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Example 2: weather data

• Data from https://www.kaggle.com/selfishgene/historical-
hourly-weather-data/data


• Hourly measurements of pressure, humidity, and 
temperature, and wind speed for different cities in the 
USA and Israel.


• At each time t, how accurately can we predict 
temperature at time t+1hour in Boston?

https://www.kaggle.com/selfishgene/historical-hourly-weather-data/data


Linear regression

• Linear regression is one of the few ML algorithms that has 
an analytical solution:


• Analytical solution: there is a closed formula for the 
answer.



Linear regression

• Alternatively, linear regression can be solved numerically 
using gradient descent.


• Numerical solution: need to iterate (according to some 
algorithm) many times to approximate the optimal value.


• Gradient descent is more laborious to code than the one-
shot solution, but it generalizes to a wide variety of ML 
models.



Linear regression in 1-d
• Let’s look at a simple 1-d example of linear regression again…


• Here are some different weights w and associated costs (fMSE):

optimal



Linear regression in 1-d
• Let’s look at a simple 1-d example of linear regression again…


• …and here is the graph of the function fMSE(w):

optimal



Finding the best w
• Why not just “jump” to the optimal w that minimizes fMSE?


• In 1-d, we actually could:


• Just sample many w values (-3, -2.99, -2.98, -2.97, …, 5.95, 
5.96, 5.97, 5.98, 5.99, 6.0).


• Compute fMSE for each possible w.


• Pick the best one.



Finding the best w
• Why not just “jump” to the optimal w that minimizes fMSE?


• In 1-d, we actually could:


• Just sample many w values:


• Compute fMSE for each possible w.


• Pick the best one.

-3 -2.99 -2.98 … 5.99 6

… … … … … …

w

fMSE(w)



Finding the best w
• But what about in higher dimensions (e.g., 2-d).


• We could search through all possible combinations of (w1, w2):

-3, -3 -3, -2.99 … -3, 6

-2.99, -3 -2.99, -2.99 … -2.99, 6

…

5.99, -3 5.99, -2.98 … 5.99, 6

6, -3 6, -2.99 … 6, 6

w1

w2



Curse of dimensionality

• As the number of dimensions m increases, so does the 
number of possible values for w that we have to probe.


• If we want to sample 100 values per dimension, then we 
have 100m values for m dimensions.


• For a 24x24 image, we have m=576 dimensions ==> 
100576


• Completely infeasible.



Gradient descent

• Gradient descent is a hill climbing algorithm that uses 
the gradient (aka slope) to decide which way to “move” w 
to reduce the objective function (e.g., fMSE).



Gradient descent
• Suppose we just guess an initial value for w (e.g., -2.1).


• How can we make it better — increase it or decrease it?


• What does the slope of fMSE tell us to do?



Gradient descent
• Suppose we just guess an initial value for w (e.g., -2.1).


• How can we make it better — increase it or decrease it?


• What does the slope of fMSE tell us to do?

The slope at fMSE(-2.1) is 
negative, i.e., we can decrease 

our cost by increasing w.



Gradient descent
• Or maybe our initial guess for w was 3.9.


• How can we make it better — increase it or decrease it?


• What does the slope of fMSE tell us to do?

The slope at fMSE(3.9) is positive, 
i.e., we can decrease our cost 

by decreasing w.



Gradient descent
• How do we know the slope? Compute the gradient of 

fMSE w.r.t. w:

rwfMSE(y, ŷ;w) = rw
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Gradient descent
• How do we know the slope? Compute the gradient of 

fMSE w.r.t. w:

rwfMSE(y, ŷ;w) = rw
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• Then plug in the current value of w. 
(Note that X and y are computed from the data and are constant.)
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Gradient descent
• How far do we “move” left or right?


• Notice that, in the graph below, the magnitude of the 
slope (aka gradient) gives an indication of how far we need 
to go to reach the optimal w.

rwfMSE(�3.0) = �4.53

rwfMSE(0.7) = �.65



Gradient descent algorithm
• Set w to random values; call this initial choice w(0).


• Compute the gradient: 


• Update w by moving opposite the gradient, multiplied by 
a step size ε.


• Repeat…


• …until convergence:
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• Repeat…
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rwf(w(0))



Gradient descent algorithm
• Set w to random values; call this initial choice w(0).


• Compute the gradient: 


• Update w by moving opposite the gradient, multiplied by 
a step size ε.


• Repeat…


• …until convergence:

rwf(w(0))

w(1)  w(0) � ✏rwf(w(0))



Gradient descent algorithm
• Set w to random values; call this initial choice w(0).


• Compute the gradient: 


• Update w by moving opposite the gradient, multiplied by 
a step size ε.


• Repeat…


• …until convergence:

rwf(w(0))

w(1)  w(0) � ✏rwf(w(0))

w(2)  w(1) � ✏rwf(w(1))

w(3)  w(2) � ✏rwf(w(2))

w(t)  w(t�1) � ✏rwf(w(t�1))

…



Gradient descent algorithm
• Set w to random values; call this initial choice w(0).


• Compute the gradient: 


• Update w by moving opposite the gradient, multiplied by 
a step size ε.


• Repeat…


• …until convergence:

rwf(w(0))

w(1)  w(0) � ✏rwf(w(0))

w(2)  w(1) � ✏rwf(w(1))

w(3)  w(2) � ✏rwf(w(2))

w(t)  w(t�1) � ✏rwf(w(t�1))

…

|f(w(t�1))� f(w(t))| < � δ is a chosen 
convergence tolerance.



Gradient descent demos

• 1-d


• 2-d


