CS 453X: Class 6

Jacob Whitehill



Gradient descent
(continued)



Gradient descent algorithm

e Set w to random values; call this initial choice w).
» Compute the gradient: V,, f(w'?)

 Update w by moving opposite the gradient, multiplied by
a step size «. wl) w0 — v, F(wO)

o Repeat... W(2) Y- W(l) — EVWf(W(l))

w®) — w? — v, f(w?)

wl) — wlt=b v, f(wl=1)
e ...until convergence:

FwD) — f(wP) < 6



Gradient descent demos

e 1-d

o 2-d



Convergence

e |n general, gradient descent is useful for finding a local minimum
of f.

e Local minimum: gradient is O; second derivative is positive.
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Convergence

e |n general, gradient descent is useful for finding a local minimum
of f.

e Global minimum is the smallest value of the function f.
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Convergence

e For the special case of linear regression (and a few other
ML models), gradient descent will (for appropriate €)
converge to the global minimum of fusk.



Convergence

e For the special case of linear regression (and a few other
ML models), gradient descent will (for appropriate €)
converge to the global minimum of fusk.

e What does “appropriate €” mean (intuitively)?

e Big enough to make progress (from random starting
point) to local minimum.

e Small enough not to “jump around” too much.

e Show demo.



Convergence

e For the special case of linear regression (and a few other
ML models), gradient descent will (for appropriate €)
converge to the global minimum of fusk.

e |n practice:
e Choose some € so that the cost fmse declines smoothly.
e |fit’s too slow, try increasing.

e |f it jumps around, try decreasing.



Polynomial regression



Linear regression

Linear regression is efficient to optimize and very useful,
but is limited In its expressiveness.

Unsurprisingly, it can only model linear (technically affine)
relationships:

In 1-d:



Linear regression

 But sometimes the target values y have a non-linear
relationship with the input x.

e Linear regression may not do a good job then.

e Example: y = 0.2x - 1.8x2 + 0.8x3 + noise
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Polynomial regression

e |f the labels y are a polynomial function of the inputs x, why
not enable the model to express polynomial relationships®?

* In 1-d, we can build a cubic regression model as follows:

y = wixt + wox® + wax® + b
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Polynomial regression

* How do we train the weights of the polynomial regression
(for 1-d inputs)?

* Pretend that each power of x is a separate feature.

e Form x =[x0, x1, x2, x3 7



Polynomial regression

* How do we train the weights of the polynomial regression
(for 1-d inputs)?

* Pretend that each power of x is a separate feature.
e Form x =[x0, x1, x2, x3 7
e Example:

* Suppose the raw input x = -1.5.

e Thenxo=1,x1=-1.5,x2=2.25, and x3 =-3.375.
Hence, x=[1, -1.5, 2.25, -3.375]".



Polynomial regression

e Now, notice that:

y = wox’ + wizt + wex® + wix®



Polynomial regression

e Now, notice that:

y = wox’ + wizt + wex® + wix®
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Polynomial regression

e Now, notice that:

y = wox’ + wizt + wex® + wix®
wo
w1
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Polynomial regression

* We can convert each input x into a feature vector x, and
create a design matrix X, and compute the optimal w as
before...



Polynomial regression

e Suppose we have raw inputs -1.5, -1, and 3.25.

-1.5 -1 3.25



Polynomial regression

e Suppose we have raw inputs -1.5, -1, and 3.25.

 Then for each (scalar) x we build a vector x consisting of
[XO, X1, X2, X3 ]T:

=1 =2 =3
d=0 1 1 1
d=1 -15 -1 325
d=2 225 1 10.5625
d=3 -3.375 -1 4.32812



Polynomial regression

e The matrix of all our examples (as column vectors) constitutes
the design matrix X, as usual.

1 1 1
X = 15 -1 325

225 1 10.5625

3375 -1  4.32812



Polynomial regression

e The matrix of all our examples (as column vectors) constitutes
the design matrix X, as usual.

 We can now find the optimal polynomial regression
coefficients by computing:

w=(XX")" Xy

e ...Just like with linear regression.

1 1 1
X = 15 -1 325
225 1 10.5625
3375 -1  4.32812



Overfitting and
regularization



Overfitting

e |f polynomial regression with degree 3 worked well, why
not increase the degree even higher?

e | et’s try with degree 25...



Overfitting

e |f polynomial regression with degree 3 worked well, why
not increase the degree even higher?

e | et’s try with degree 25...
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Overfitting

 Why is this bad? Recall that overfitting means that
training error is low, but testing error is high.

* Testing error represents how well we expect our machine
to perform on data we have not seen before.



Overfitting

When we collect a dataset, we are sampling from
probability distribution p(x)
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Overfitting

e When we collect a dataset, we are sampling from
probability distribution p(x) and conditional probability
distribution p(y | x).

10.0 e

7.5 1

5.0

y =0.2x - 1.8x2 + 0.8x3 + noise




Overfitting

When we sample multiple times, we will get different
results. Here is a possible training sample:
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Overfitting

e When we sample multiple times, we will get different
results. Here is a possible testing sample:
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e Here are the machine’s predictions using polynomial

Overfitting

regression, with either degree 3 or degree 5:
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Preventing overfitting

e How to prevent this? Two strategies:

o Keep the degree d of the polynomial modest.



Preventing overfitting

e How to prevent this? Two strategies:
o Keep the degree d of the polynomial modest.

 Keep the weight associated with each term modest.

~ 0 1 2 d
Y = WoX + W1 + wax” + ...+ wWax



Random polynomials

e | et’s generate some polynomials by randomly selecting
each w; in:

~ 0 1 2 d
Y = Wox + W1 + wax” + ...+ wWax

e Compute the average squared coefficient as:
d
1 2
=32
i=0

 We will generate random polynomials for different degrees
d and different coefficient magnitudes L.



Random polynomials

|
= Ezwg
i=0

e Examples:

d=2: =4+ 2x — 2z° [ = ?
d=4: §=2°+0.52° -2z p= 2



Random polynomials

|
H = Ezwg
i=0

e Examples:
d=2: =4+ 2x—2z° nw=24/3 =8
d=4: §=2x?+0.523 22 ©=>525/5=1.05



Random polynomials
u=7.25e-0
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Random polynomials
p=0.00063
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Random polynomials
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Random polynomials

u=3.31
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Random polynomials
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Random polynomials
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Regularization

 The larger the coefficients (weights) w are allowed to be,
the more the polynomial regressor can overfit.

e |f we “encourage” the weights to be small, we can reduce
overfitting.

 This is a form of regularization — any practice designed
to improve the machine’s ability to generalize to new
data.



Regularization

 One of the simplest and oldest regularization techniques
IS to penalize large weights in the cost function.

* The “unregularized” fuse is:
n
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Regularization

 One of the simplest and oldest regularization techniques
IS to penalize large weights in the cost function.

* The “unregularized” fuse is:

n

1 | |
L (1) _ ~()\2
fase (W) = 5 .E_lﬁ(y y")

 The Lo-regularized fuse becomes:
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