
CS 453X: Class 6
Jacob Whitehill

Gradient descent
(continued)

Gradient descent algorithm
• Set w to random values; call this initial choice w(0).

• Compute the gradient:

• Update w by moving opposite the gradient, multiplied by
a step size ε.

• Repeat…

• …until convergence:

rwf(w(0))

w(1) w(0) � ✏rwf(w(0))

w(2) w(1) � ✏rwf(w(1))

w(3) w(2) � ✏rwf(w(2))

w(t) w(t�1) � ✏rwf(w(t�1))

…

|f(w(t�1))� f(w(t))| < � δ is a chosen
convergence tolerance.

Gradient descent demos

• 1-d

• 2-d

Convergence
• In general, gradient descent is useful for finding a local minimum

of f:

• Local minimum: gradient is 0; second derivative is positive.

https://en.wikipedia.org/wiki/Maxima_and_minima

Convergence
• In general, gradient descent is useful for finding a local minimum

of f:

• Global minimum is the smallest value of the function f.

https://en.wikipedia.org/wiki/Maxima_and_minima

Convergence
• For the special case of linear regression (and a few other

ML models), gradient descent will (for appropriate ε)
converge to the global minimum of fMSE.

• What does “appropriate ε” mean (intuitively)?

• Big enough to make progress (from random starting
point) to local minimum.

• Small enough not to “jump around” too much.

• Show demo.

Convergence
• For the special case of linear regression (and a few other

ML models), gradient descent will (for appropriate ε)
converge to the global minimum of fMSE.

• What does “appropriate ε” mean (intuitively)?

• Big enough to make progress (from random starting
point) to local minimum.

• Small enough not to “jump around” too much.

• Show demo.

Convergence

• For the special case of linear regression (and a few other
ML models), gradient descent will (for appropriate ε)
converge to the global minimum of fMSE.

• In practice:

• Choose some ε so that the cost fMSE declines smoothly.

• If it’s too slow, try increasing.

• If it jumps around, try decreasing.

Polynomial regression

Linear regression

• Linear regression is efficient to optimize and very useful,
but is limited in its expressiveness.

• Unsurprisingly, it can only model linear (technically affine)
relationships:

• In 1-d:

ŷ = x>w + b

ŷ = wx+ b

Linear regression
• But sometimes the target values y have a non-linear

relationship with the input x.

• Linear regression may not do a good job then.

• Example: y = 0.2x - 1.8x2 + 0.8x3 + noise

Not a great fit.

Polynomial regression
• If the labels y are a polynomial function of the inputs x, why

not enable the model to express polynomial relationships?

• In 1-d, we can build a cubic regression model as follows:

Much better fit!

ŷ = w1x
1 + w2x

2 + w3x
3 + b

= w0x
0 + w1x

1 + w2x
2 + w3x

3

Polynomial regression
• How do we train the weights of the polynomial regression

(for 1-d inputs)?

• Pretend that each power of x is a separate feature.

• Form x = [x0, x1, x2, x3]T

• Example:

• Suppose the raw input x = -1.5.

• Then x0 = 1, x1 = 1.5, x2 = 2.25, and x3 = -3.375. 
Hence, x = [0, -1.5, 2.25, -3.375]T.

Polynomial regression
• How do we train the weights of the polynomial regression

(for 1-d inputs)?

• Pretend that each power of x is a separate feature.

• Form x = [x0, x1, x2, x3]T

• Example:

• Suppose the raw input x = -1.5.

• Then x0 = 1, x1 = -1.5, x2 = 2.25, and x3 = -3.375. 
Hence, x = [1, -1.5, 2.25, -3.375]T.

Polynomial regression
• Now, notice that:

ŷ = w0x
0 + w1x

1 + w2x
2 + w3x

3

=
⇥
x0 x1 x2 x3

⇤

2

664

w0

w1

w2

w3

3

775

= x>w

Polynomial regression
• Now, notice that:

ŷ = w0x
0 + w1x

1 + w2x
2 + w3x

3

=
⇥
x0 x1 x2 x3

⇤

2

664

w0

w1

w2

w3

3

775

= x>w

Polynomial regression
• Now, notice that:

ŷ = w0x
0 + w1x

1 + w2x
2 + w3x

3

=
⇥
x0 x1 x2 x3

⇤

2

664

w0

w1

w2

w3

3

775

= x>w

When we “pre-compute” each power of x, we
convert the polynomial regression back into a

linear regression model.

Polynomial regression

• We can convert each input x into a feature vector x, and
create a design matrix X, and compute the optimal w as
before…

Polynomial regression

• Suppose we have raw inputs -1.5, -1, and 3.25.

• Then for each (scalar) x we build a vector x consisting of
[1, x1, x2, x3]T:

i=1 i=2 i=3

-1.5 -1 3.25

Polynomial regression

• Suppose we have raw inputs -1.5, -1, and 3.25.

• Then for each (scalar) x we build a vector x consisting of
[x0, x1, x2, x3]T:

i=1 i=2 i=3

d=0 1 1 1

d=1 -1.5 -1 3.25

d=2 2.25 1 10.5625

d=3 -3.375 -1 34.328125

Polynomial regression
• The matrix of all our examples (as column vectors) constitutes

the design matrix X, as usual.

• We can now find the optimal polynomial regression
coefficients by computing:

• …just like with linear regression.

1 1 1

-1.5 -1 3.25

2.25 1 10.5625

-3.375 -1 34.328125

= []X

Polynomial regression
• The matrix of all our examples (as column vectors) constitutes

the design matrix X, as usual.

• We can now find the optimal polynomial regression
coefficients by computing:

• …just like with linear regression.

1 1 1

-1.5 -1 3.25

2.25 1 10.5625

-3.375 -1 34.328125

= []X

w =
�
XX>��1

Xy

Overfitting and
regularization

Overfitting
• If polynomial regression with degree 3 worked well, why

not increase the degree even higher?

• Let’s try with degree 25…

Overfitting
• If polynomial regression with degree 3 worked well, why

not increase the degree even higher?

• Let’s try with degree 25…

We nailed almost
every point exactly!…

but maybe this is
overkill?

Overfitting

• Why is this bad? Recall that overfitting means that
training error is low, but testing error is high.

• Testing error represents how well we expect our machine
to perform on data we have not seen before.

Overfitting
• When we collect a dataset, we are sampling from

probability distribution p(x) and conditional probability
distribution p(y | x).

x

Overfitting
• When we collect a dataset, we are sampling from

probability distribution p(x) and conditional probability
distribution p(y | x).

x

y
=

0.
2x

 -
1.

8x
2 +

 0
.8

x3
 +

 n
oi

se

Overfitting

• When we sample multiple times, we will get different
results. Here is a possible training sample:

x

y

Overfitting

• When we sample multiple times, we will get different
results. Here is a possible testing sample:

x

y

Overfitting
• Here are the machine’s predictions using polynomial

regression, with either degree 3 or degree 5:

x

y

x

y

Degree 3 Degree 25

For these data points, the predictions are very
inaccurate, which makes fMSE large.

Preventing overfitting

• How to prevent this? Two strategies:

• Keep the degree d of the polynomial modest.

• Keep the weights associated with each term modest.

Preventing overfitting

• How to prevent this? Two strategies:

• Keep the degree d of the polynomial modest.

• Keep the weight associated with each term modest.

ŷ = w0x
0 + w1x

1 + w2x
2 + . . .+ wdx

d

Random polynomials
• Let’s generate some polynomials by randomly selecting

each wi in:

• Compute the average squared coefficient as:

• We will generate random polynomials for different degrees
d and different coefficient magnitudes μ.

µ =
1

d

dX

i=0

w2
i

ŷ = w0x
0 + w1x

1 + w2x
2 + . . .+ wdx

d

Random polynomials

• Examples:
d = 2 : ŷ = 4 + 2x� 2x2 µ = 24/3 = 8
d = 4 : ŷ = x2 + 0.5x3 � 2x4 µ = 5.25/5 = 1.05

?
?

µ =
1

d

dX

i=0

w2
i

Random polynomials

• Examples:
d = 2 : ŷ = 4 + 2x� 2x2 µ = 24/3 = 8
d = 4 : ŷ = x2 + 0.5x3 � 2x4 µ = 5.25/5 = 1.05

µ =
1

d

dX

i=0

w2
i

Random polynomials

d=3

d=5

d=7

d=9

d=11

μ=7.25e-07

d=3

d=5

d=7

d=9

d=11

Random polynomials
μ=0.00063

d=3

d=5

d=7

d=9

d=11

Random polynomials
μ=0.058

d=3

d=5

d=7

d=9

d=11

Random polynomials
μ=3.31

d=3

d=5

d=7

d=9

d=11

Random polynomials
μ=90.9

d=3

d=5

d=7

d=9

d=11

Random polynomials
μ=537.8

d=3

d=5

d=7

d=9

d=11

Regularization

• The larger the coefficients (weights) w are allowed to be,
the more the polynomial regressor can overfit.

• If we “encourage” the weights to be small, we can reduce
overfitting.

• This is a form of regularization — any practice designed
to improve the machine’s ability to generalize to new
data.

Regularization

• One of the simplest and oldest regularization techniques
is to penalize large weights in the cost function.

• The “unregularized” fMSE is:

• The L2-regularized fMSE becomes:

fMSE(w) =
1

2n

nX

i=1

(y(i) � ŷ(i))2

Regularization

• One of the simplest and oldest regularization techniques
is to penalize large weights in the cost function.

• The “unregularized” fMSE is:

• The L2-regularized fMSE becomes:

fMSE(w) =
1

2n

nX

i=1

(y(i) � ŷ(i))2 +
↵

2
w>w

fMSE(w) =
1

2n

nX

i=1

(y(i) � ŷ(i))2

