CS 453X: Class 5

Jacob Whitehill

Example 2: weather data

- Data from https://www.kaggle.com/selfishgene/historical-hourly-weather-data/data
- Hourly measurements of pressure, humidity, and temperature, and wind speed for different cities in the USA and Israel.
- At each time t, how accurately can we predict temperature at time t+1hour in Boston?

Linear regression

 Linear regression is one of the few ML algorithms that has an analytical solution:

$$\mathbf{w} = \left(\mathbf{X}\mathbf{X}^{\top}\right)^{-1}\mathbf{X}\mathbf{y}$$

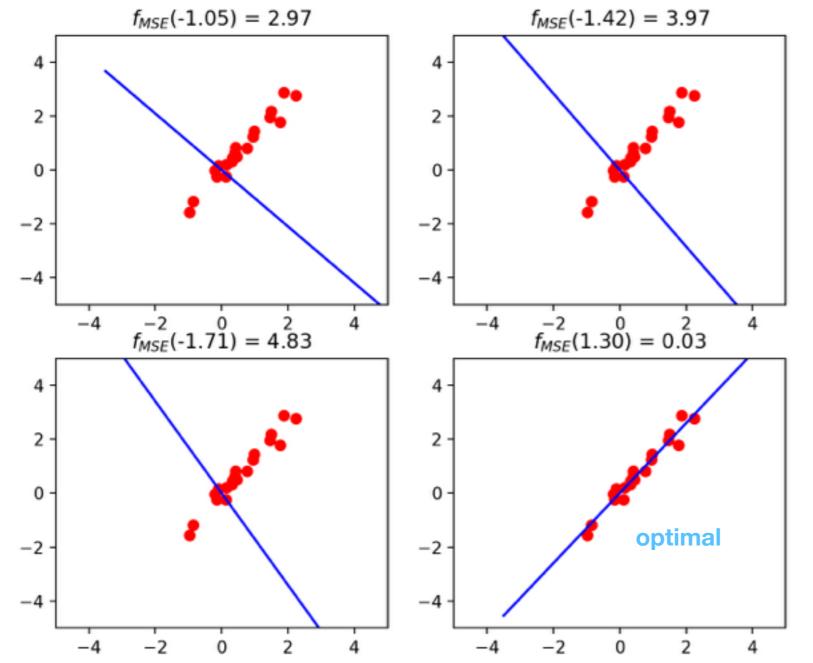
Analytical solution: there is a closed formula for the answer.

Linear regression

- Alternatively, linear regression can be solved numerically using gradient descent.
- Numerical solution: need to iterate (according to some algorithm) many times to approximate the optimal value.
- Gradient descent is more laborious to code than the oneshot solution, but it generalizes to a wide variety of ML models.

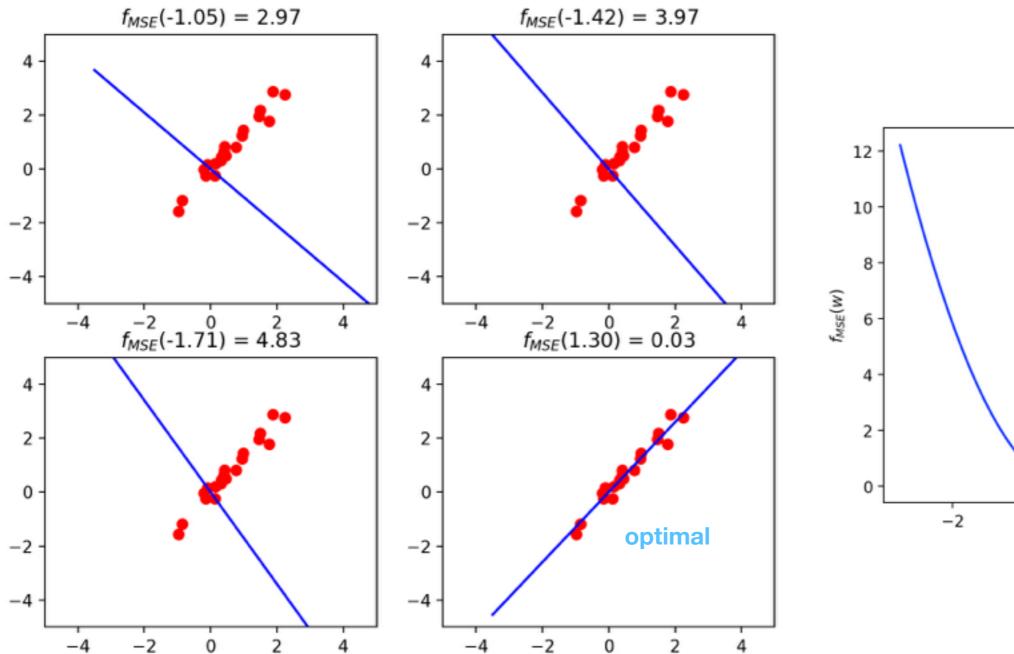
Linear regression in 1-d

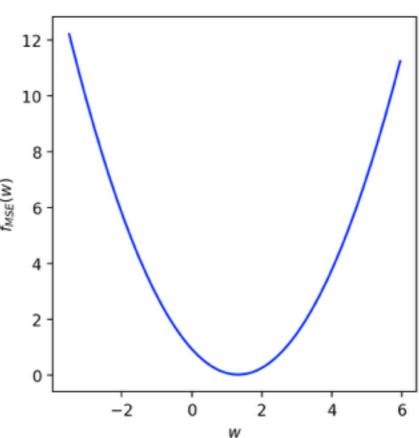
- Let's look at a simple 1-d example of linear regression again...
- Here are some different weights **w** and associated costs (f_{MSE}):



Linear regression in 1-d

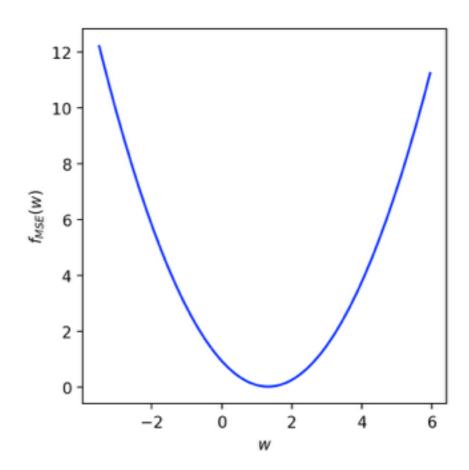
- Let's look at a simple 1-d example of linear regression again...
- ...and here is the graph of the function $f_{MSE}(\mathbf{w})$:





Finding the best w

• Why not just "jump" to the optimal \mathbf{w} that minimizes f_{MSE} ?

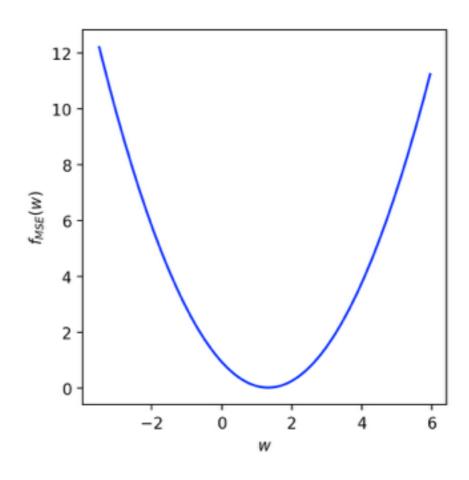


Finding the best w

- Why not just "jump" to the optimal **w** that minimizes f_{MSE} ?
- In 1-d, we actually could:
 - Just sample many w values:

• Compute f_{MSE} for each possible **w**.

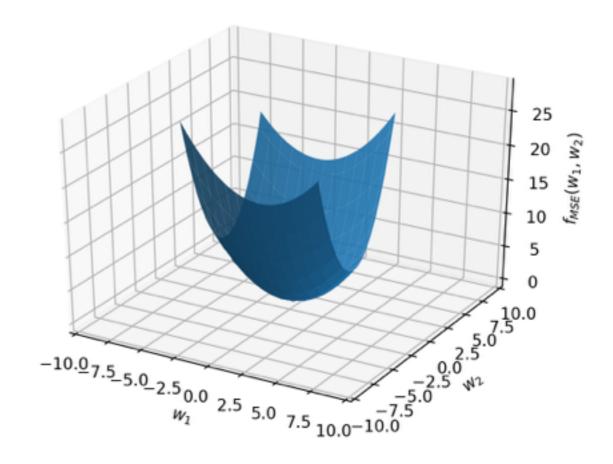
Pick the best one.



Finding the best w

- But what about in higher dimensions (e.g., 2-d).
- We could search through all possible combinations of (w₁, w₂):

	W 1			
	-3, -3	-3, -2.99		-3, 6
	-2.99, -3	-2.99, -2.99		-2.99, 6
W ₂				
	5.99, -3	5.99, -2.98		5.99, 6
	6, -3	6, -2.99		6, 6

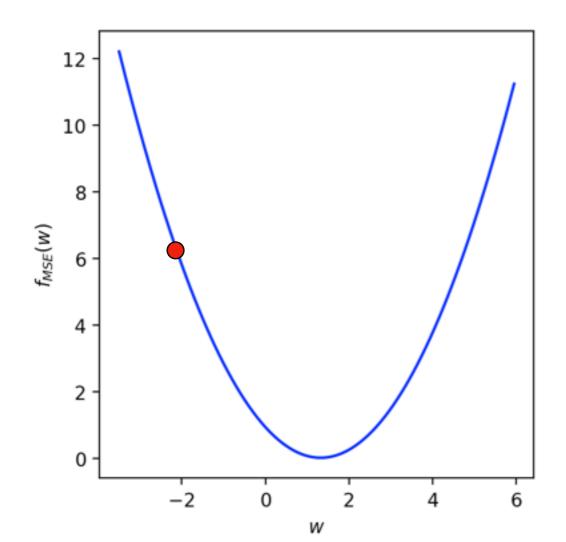


Curse of dimensionality

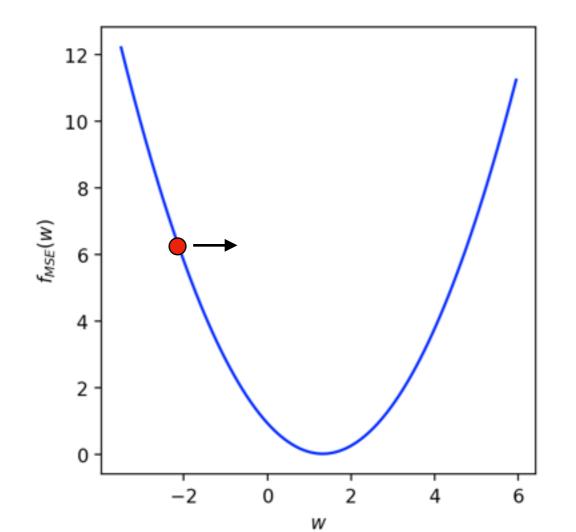
- As the number of dimensions m increases, so does the number of possible values for w that we have to probe.
- If we want to sample 100 values per dimension, then we have 100^m values for m dimensions.
- For a 24x24 image, we have m=576 dimensions ==> 100⁵⁷⁶
 - Completely infeasible.

Gradient descent is a hill climbing algorithm that uses
the gradient (aka slope) to decide which way to "move" w
to reduce the objective function (e.g., f_{MSE}).

- Suppose we just guess an initial value for w (e.g., -2.1).
- How can we make it better increase it or decrease it?

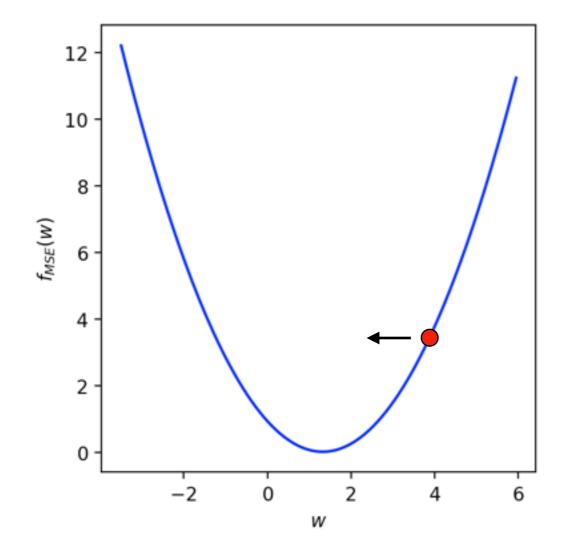


- Suppose we just guess an initial value for w (e.g., -2.1).
- How can we make it better increase it or decrease it?
 - What does the **slope** of f_{MSE} tell us to do?



The slope at f_{MSE} (-2.1) is negative, i.e., we can decrease our cost by increasing w.

- Or maybe our initial guess for w was 3.9.
- How can we make it better increase it or decrease it?
 - What does the **slope** of f_{MSE} tell us to do?



The slope at $f_{MSE}(3.9)$ is positive, i.e., we can decrease our cost by decreasing w.

 How do we know the slope? Compute the gradient of f_{MSE} w.r.t. w:

$$\nabla_{\mathbf{w}} f_{\text{MSE}}(\mathbf{y}, \hat{\mathbf{y}}; \mathbf{w}) = \nabla_{\mathbf{w}} \left[\frac{1}{2n} \sum_{i=1}^{n} \left(\mathbf{x}^{(i)^{\top}} \mathbf{w} - y^{(i)} \right)^{2} \right]$$

$$= \frac{1}{2n} \sum_{i=1}^{n} \nabla_{\mathbf{w}} \left[\left(\mathbf{x}^{(i)^{\top}} \mathbf{w} - y^{(i)} \right)^{2} \right]$$

$$= \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}^{(i)} \left(\mathbf{x}^{(i)^{\top}} \mathbf{w} - y^{(i)} \right)$$

$$= \frac{1}{n} \mathbf{X} \left(\mathbf{X}^{\top} \mathbf{w} - \mathbf{y} \right)$$

 How do we know the slope? Compute the gradient of f_{MSE} w.r.t. w:

$$\nabla_{\mathbf{w}} f_{\text{MSE}}(\mathbf{y}, \hat{\mathbf{y}}; \mathbf{w}) = \nabla_{\mathbf{w}} \left[\frac{1}{2n} \sum_{i=1}^{n} \left(\mathbf{x}^{(i)} \mathbf{w} - y^{(i)} \right)^{2} \right]$$

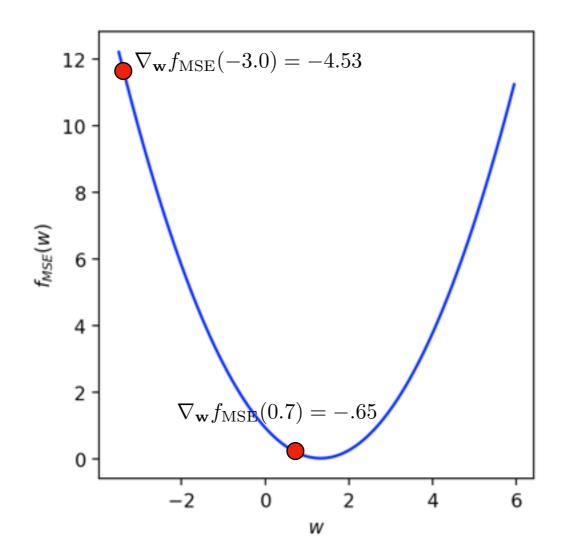
$$= \frac{1}{2n} \sum_{i=1}^{n} \nabla_{\mathbf{w}} \left[\left(\mathbf{x}^{(i)} \mathbf{w} - y^{(i)} \right)^{2} \right]$$

$$= \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}^{(i)} \left(\mathbf{x}^{(i)} \mathbf{w} - y^{(i)} \right)$$

$$= \frac{1}{n} \mathbf{X} \left(\mathbf{X}^{\top} \mathbf{w} - \mathbf{y} \right)$$

Then plug in the current value of w.
 (Note that X and y are computed from the data and are constant.)

- How far do we "move" left or right?
 - Notice that, in the graph below, the magnitude of the slope (aka gradient) gives an indication of how far we need to go to reach the optimal w.



• Set w to random values; call this initial choice w⁽⁰⁾.

- Set w to random values; call this initial choice w⁽⁰⁾.
- Compute the gradient: $\nabla_{\mathbf{w}} f(\mathbf{w}^{(0)})$

- Set w to random values; call this initial choice w⁽⁰⁾.
- Compute the gradient: $\nabla_{\mathbf{w}} f(\mathbf{w}^{(0)})$
- Update \mathbf{w} by moving opposite the gradient, multiplied by a step size $\mathbf{\epsilon}$. $\mathbf{w}^{(1)} \leftarrow \mathbf{w}^{(0)} \epsilon \nabla_{\mathbf{w}} f(\mathbf{w}^{(0)})$

- Set w to random values; call this initial choice w⁽⁰⁾.
- Compute the gradient: $\nabla_{\mathbf{w}} f(\mathbf{w}^{(0)})$
- Update **w** by moving opposite the gradient, multiplied by a step size ε . $\mathbf{w}^{(1)} \leftarrow \mathbf{w}^{(0)} \epsilon \nabla_{\mathbf{w}} f(\mathbf{w}^{(0)})$
- Repeat...

$$\mathbf{w}^{(2)} \leftarrow \mathbf{w}^{(1)} - \epsilon \nabla_{\mathbf{w}} f(\mathbf{w}^{(1)})$$

$$\mathbf{w}^{(3)} \leftarrow \mathbf{w}^{(2)} - \epsilon \nabla_{\mathbf{w}} f(\mathbf{w}^{(2)})$$

. . .

$$\mathbf{w}^{(t)} \leftarrow \mathbf{w}^{(t-1)} - \epsilon \nabla_{\mathbf{w}} f(\mathbf{w}^{(t-1)})$$

- Set w to random values; call this initial choice w⁽⁰⁾.
- Compute the gradient: $\nabla_{\mathbf{w}} f(\mathbf{w}^{(0)})$
- Update **w** by moving opposite the gradient, multiplied by a step size ϵ . $\mathbf{w}^{(1)} \leftarrow \mathbf{w}^{(0)} \epsilon \nabla_{\mathbf{w}} f(\mathbf{w}^{(0)})$
- Repeat...

$$\mathbf{w}^{(2)} \leftarrow \mathbf{w}^{(1)} - \epsilon \nabla_{\mathbf{w}} f(\mathbf{w}^{(1)})$$

$$\mathbf{w}^{(3)} \leftarrow \mathbf{w}^{(2)} - \epsilon \nabla_{\mathbf{w}} f(\mathbf{w}^{(2)})$$

. . .

$$\mathbf{w}^{(t)} \leftarrow \mathbf{w}^{(t-1)} - \epsilon \nabla_{\mathbf{w}} f(\mathbf{w}^{(t-1)})$$

...until convergence:

$$|f(\mathbf{w}^{(t-1)}) - f(\mathbf{w}^{(t)})| < \delta \quad \text{o is a chosen convergence tolerance}$$

Gradient descent demos

- 1-d
- 2-d