CS 453X: Class 7

Jacob Whitehill

- With polynomial regression, we saw an easy way to increase the complexity of our ML model.
 - With higher degree *d*, our model becomes strictly more powerful.
 - With larger coefficients, the regression line becomes more flexible.

- ML models can fail (i.e., exhibit poor accuracy) due to two reasons:
 - 1.**Bias**: the model is too simple to fit the data distribution ==> underfitting.
 - This can result in low training accuracy.

- ML models can fail (i.e., exhibit poor accuracy) due to two reasons:
 - 2. Variance: the model is too complex and is prone to overfitting. Re-training on different datasets will result in very different weight values.
 - This can result in low testing accuracy.

 Note that the degree of polynomial regression is just one kind of model complexity.

Others:

- Size of the input (24x24? 36x36?) to the machine.
- Number of layers in a neural network (more later).

- In general: the more training data you have...
 - ...the higher will be the testing accuracy of your trained machine.
 - ...the more complex of a model you can use without overfitting.
 - ... the less you need to regularize.

- In general: the more training data you have...
 - ...the higher will be the testing accuracy of your trained machine.
 - ...the more complex of a model you can use without overfitting.
 - ... the less you need to regularize.
- Therefore, as your training dataset grows, you might decide to switch to a more powerful architecture.

- Simulation:
 - Ground-truth: $y = -0.1x^5 + 0.1x^4 + 0.8x^3 1.8x^2 + 0.2x$
 - At each round, we add 4 more data points.
 - We compare polynomial regressors of degree 3 and 5.

Ground-truth

Poly5 Poly3

- Simulation:
 - Ground-truth: $y = -0.1x^5 + 0.1x^4 + 0.8x^3 1.8x^2 + 0.2x$
 - At each round, we add 4 more data points.
 - We compare polynomial regressors of degree 3 and 5.

- Simulation:
 - Ground-truth: $y = -0.1x^5 + 0.1x^4 + 0.8x^3 1.8x^2 + 0.2x$
 - At each round, we add 4 more data points.
 - We compare polynomial regressors of degree 3 and 5.

- Simulation:
 - Ground-truth: $y = -0.1x^5 + 0.1x^4 + 0.8x^3 1.8x^2 + 0.2x$
 - At each round, we add 4 more data points.
 - We compare polynomial regressors of degree 3 and 5.

- Simulation:
 - Ground-truth: $y = -0.1x^5 + 0.1x^4 + 0.8x^3 1.8x^2 + 0.2x$
 - At each round, we add 4 more data points.
 - We compare polynomial regressors of degree 3 and 5.

- Simulation:
 - Ground-truth: $y = -0.1x^5 + 0.1x^4 + 0.8x^3 1.8x^2 + 0.2x$
 - At each round, we add 4 more data points.
 - We compare polynomial regressors of degree 3 and 5.

- Simulation:
 - Ground-truth: $y = -0.1x^5 + 0.1x^4 + 0.8x^3 1.8x^2 + 0.2x$
 - At each round, we add 4 more data points.
 - We compare polynomial regressors of degree 3 and 5.

- Simulation:
 - Ground-truth: $y = -0.1x^5 + 0.1x^4 + 0.8x^3 1.8x^2 + 0.2x$
 - At each round, we add 4 more data points.
 - We compare polynomial regressors of degree 3 and 5.

Ground-truth

Poly5 Poly3

By this point, the poly5 regressor is better than the poly3 regressor.

Logistic regression

Using linear regression for classification

- In homework 2, you are using linear regression for classification.
 - Regression: predict any real number.
 - Classification: choose from a finite set (e.g., {0, 1}).
- While not incorrect, this is somewhat unnatural.

Using linear regression for classification

 During training, we penalize the linear regression model based on the MSE:

$$\frac{1}{2n} \sum_{i=1}^{n} (y^{(i)} - \hat{y}^{(i)})^2$$

- Since every y is either 1 or 0, why let ŷ ever be greater than 1 or less than 0?
- Why not "squash" the output to always lie in (0,1)?

- A sigmoid function is an "s"-shaped, monotonically increasing and bounded function.
- Here is the logistic sigmoid function σ:

- A sigmoid function is an "s"-shaped, monotonically increasing and bounded function.
- Here is the logistic sigmoid function σ:

Which function(s) describe(s) the curve?

1.
$$\frac{e^x - e^{-x}}{e^x + e^{-x}}$$

2.
$$\frac{e^x + e^{-x}}{e^x - e^{-x}}$$

3.
$$\frac{1}{1 - e^{-x}}$$

4.
$$\frac{1}{1+e^{-x}}$$

- A sigmoid function is an "s"-shaped, monotonically increasing and bounded function.
- Here is the logistic sigmoid function σ:

Which function(s) describe(s) the curve?

1.
$$\frac{e^x - e^{-x}}{e^x + e^{-x}}$$
 tanh

Similar but not quite right.

4.
$$\frac{1}{1+e^{-x}}$$

- A sigmoid function is an "s"-shaped, monotonically increasing and bounded function.
- Here is the logistic sigmoid function σ:

1.50 1.25 1.00 0.75 0.50 0.25 0.00 -0.25 -0.50 Which function(s) describe(s) the curve?

4.
$$\frac{1}{1 + e^{-x}}$$

Logistic sigmoid

- The logistic sigmoid function σ has some nice properties:
 - $\sigma(-z) = 1 \sigma(z)$

$$\sigma(z) = \frac{1}{1 + e^{-z}}
1 - \sigma(z) = 1 - \frac{1}{1 + e^{-z}}
= \frac{1 + e^{-z}}{1 + e^{-z}} - \frac{1}{1 + e^{-z}}
= \frac{e^{-z}}{1 + e^{-z}}
= \frac{1}{1/e^{-z} + 1}
= \frac{1}{1 + e^{z}}
= \sigma(-z)$$

Logistic sigmoid

- The logistic sigmoid function σ has some nice properties:
 - $\sigma'(z) = \sigma(z)(1 \sigma(z))$

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

$$\frac{\partial \sigma}{\partial z} = \sigma'(z) = -\frac{1}{(1 + e^{-z})^2} (e^{-z} \times (-1))$$

$$= \frac{e^{-z}}{(1 + e^{-z})^2}$$

$$= \frac{e^{-z}}{1 + e^{-z}} \times \frac{1}{1 + e^{-z}}$$

$$= \frac{1}{1/e^{-z} + 1} \times \frac{1}{1 + e^{-z}}$$

$$= \frac{1}{1 + e^z} \times \frac{1}{1 + e^{-z}}$$

$$= \sigma(z)(1 - \sigma(z))$$

Logistic regression

With logistic regression, our predictions are defined as:

$$\hat{y} = \sigma \left(\mathbf{x}^{\top} \mathbf{w} \right)$$

- Hence, they are forced to be in (0,1).
- For classification, we can interpret the real-valued outputs as probabilities that express how confident we are in a prediction, e.g.:
 - $\hat{y}=0.95$: very confident that the class is a smile.
 - $\hat{y}=0.45$: not very confident that the class is a non-smile.

Logistic regression

- How to train? Unlike linear regression, logistic regression has no analytical solution.
 - We can use gradient descent instead.
 - We have to apply the chain-rule of differentiation to handle the sigmoid function.

- Let's compute the gradient of f_{MSE} for logistic regression.
- For simplicity, we'll consider just a single example:

$$f_{\text{MSE}}(\mathbf{w}) = \frac{1}{2}(\hat{y} - y)^{2}$$

$$= \frac{1}{2}(\sigma(\mathbf{x}^{\top}\mathbf{w}) - y)^{2}$$

$$\nabla_{\mathbf{w}} f_{\text{MSE}}(\mathbf{w}) = \nabla_{\mathbf{w}} \left[\frac{1}{2} (\sigma(\mathbf{x}^{\top}\mathbf{w}) - y)^{2} \right]$$

$$= (\sigma(\mathbf{x}^{\top}\mathbf{w}) - y)$$

- Let's compute the gradient of f_{MSE} for logistic regression.
- For simplicity, we'll consider just a single example:

$$f_{\text{MSE}}(\mathbf{w}) = \frac{1}{2}(\hat{y} - y)^{2}$$

$$= \frac{1}{2}(\sigma(\mathbf{x}^{\top}\mathbf{w}) - y)^{2}$$

$$\nabla_{\mathbf{w}} f_{\text{MSE}}(\mathbf{w}) = \nabla_{\mathbf{w}} \left[\frac{1}{2} (\sigma(\mathbf{x}^{\top}\mathbf{w}) - y)^{2} \right]$$

$$= (\sigma(\mathbf{x}^{\top}\mathbf{w}) - y) \sigma(\mathbf{x}^{\top}\mathbf{w}) (1 - \sigma(\mathbf{x}^{\top}\mathbf{w}))$$

- Let's compute the gradient of f_{MSE} for logistic regression.
- For simplicity, we'll consider just a single example:

$$f_{\text{MSE}}(\mathbf{w}) = \frac{1}{2}(\hat{y} - y)^{2}$$

$$= \frac{1}{2} (\sigma(\mathbf{x}^{\top}\mathbf{w}) - y)^{2}$$

$$\nabla_{\mathbf{w}} f_{\text{MSE}}(\mathbf{w}) = \nabla_{\mathbf{w}} \left[\frac{1}{2} (\sigma(\mathbf{x}^{\top}\mathbf{w}) - y)^{2} \right]$$

$$= \mathbf{x} (\sigma(\mathbf{x}^{\top}\mathbf{w}) - y) \sigma(\mathbf{x}^{\top}\mathbf{w}) (1 - \sigma(\mathbf{x}^{\top}\mathbf{w}))$$

- Let's compute the gradient of f_{MSE} for logistic regression.
- For simplicity, we'll consider just a single example:

$$f_{\text{MSE}}(\mathbf{w}) = \frac{1}{2}(\hat{y} - y)^{2}$$

$$= \frac{1}{2} (\sigma(\mathbf{x}^{\top} \mathbf{w}) - y)^{2}$$

$$\nabla_{\mathbf{w}} f_{\text{MSE}}(\mathbf{w}) = \nabla_{\mathbf{w}} \left[\frac{1}{2} (\sigma(\mathbf{x}^{\top} \mathbf{w}) - y)^{2} \right]$$

$$= \mathbf{x} (\sigma(\mathbf{x}^{\top} \mathbf{w}) - y) \sigma(\mathbf{x}^{\top} \mathbf{w}) (1 - \sigma(\mathbf{x}^{\top} \mathbf{w}))$$

$$= \mathbf{x} (\hat{y} - y) \hat{y} (1 - \hat{y})$$

- Let's compute the gradient of f_{MSE} for logistic regression.
- For simplicity, we'll consider just a single example:

$$f_{\text{MSE}}(\mathbf{w}) = \frac{1}{2}(\hat{y} - y)^{2}$$

$$= \frac{1}{2} (\sigma(\mathbf{x}^{\top} \mathbf{w}) - y)^{2}$$

$$\nabla_{\mathbf{w}} f_{\text{MSE}}(\mathbf{w}) = \nabla_{\mathbf{w}} \left[\frac{1}{2} (\sigma(\mathbf{x}^{\top} \mathbf{w}) - y)^{2} \right]$$

$$= \mathbf{x} (\sigma(\mathbf{x}^{\top} \mathbf{w}) - y) \sigma(\mathbf{x}^{\top} \mathbf{w}) (1 - \sigma(\mathbf{x}^{\top} \mathbf{w}))$$

$$= \mathbf{x} (\hat{y} - y) \hat{y} (1 - \hat{y})$$

Notice the extra multiplicative terms compared to the gradient for *linear* regression: $x(\hat{y} - y)$

Attenuated gradient

- What if the weights **w** are initially chosen badly, so that \hat{y} is very close to 1, even though y = 0 (or vice-versa)?
 - Then $\hat{y}(1 \hat{y})$ is close to 0.
- In this case, the gradient:

$$\nabla_{\mathbf{w}} f_{\text{MSE}}(\mathbf{w}) = \mathbf{x} (\hat{y} - y) \hat{y} (1 - \hat{y})$$

will be very close to 0.

• If the gradient is 0, then no learning will occur!

Different cost function

- For this reason, logistic regression is typically trained using a different cost function from $f_{\rm MSE}$.
- One particularly well-suited cost function uses logarithms.
- Logarithms and the logistic sigmoid interact well:

$$\frac{\partial}{\partial \mathbf{w}} \left[\log \sigma(\mathbf{x}^{\top} \mathbf{w}) \right] =$$

Different cost function

- For this reason, logistic regression is typically trained using a different cost function from $f_{\rm MSE}$.
- One particularly well-suited cost function uses logarithms.
- Logarithms and the logistic sigmoid interact well:

$$\frac{\partial}{\partial \mathbf{w}} \left[\log \sigma(\mathbf{x}^{\top} \mathbf{w}) \right] = \frac{1}{\sigma(\mathbf{x}^{\top} \mathbf{w})} \sigma(\mathbf{x}^{\top} \mathbf{w}) \left(1 - \sigma(\mathbf{x}^{\top} \mathbf{w}) \right)$$

Different cost function

- For this reason, logistic regression is typically trained using a different cost function from $f_{\rm MSE}$.
- One particularly well-suited cost function uses logarithms.
- Logarithms and the logistic sigmoid interact well:

$$\frac{\partial}{\partial \mathbf{w}} \left[\log \sigma(\mathbf{x}^{\top} \mathbf{w}) \right] = \frac{1}{\sigma(\mathbf{x}^{\top} \mathbf{w})} \sigma(\mathbf{x}^{\top} \mathbf{w}) \left(1 - \sigma(\mathbf{x}^{\top} \mathbf{w}) \right)$$
$$= 1 - \sigma(\mathbf{x}^{\top} \mathbf{w})$$

The gradient of $log(\sigma)$ is surprisingly simple.

Logarithm function

Log loss

- How could we define a "log-loss" function f_{log} so that:
 - $f_{log}(y, \hat{y})$ is small when $\hat{y} \approx y$ and large when they are far apart.

1.
$$-y \log \hat{y} - \hat{y} \log y$$

2.
$$-y \log \hat{y} - (1-y) \log \hat{y}$$

3.
$$-y \log \hat{y} - (1-y) \log(1-\hat{y})$$

4.
$$-(1-y)\log \hat{y} - y\log(1-\hat{y})$$

Log loss

- How could we define a "log-loss" function f_{log} so that:
 - $f_{\log}(y, \hat{y})$ is small when $\hat{y} \approx y$ and large when they are far apart.

This expression is known as the log-loss.

3.
$$-y \log \hat{y} - (1-y) \log(1-\hat{y})$$

The y or (1-y) "selects" which term in the expression is active, based on the ground-truth label.

$$\nabla_{\mathbf{w}} f_{\log}(\mathbf{w}) = \nabla_{\mathbf{w}} \left[-\left(y \log \hat{y} - (1 - y) \log(1 - \hat{y})\right) \right]$$

```
\nabla_{\mathbf{w}} f_{\log}(\mathbf{w}) = \nabla_{\mathbf{w}} \left[ -\left(y \log \hat{y} - (1 - y) \log(1 - \hat{y})\right) \right]= -\nabla_{\mathbf{w}} \left(y \log \sigma(\mathbf{x}^{\top} \mathbf{w}) + (1 - y) \log(1 - \sigma(\mathbf{x}^{\top} \mathbf{w}))\right)
```

$$\nabla_{\mathbf{w}} f_{\log}(\mathbf{w}) = \nabla_{\mathbf{w}} \left[-(y \log \hat{y} - (1 - y) \log(1 - \hat{y})) \right]$$

$$= -\nabla_{\mathbf{w}} \left(y \log \sigma(\mathbf{x}^{\top} \mathbf{w}) + (1 - y) \log(1 - \sigma(\mathbf{x}^{\top} \mathbf{w})) \right)$$

$$= -\left(y \frac{\mathbf{x} \sigma(\mathbf{x}^{\top} \mathbf{w}) (1 - \sigma(\mathbf{x}^{\top} \mathbf{w}))}{\sigma(\mathbf{x}^{\top} \mathbf{w})} - (1 - y) \frac{\mathbf{x} \sigma(\mathbf{x}^{\top} \mathbf{w}) (1 - \sigma(\mathbf{x}^{\top} \mathbf{w}))}{1 - \sigma(\mathbf{x}^{\top} \mathbf{w})} \right)$$

$$\nabla_{\mathbf{w}} f_{\log}(\mathbf{w}) = \nabla_{\mathbf{w}} \left[-(y \log \hat{y} - (1 - y) \log(1 - \hat{y})) \right]$$

$$= -\nabla_{\mathbf{w}} \left(y \log \sigma(\mathbf{x}^{\top} \mathbf{w}) + (1 - y) \log(1 - \sigma(\mathbf{x}^{\top} \mathbf{w})) \right)$$

$$= -\left(y \frac{\mathbf{x} \sigma(\mathbf{x}^{\top} \mathbf{w}) (1 - \sigma(\mathbf{x}^{\top} \mathbf{w}))}{\sigma(\mathbf{x}^{\top} \mathbf{w})} - (1 - y) \frac{\mathbf{x} \sigma(\mathbf{x}^{\top} \mathbf{w}) (1 - \sigma(\mathbf{x}^{\top} \mathbf{w}))}{1 - \sigma(\mathbf{x}^{\top} \mathbf{w})} \right)$$

$$= -\left(y \mathbf{x} (1 - \sigma(\mathbf{x}^{\top} \mathbf{w})) - (1 - y) \mathbf{x} \sigma(\mathbf{x}^{\top} \mathbf{w}) \right)$$

$$\begin{split} \nabla_{\mathbf{w}} f_{\log}(\mathbf{w}) &= \nabla_{\mathbf{w}} \left[- \left(y \log \hat{y} - (1 - y) \log(1 - \hat{y}) \right) \right] \\ &= -\nabla_{\mathbf{w}} \left(y \log \sigma(\mathbf{x}^{\top} \mathbf{w}) + (1 - y) \log(1 - \sigma(\mathbf{x}^{\top} \mathbf{w})) \right) \\ &= - \left(y \frac{\mathbf{x} \sigma(\mathbf{x}^{\top} \mathbf{w}) (1 - \sigma(\mathbf{x}^{\top} \mathbf{w}))}{\sigma(\mathbf{x}^{\top} \mathbf{w})} - (1 - y) \frac{\mathbf{x} \sigma(\mathbf{x}^{\top} \mathbf{w}) (1 - \sigma(\mathbf{x}^{\top} \mathbf{w}))}{1 - \sigma(\mathbf{x}^{\top} \mathbf{w})} \right) \\ &= - \left(y \mathbf{x} (1 - \sigma(\mathbf{x}^{\top} \mathbf{w})) - (1 - y) \mathbf{x} \sigma(\mathbf{x}^{\top} \mathbf{w}) \right) \\ &= - \mathbf{x} \left(y - y \sigma(\mathbf{x}^{\top} \mathbf{w}) - \sigma(\mathbf{x}^{\top} \mathbf{w}) + y \sigma(\mathbf{x}^{\top} \mathbf{w}) \right) \\ &= - \mathbf{x} \left(y - \sigma(\mathbf{x}^{\top} \mathbf{w}) \right) \\ &= \mathbf{x} (\hat{y} - y) \quad \text{Same as for linear regression!} \end{split}$$

Linear regression versus logistic regression

	Linear regression	Logistic regression
Primary use	Regression	Classification
Prediction (ŷ)	$\hat{y} = \mathbf{x}^T \mathbf{w}$	$\hat{y} = \sigma(\mathbf{x}^{T}\mathbf{w})$
Loss	f _{MSE}	f_{log}
Gradient	x (ŷ - y)	$\mathbf{x}(\hat{y} - y)$

Linear regression versus logistic regression

	Linear regression	Logistic regression
Primary use	Regression	Classification
Prediction (ŷ)	$\hat{y} = \mathbf{x}^T \mathbf{w}$	$\hat{y} = \sigma(\mathbf{x}^{T}\mathbf{w})$
Loss	f _{MSE}	f_{log}
Gradient	$\mathbf{x}(\hat{y} - y)$	$\mathbf{x}(\hat{y} - y)$

- Logistic regression is used primarily for classification even though it's called "regression".
- Logistic regression is an instance of a generalized linear model a linear model combined with a link function (e.g., logistic sigmoid).
 - In neural networks, link functions are typically called activation functions.

Multi-class ("polychotomous") classification

Multi-class classification

- So far we have talked about classifying only 2 classes (e.g., smile versus non-smile).
 - This is sometimes called binary classification.
- But there are many settings in which multiple (>2) classes exist, e.g., emotion recognition, hand-written digit recognition:

6 classes (fear, anger, sadness,

happiness, disgust, surprise)

10 classes (0-9)

Classification versus regression

- Note that, even though the hand-written digit recognition ("MNIST") problem has classes called "0", "1", ..., "9", there is no sense of "distance" between the classes.
 - Misclassifying a 1 as a 2 is just as "bad" as misclassifying a 1 as a 9.

Multi-class classification

- It turns out that logistic regression can easily be extended to support an arbitrary number (>2) of classes.
 - The multi-class case is called softmax regression.
- How to represent the ground-truth y and prediction \hat{y} ?
 - Instead of just a scalar y, we will use a vector y.

Example: 2 classes

- Suppose we have a dataset of 3 examples, where the ground-truth class labels are 0, 1, 0.
- Then we would define our ground-truth vectors as:

$$\mathbf{y}^{(1)} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$\mathbf{y}^{(2)} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\mathbf{y}^{(3)} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

This is called one-hot encoding of the class label.