) is small when ŷ ≈ y and large when they are far
apart.

�y log ŷ � (1� y) log ŷ

�y log ŷ � ŷ log y

�y log ŷ � (1� y) log(1� ŷ)

�(1� y) log ŷ � y log(1� ŷ)

1.

2.

3.

4.
log(ŷ)

Log loss
• How could we define a “log-loss” function flog so that:

• flog(y, ŷ) is small when ŷ ≈ y and large when they are far
apart.

3.

log(ŷ)

This expression is known as the log-loss.
 

The y or (1-y) “selects” which term in the expression
is active, based on the ground-truth label.

�y log ŷ � (1� y) log(1� ŷ)

Gradient descent for logistic
regression with log-loss

rwflog(w) = rw [� (y log ŷ � (1� y) log(1� ŷ))]

= �rw

�
y log �(x>w) + (1� y) log(1� �(x>w))

�

= �
✓
y
x�(x>w)(1� �(x>w))

�(x>w)
� (1� y)

x�(x>w)(1� �(x>w))

1� �(x>w)

◆

= �
�
yx(1� �(x>w))� (1� y)x�(x>w)

�

= �x
�
y � y�(x>w)� �(x>w) + y�(x>w)

�

= �x
�
y � �(x>w)

�

= x(ŷ � y)

Gradient descent for logistic
regression with log-loss

rwflog(w) = rw [� (y log ŷ � (1� y) log(1� ŷ))]

= �rw

�
y log �(x>w) + (1� y) log(1� �(x>w))

�

= �
✓
y
x�(x>w)(1� �(x>w))

�(x>w)
� (1� y)

x�(x>w)(1� �(x>w))

1� �(x>w)

◆

= �
�
yx(1� �(x>w))� (1� y)x�(x>w)

�

= �x
�
y � y�(x>w)� �(x>w) + y�(x>w)

�

= �x
�
y � �(x>w)

�

= x(ŷ � y)

Gradient descent for logistic
regression with log-loss

rwflog(w) = rw [� (y log ŷ � (1� y) log(1� ŷ))]

= �rw

�
y log �(x>w) + (1� y) log(1� �(x>w))

�

= �
✓
y
x�(x>w)(1� �(x>w))

�(x>w)
� (1� y)

x�(x>w)(1� �(x>w))

1� �(x>w)

◆

= �
�
yx(1� �(x>w))� (1� y)x�(x>w)

�

= �x
�
y � y�(x>w)� �(x>w) + y�(x>w)

�

= �x
�
y � �(x>w)

�

= x(ŷ � y)

Gradient descent for logistic
regression with log-loss

rwflog(w) = rw [� (y log ŷ � (1� y) log(1� ŷ))]

= �rw

�
y log �(x>w) + (1� y) log(1� �(x>w))

�

= �
✓
y
x�(x>w)(1� �(x>w))

�(x>w)
� (1� y)

x�(x>w)(1� �(x>w))

1� �(x>w)

◆

= �
�
yx(1� �(x>w))� (1� y)x�(x>w)

�

= �x
�
y � y�(x>w)� �(x>w) + y�(x>w)

�

= �x
�
y � �(x>w)

�

= x(ŷ � y)

Gradient descent for logistic
regression with log-loss

rwflog(w) = rw [� (y log ŷ � (1� y) log(1� ŷ))]

= �rw

�
y log �(x>w) + (1� y) log(1� �(x>w))

�

= �
✓
y
x�(x>w)(1� �(x>w))

�(x>w)
� (1� y)

x�(x>w)(1� �(x>w))

1� �(x>w)

◆

= �
�
yx(1� �(x>w))� (1� y)x�(x>w)

�

= �x
�
y � y�(x>w)� �(x>w) + y�(x>w)

�

= �x
�
y � �(x>w)

�

= x(ŷ � y) Same as for linear regression!

Linear regression versus
logistic regression

Linear regression Logistic regression

Primary use Regression Classification

Prediction (ŷ) ŷ = xTw ŷ = σ(xTw)

Loss fMSE flog

Gradient x(ŷ - y) x(ŷ - y)

Linear regression versus
logistic regression

Linear regression Logistic regression

Primary use Regression Classification

Prediction (ŷ) ŷ = xTw ŷ = σ(xTw)

Loss fMSE flog

Gradient x(ŷ - y) x(ŷ - y)

• Logistic regression is used primarily for classification even though it’s called
“regression”.

• Logistic regression is an instance of a generalized linear model — a linear
model combined with a link function (e.g., logistic sigmoid).

• In neural networks, link functions are typically called activation functions.

Multi-class
(“polychotomous”)

classification

Multi-class classification
• So far we have talked about classifying only 2 classes (e.g.,

smile versus non-smile).

• This is sometimes called binary classification.

• But there are many settings in which multiple (>2) classes
exist, e.g., emotion recognition, hand-written digit recognition:

10 classes (0-9)6 classes (fear, anger, sadness,
happiness, disgust, surprise)

Classification versus
regression

• Note that, even though the hand-written digit recognition
(“MNIST”) problem has classes called “0” , “1”, …, “9”,
there is no sense of “distance” between the classes.

• Misclassifying a 1 as a 2 is just as “bad” as
misclassifying a 1 as a 9.

Multi-class classification

• It turns out that logistic regression can easily be extended
to support an arbitrary number (>2) of classes.

• The multi-class case is called softmax regression.

• How to represent the ground-truth y and prediction ŷ?

• Instead of just a scalar y, we will use a vector y.

Example: 2 classes
• Suppose we have a dataset of 3 examples, where the

ground-truth class labels are 0, 1, 0.

• Then we would define our ground-truth vectors as: 
 
 
 
 
 
 

• This is called one-hot encoding of the class label.

y(1) =


1
0

�

y(3) =


1
0

�
y(2) =


0
1

�

