CS 453X: Class 5

Jacob Whitehill
Example 2: weather data

- Data from https://www.kaggle.com/selfishgene/historical-hourly-weather-data/data

- Hourly measurements of pressure, humidity, and temperature, and wind speed for different cities in the USA and Israel.

- At each time t, how accurately can we predict temperature at time $t+1$ hour in Boston?
Linear regression

- Linear regression is one of the few ML algorithms that has an analytical solution:

\[w = (XX^\top)^{-1} Xy \]

- **Analytical solution**: there is a closed formula for the answer.
Linear regression

- Alternatively, linear regression can be solved numerically using gradient descent.

- **Numerical solution**: need to iterate (according to some algorithm) many times to *approximate* the optimal value.

- Gradient descent is more laborious to code than the one-shot solution, but it generalizes to a wide variety of ML models.
Linear regression in 1-d

- Let’s look at a simple 1-d example of linear regression again...

- Here are some different weights w and associated costs (f_{MSE}):
Linear regression in 1-d

• Let’s look at a simple 1-d example of linear regression again...

• ...and here is the graph of the function $f_{\text{MSE}}(w)$:
Finding the best w

- Why not just “jump” to the optimal w that minimizes f_{MSE}?
Finding the best w

• Why not just “jump” to the optimal w that minimizes f_{MSE}?

• In 1-d, we actually could:

 • Just sample many w values:

 w

 -3 -2.99 -2.98 ... 5.99 6

 • Compute f_{MSE} for each possible w.

 $f_{MSE}(w)$

• Pick the best one.
Finding the best w

- But what about in higher dimensions (e.g., 2-d).

- We could search through all possible combinations of (w_1, w_2):

<table>
<thead>
<tr>
<th>w_1</th>
<th>w_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3, -3</td>
<td>-3, -3</td>
</tr>
<tr>
<td>-2.99, -3</td>
<td>-2.99, -2.99</td>
</tr>
<tr>
<td>5.99, -3</td>
<td>5.99, -2.98</td>
</tr>
<tr>
<td>6, -3</td>
<td>6, -2.99</td>
</tr>
</tbody>
</table>

![Graph showing a 3D surface representing $f_{true}(w_1, w_2)$]
Curse of dimensionality

- As the number of dimensions m increases, so does the number of possible values for w that we have to probe.

- If we want to sample 100 values per dimension, then we have 100^m values for m dimensions.

- For a 24x24 image, we have $m=576$ dimensions $\implies 100^{576}$

- Completely infeasible.
Gradient descent

- Gradient descent is a **hill climbing algorithm** that uses the gradient (aka slope) to decide which way to “move” w to reduce the objective function (e.g., f_{MSE}).
Gradient descent

• Suppose we just guess an initial value for w (e.g., -2.1).

• How can we make it better — increase it or decrease it?
Gradient descent

- Suppose we just guess an initial value for \(w \) (e.g., -2.1).

- How can we make it better — increase it or decrease it?

- What does the slope of \(f_{\text{MSE}} \) tell us to do?

The slope at \(f_{\text{MSE}}(-2.1) \) is negative, i.e., we can decrease our cost by increasing \(w \).
Gradient descent

• Or maybe our initial guess for w was 3.9.

• How can we make it better — increase it or decrease it?

• What does the slope of f_{MSE} tell us to do?

The slope at $f_{\text{MSE}}(3.9)$ is positive, i.e., we can decrease our cost by decreasing w.
Gradient descent

• How do we know the slope? Compute the gradient of \(f_{\text{MSE}} \) w.r.t. \(\mathbf{w} \):

\[
\nabla_{\mathbf{w}} f_{\text{MSE}}(\mathbf{y}, \hat{\mathbf{y}}; \mathbf{w}) = \nabla_{\mathbf{w}} \left[\frac{1}{2n} \sum_{i=1}^{n} (\mathbf{x}^{(i)\top} \mathbf{w} - y^{(i)})^2 \right] \\
= \frac{1}{2n} \sum_{i=1}^{n} \nabla_{\mathbf{w}} \left[(\mathbf{x}^{(i)\top} \mathbf{w} - y^{(i)})^2 \right] \\
= \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}^{(i)} (\mathbf{x}^{(i)\top} \mathbf{w} - y^{(i)}) \\
= \frac{1}{n} \mathbf{X} (\mathbf{X}^\top \mathbf{w} - \mathbf{y})
\]
Gradient descent

• How do we know the slope? Compute the gradient of f_{MSE} w.r.t. w:

$$
\nabla_w f_{\text{MSE}}(y, \hat{y}; w) = \nabla_w \left[\frac{1}{2n} \sum_{i=1}^{n} (x^{(i)\top} w - y^{(i)})^2 \right]
$$

$$
= \frac{1}{2n} \sum_{i=1}^{n} \nabla_w \left[(x^{(i)\top} w - y^{(i)})^2 \right]
$$

$$
= \frac{1}{n} \sum_{i=1}^{n} x^{(i)} (x^{(i)\top} w - y^{(i)})
$$

$$
= \frac{1}{n} X (X^\top w - y)
$$

• Then plug in the current value of w.
 (Note that X and y are computed from the data and are constant.)
Gradient descent

- How far do we “move” left or right?

- Notice that, in the graph below, the magnitude of the slope (aka gradient) gives an indication of how far we need to go to reach the optimal w.

\[
\nabla_w f_{\text{MSE}}(-3.0) = -4.53 \\
\n\nabla_w f_{\text{MSE}}(0.7) = -0.65
\]
Gradient descent algorithm

• Set \mathbf{w} to random values; call this initial choice $\mathbf{w}^{(0)}$.
Gradient descent algorithm

- Set \mathbf{w} to random values; call this initial choice $\mathbf{w}^{(0)}$.
- Compute the gradient: $\nabla_{\mathbf{w}} f(\mathbf{w}^{(0)})$
Gradient descent algorithm

- Set \(\mathbf{w} \) to random values; call this initial choice \(\mathbf{w}^{(0)} \).
- Compute the gradient: \(\nabla_{\mathbf{w}} f(\mathbf{w}^{(0)}) \)
- Update \(\mathbf{w} \) by moving opposite the gradient, multiplied by a step size \(\varepsilon \).

\[\mathbf{w}^{(1)} \leftarrow \mathbf{w}^{(0)} - \varepsilon \nabla_{\mathbf{w}} f(\mathbf{w}^{(0)}) \]
Gradient descent algorithm

• Set w to random values; call this initial choice $w^{(0)}$.
• Compute the gradient: $\nabla_w f(w^{(0)})$
• Update w by moving opposite the gradient, multiplied by a step size ε.
 \[w^{(1)} \leftarrow w^{(0)} - \varepsilon \nabla_w f(w^{(0)}) \]
• Repeat…
 \[w^{(2)} \leftarrow w^{(1)} - \varepsilon \nabla_w f(w^{(1)}) \]
 \[w^{(3)} \leftarrow w^{(2)} - \varepsilon \nabla_w f(w^{(2)}) \]

 \[\ldots \]
 \[w^{(t)} \leftarrow w^{(t-1)} - \varepsilon \nabla_w f(w^{(t-1)}) \]
Gradient descent algorithm

- Set \mathbf{w} to random values; call this initial choice $\mathbf{w}^{(0)}$.
- Compute the gradient: $\nabla_{\mathbf{w}} f(\mathbf{w}^{(0)})$
- Update \mathbf{w} by moving opposite the gradient, multiplied by a step size ε. $\mathbf{w}^{(1)} \leftarrow \mathbf{w}^{(0)} - \varepsilon \nabla_{\mathbf{w}} f(\mathbf{w}^{(0)})$
- Repeat…
 $\mathbf{w}^{(2)} \leftarrow \mathbf{w}^{(1)} - \varepsilon \nabla_{\mathbf{w}} f(\mathbf{w}^{(1)})$
 $\mathbf{w}^{(3)} \leftarrow \mathbf{w}^{(2)} - \varepsilon \nabla_{\mathbf{w}} f(\mathbf{w}^{(2)})$
 ...
 $\mathbf{w}^{(t)} \leftarrow \mathbf{w}^{(t-1)} - \varepsilon \nabla_{\mathbf{w}} f(\mathbf{w}^{(t-1)})$
- …until convergence:
 $| f(\mathbf{w}^{(t-1)}) - f(\mathbf{w}^{(t)}) | < \delta$

δ is a chosen convergence tolerance.
Gradient descent demos

- 1-d
- 2-d