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Model complexity



Model complexity

e With polynomial regression, we saw an easy way to
increase the complexity of our ML model.

e With higher degree d, our model becomes strictly more
powerful.

e With larger coefficients, the regression line becomes
more flexible.



Model complexity

e ML models can fail (i.e., exhibit poor accuracy) due to two
reasons:

1.Bias: the model is too simple to fit the data distribution
==> underfitting.

 This can result in low training accuracy.
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Model complexity

e ML models can fail (i.e., exhibit poor accuracy) due to two
reasons:

2.Variance: the model is too complex and is prone to
overfitting. Re-training on different datasets will result in
very different weight values.

* This can result in low testing accuracy.
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Model complexity

* Note that the degree of polynomial regression is just one
kind of model complexity.

e QOthers:
e Size of the input (24x247? 36x367) to the machine.

* Number of layers in a neural network (more later).



Model complexity

* |n general: the more training data you have...

e ...the higher will be the testing accuracy of your trained
machine.

e ...the more complex of a model you can use without
overfitting.

e ... the less you need to regularize.



Model complexity

* |n general: the more training data you have...

e ...the higher will be the testing accuracy of your trained
machine.

e ...the more complex of a model you can use without
overfitting.

e ... the less you need to regularize.

e Therefore, as your training dataset grows, you might
decide to switch to a more powerful architecture.



N lllustration

e Ground-truth: y = -0.1x> + 0.1x%4 + 0.8x3 - 1.8x2 + 0.2x
e At each round, we add 4 more data points.

e We compare polynomial regressors of degree 3 and 5.
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N lllustration

e Ground-truth: y = -0.1x> + 0.1x%4 + 0.8x3 - 1.8x2 + 0.2x
e At each round, we add 4 more data points.

e We compare polynomial regressors of degree 3 and 5.
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Logistic regression



Using linear regression for
classification

 |n homework 2, you are using linear regression for
classification.

* Regression: predict any real number.
* Classification: choose from a finite set (e.g., {0, 1}).

e While not incorrect, this is somewhat unnatural.



Using linear regression for
classification

e During training, we penalize the linear regression model
based on the MSE:
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 Since every y is either 1 or 0, why let y ever be greater
than 1 or less than 07?

e Why not “squash” the output to always lie in (0,1)?



Sigmoid: a “squashing”
function

e A sigmoid function is an “s”-shaped, monotonically
iIncreasing and bounded function.

 Here is the logistic sigmoid function o:
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Sigmoid: a “squashing”
function

e A sigmoid function is an “s”-shaped, monotonically
iIncreasing and bounded function.

 Here is the logistic sigmoid function o: Which function(s)
1.50 describe(s) the curve?
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Sigmoid: a “squashing”
function

e A sigmoid function is an “s”-shaped, monotonically
iIncreasing and bounded function.

 Here is the logistic sigmoid function o: Which function(s)
1.50 describe(s) the curve?
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Sigmoid: a “squashing”
function

e A sigmoid function is an “s”-shaped, monotonically
iIncreasing and bounded function.

 Here is the logistic sigmoid function o: Which function(s)
1.50 describe(s) the curve?
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Logistic sigmoid
e The logistic sigmoid function o has some nice properties:

e 0(-2)=1-0(2
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Logistic sigmoid
e The logistic sigmoid function o has some nice properties:
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Logistic regression

e With logistic regression, our predictions are defined as:
y=o0 (XTW)
* Hence, they are forced to be in (0,1).

* [For classification, we can interpret the real-valued outputs as
probabilities that express how confident we are in a
prediction, e.q.:

e y=0.95: very confident that the class is a smile.

* y=0.45: not very confident that the class is a non-smile.



Logistic regression

e How to train? Unlike linear regression, logistic regression
has no analytical solution.

e \We can use gradient descent instead.

e We have to apply the chain-rule of differentiation to
handle the sigmoid function.



Gradient descent for
logistic regression
e |et’s compute the gradient of fmse for logistic regression.

e For simplicity, we’ll consider just a single example:

fmse(w) = 5(@ —y)°
— % (O‘(XTW) — y)2
Ve fuse(W) = Vi % (o(xTw) — )’
= O'(XTW) — y)
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Attenuated gradient

 What if the weights w are initially chosen badly, so that y
is very close to 1, even though y = 0 (or vice-versa)?

e Then y(1 - y)is close to 0.
e |n this case, the gradient:
VwfMse(W) =x(7 —y) g (1 —19)

will be very close to 0.

e If the gradient is O, then no learning will occur!



Different cost function

For this reason, logistic regression is typically trained
using a different cost function from fusk.

One particularly well-suited cost function uses logarithms.

e | ogarithms and the logistic sigmoid interact well:
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Different cost function

For this reason, logistic regression is typically trained
using a different cost function from fusk.

One particularly well-suited cost function uses logarithms.

e | ogarithms and the logistic sigmoid interact well:
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Different cost function

For this reason, logistic regression is typically trained
using a different cost function from fusk.

e One particularly well-suited cost function uses logarithms.

e | ogarithms and the logistic sigmoid interact well:
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= 1—0o(x'w)
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Log loss

 How could we define a “log-loss” function fiog so that:

* fiogly, ¥) is small when y = y and large when they are far

apart.
1. —ylogy —ylogy
2. —ylogy — (1 —y)logy
3. —ylogy — (1 —y)log(l—9)




Log loss

 How could we define a “log-loss” function fiog so that:

* fiogly, ¥) is small when y = y and large when they are far
apart.
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3 —ylogy — (1 —y)log(l —y)



Gradient descent for logistic
regression with log-loss

vWflog(vv) — vW [_ (y logg o (1 o y) lOg(l o g))]
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Gradient descent for logistic
regression with log-loss

Vw [ (ylogg — (1 —y)log(1l —7))]
Ve (y logo(x'w) + (1 —y)log(l — O'(XTW)))

vWflog(vv)
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Linear regression versus
logistic regression

Linear regression Logistic regression

Primary use Regression Classification
Prediction (y) y = XTw y = o(xTw)
Loss fmse fiog

Gradient Xy - y) X(y -y)



Linear regression versus
logistic regression

Linear regression  Logistic regression

Primary use Regression Classification
Prediction (y) y = XTw y = o(xTw)
Loss fmse fiog
Gradient X(V - y) X(y - y)

e Logistic regression is used primarily for classification even though it’s called
“regression”.

* Logistic regression is an instance of a generalized linear model — a linear
model combined with a link function (e.g., logistic sigmoid).

* |n neural networks, link functions are typically called activation functions.



Multi-class
(“polychotomous’™)
classification



Multi-class classification

e So far we have talked about classifying only 2 classes (e.g.,
smile versus non-smile).

* This is sometimes called binary classification.

e But there are many settings in which multiple (>2) classes
exist, e.g., emotion recognition, hand-written digit recognition:
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Classification versus
regression

e Note that, even though the hand-written digit recognition
(“MNIST”) problem has classes called “0” , “17, ..., “97,
there is no sense of “distance” between the classes.

e Misclassifyinga 1 as aZ2isjust as “bad” as
misclassifyinga 1 as a 9.



Multi-class classification

e |t turns out that logistic regression can easily be extended
to support an arbitrary number (>2) of classes.

* The multi-class case is called softmax regression.
* How to represent the ground-truth y and prediction y?

* |nstead of just a scalar y, we will use a vectory.



Example: 2 classes

e Suppose we have a dataset of 3 examples, where the
ground-truth class labels are O, 1, O.

e Then we would define our ground-truth vectors as:

1
(1) _

yU=1g
y@_ [0
3 _ | 1
Y=y

* This is called one-hot encoding of the class label.



