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Gradient descent 
(continued)



Gradient descent algorithm
• Set w to random values; call this initial choice w(0).


• Compute the gradient: 


• Update w by moving opposite the gradient, multiplied by 
a step size ε.


• Repeat…


• …until convergence:

rwf(w(0))

w(1)  w(0) � ✏rwf(w(0))

w(2)  w(1) � ✏rwf(w(1))

w(3)  w(2) � ✏rwf(w(2))

w(t)  w(t�1) � ✏rwf(w(t�1))

…

|f(w(t�1))� f(w(t))| < � δ is a chosen 
convergence tolerance.



Gradient descent demos

• 1-d


• 2-d



Convergence
• In general, gradient descent is useful for finding a local minimum 

of f:


• Local minimum: gradient is 0; second derivative is positive.

https://en.wikipedia.org/wiki/Maxima_and_minima



Convergence
• In general, gradient descent is useful for finding a local minimum 

of f:


• Global minimum is the smallest value of the function f.

https://en.wikipedia.org/wiki/Maxima_and_minima



Convergence
• For the special case of linear regression (and a few other 

ML models), gradient descent will (for appropriate ε) 
converge to the global minimum of fMSE.


• What does “appropriate ε” mean (intuitively)?


• Big enough to make progress (from random starting 
point) to local minimum.


• Small enough not to “jump around” too much.


• Show demo.
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Convergence

• For the special case of linear regression (and a few other 
ML models), gradient descent will (for appropriate ε) 
converge to the global minimum of fMSE.


• In practice:


• Choose some ε so that the cost fMSE declines smoothly.


• If it’s too slow, try increasing.


• If it jumps around, try decreasing.



Polynomial regression



Linear regression

• Linear regression is efficient to optimize and very useful, 
but is limited in its expressiveness.


• Unsurprisingly, it can only model linear (technically affine) 
relationships:


• In 1-d:

ŷ = x>w + b

ŷ = wx+ b



Linear regression
• But sometimes the target values y have a non-linear 

relationship with the input x.


• Linear regression may not do a good job then.


• Example: y = 0.2x - 1.8x2 + 0.8x3 + noise

Not a great fit.



Polynomial regression
• If the labels y are a polynomial function of the inputs x, why 

not enable the model to express polynomial relationships?


• In 1-d, we can build a cubic regression model as follows:

Much better fit!

ŷ = w1x
1 + w2x

2 + w3x
3 + b

= w0x
0 + w1x

1 + w2x
2 + w3x

3



Polynomial regression
• How do we train the weights of the polynomial regression 

(for 1-d inputs)?


• Pretend that each power of x is a separate feature.


• Form x = [ x0, x1, x2, x3 ]T


• Example:


• Suppose the raw input x = -1.5.


• Then x0 = 1, x1 = 1.5, x2 = 2.25, and x3 = -3.375. 
Hence, x = [ 0, -1.5, 2.25, -3.375 ]T.



Polynomial regression
• How do we train the weights of the polynomial regression 

(for 1-d inputs)?


• Pretend that each power of x is a separate feature.


• Form x = [ x0, x1, x2, x3 ]T


• Example:


• Suppose the raw input x = -1.5.


• Then x0 = 1, x1 = -1.5, x2 = 2.25, and x3 = -3.375. 
Hence, x = [ 1, -1.5, 2.25, -3.375 ]T.



Polynomial regression
• Now, notice that:

ŷ = w0x
0 + w1x

1 + w2x
2 + w3x

3

=
⇥
x0 x1 x2 x3

⇤

2

664

w0

w1

w2

w3

3

775

= x>w
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Polynomial regression
• Now, notice that:

ŷ = w0x
0 + w1x

1 + w2x
2 + w3x

3

=
⇥
x0 x1 x2 x3

⇤

2

664

w0

w1

w2

w3

3

775

= x>w

When we “pre-compute” each power of x, we 
convert the polynomial regression back into a 

linear regression model.



Polynomial regression

• We can convert each input x into a feature vector x, and 
create a design matrix X, and compute the optimal w as 
before…



Polynomial regression

• Suppose we have raw inputs -1.5, -1, and 3.25.


• Then for each (scalar) x we build a vector x consisting of 
[ 1, x1, x2, x3 ]T:

i=1 i=2 i=3

-1.5 -1 3.25



Polynomial regression

• Suppose we have raw inputs -1.5, -1, and 3.25.


• Then for each (scalar) x we build a vector x consisting of 
[ x0, x1, x2, x3 ]T:

i=1 i=2 i=3

d=0 1 1 1

d=1 -1.5 -1 3.25

d=2 2.25 1 10.5625

d=3 -3.375 -1 34.328125



Polynomial regression
• The matrix of all our examples (as column vectors) constitutes 

the design matrix X, as usual.


• We can now find the optimal polynomial regression 
coefficients by computing:


• …just like with linear regression.

1 1 1

-1.5 -1 3.25

2.25 1 10.5625

-3.375 -1 34.328125

= [ ]X



Polynomial regression
• The matrix of all our examples (as column vectors) constitutes 

the design matrix X, as usual.


• We can now find the optimal polynomial regression 
coefficients by computing:


• …just like with linear regression.

1 1 1

-1.5 -1 3.25

2.25 1 10.5625

-3.375 -1 34.328125

= [ ]X

w =
�
XX>��1

Xy



Overfitting and 
regularization



Overfitting
• If polynomial regression with degree 3 worked well, why 

not increase the degree even higher?


• Let’s try with degree 25…



Overfitting
• If polynomial regression with degree 3 worked well, why 

not increase the degree even higher?


• Let’s try with degree 25…

We nailed almost 
every point exactly!…

but maybe this is 
overkill?



Overfitting

• Why is this bad? Recall that overfitting means that 
training error is low, but testing error is high.


• Testing error represents how well we expect our machine 
to perform on data we have not seen before.



Overfitting
• When we collect a dataset, we are sampling from 

probability distribution p(x) and conditional probability 
distribution p(y | x).

x



Overfitting
• When we collect a dataset, we are sampling from 

probability distribution p(x) and conditional probability 
distribution p(y | x).
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Overfitting

• When we sample multiple times, we will get different 
results. Here is a possible training sample:

x

y



Overfitting

• When we sample multiple times, we will get different 
results. Here is a possible testing sample:

x

y



Overfitting
• Here are the machine’s predictions using polynomial 

regression, with either degree 3 or degree 5:

x

y

x

y

Degree 3 Degree 25

For these data points, the predictions are very 
inaccurate, which makes fMSE large.



Preventing overfitting

• How to prevent this? Two strategies:


• Keep the degree d of the polynomial modest.


• Keep the weights associated with each term modest.



Preventing overfitting

• How to prevent this? Two strategies:


• Keep the degree d of the polynomial modest.


• Keep the weight associated with each term modest.

ŷ = w0x
0 + w1x

1 + w2x
2 + . . .+ wdx

d



Random polynomials
• Let’s generate some polynomials by randomly selecting 

each wi in:


• Compute the average squared coefficient as:


• We will generate random polynomials for different degrees 
d and different coefficient magnitudes μ.

µ =
1

d

dX

i=0

w2
i

ŷ = w0x
0 + w1x

1 + w2x
2 + . . .+ wdx

d



Random polynomials

• Examples:
d = 2 : ŷ = 4 + 2x� 2x2 µ = 24/3 = 8
d = 4 : ŷ = x2 + 0.5x3 � 2x4 µ = 5.25/5 = 1.05

?
?

µ =
1

d

dX

i=0

w2
i



Random polynomials

• Examples:
d = 2 : ŷ = 4 + 2x� 2x2 µ = 24/3 = 8
d = 4 : ŷ = x2 + 0.5x3 � 2x4 µ = 5.25/5 = 1.05

µ =
1

d

dX

i=0

w2
i



Random polynomials

d=3

d=5

d=7

d=9

d=11

μ=7.25e-07



d=3

d=5

d=7

d=9

d=11

Random polynomials
μ=0.00063



d=3

d=5

d=7

d=9

d=11

Random polynomials
μ=0.058



d=3

d=5

d=7

d=9

d=11

Random polynomials
μ=3.31



d=3

d=5

d=7

d=9

d=11

Random polynomials
μ=90.9



d=3

d=5

d=7

d=9

d=11

Random polynomials
μ=537.8

d=3

d=5

d=7

d=9

d=11



Regularization

• The larger the coefficients (weights) w are allowed to be, 
the more the polynomial regressor can overfit.


• If we “encourage” the weights to be small, we can reduce 
overfitting.


• This is a form of regularization — any practice designed 
to improve the machine’s ability to generalize to new 
data.



Regularization

• One of the simplest and oldest regularization techniques 
is to penalize large weights in the cost function.


• The “unregularized” fMSE is:


• The L2-regularized fMSE becomes:

fMSE(w) =
1

2n

nX

i=1

(y(i) � ŷ(i))2



Regularization

• One of the simplest and oldest regularization techniques 
is to penalize large weights in the cost function.


• The “unregularized” fMSE is:


• The L2-regularized fMSE becomes:

fMSE(w) =
1

2n

nX

i=1

(y(i) � ŷ(i))2 +
↵

2
w>w

fMSE(w) =
1

2n

nX

i=1

(y(i) � ŷ(i))2


