
CS 453X: Class 5
Jacob Whitehill

Example 2: weather data

• Data from https://www.kaggle.com/selfishgene/historical-
hourly-weather-data/data

• Hourly measurements of pressure, humidity, and
temperature, and wind speed for different cities in the
USA and Israel.

• At each time t, how accurately can we predict
temperature at time t+1hour in Boston?

https://www.kaggle.com/selfishgene/historical-hourly-weather-data/data

Linear regression

• Linear regression is one of the few ML algorithms that has
an analytical solution:

• Analytical solution: there is a closed formula for the
answer.

Linear regression

• Alternatively, linear regression can be solved numerically
using gradient descent.

• Numerical solution: need to iterate (according to some
algorithm) many times to approximate the optimal value.

• Gradient descent is more laborious to code than the one-
shot solution, but it generalizes to a wide variety of ML
models.

Linear regression in 1-d
• Let’s look at a simple 1-d example of linear regression again…

• Here are some different weights w and associated costs (fMSE):

optimal

Linear regression in 1-d
• Let’s look at a simple 1-d example of linear regression again…

• …and here is the graph of the function fMSE(w):

optimal

Finding the best w
• Why not just “jump” to the optimal w that minimizes fMSE?

• In 1-d, we actually could:

• Just sample many w values (-3, -2.99, -2.98, -2.97, …, 5.95,
5.96, 5.97, 5.98, 5.99, 6.0).

• Compute fMSE for each possible w.

• Pick the best one.

Finding the best w
• Why not just “jump” to the optimal w that minimizes fMSE?

• In 1-d, we actually could:

• Just sample many w values:

• Compute fMSE for each possible w.

• Pick the best one.

-3 -2.99 -2.98 … 5.99 6

… … … … … …

w

fMSE(w)

Finding the best w
• But what about in higher dimensions (e.g., 2-d).

• We could search through all possible combinations of (w1, w2):

-3, -3 -3, -2.99 … -3, 6

-2.99, -3 -2.99, -2.99 … -2.99, 6

…

5.99, -3 5.99, -2.98 … 5.99, 6

6, -3 6, -2.99 … 6, 6

w1

w2

Curse of dimensionality

• As the number of dimensions m increases, so does the
number of possible values for w that we have to probe.

• If we want to sample 100 values per dimension, then we
have 100m values for m dimensions.

• For a 24x24 image, we have m=576 dimensions ==>
100576

• Completely infeasible.

Gradient descent

• Gradient descent is a hill climbing algorithm that uses
the gradient (aka slope) to decide which way to “move” w
to reduce the objective function (e.g., fMSE).

Gradient descent
• Suppose we just guess an initial value for w (e.g., -2.1).

• How can we make it better — increase it or decrease it?

• What does the slope of fMSE tell us to do?

Gradient descent
• Suppose we just guess an initial value for w (e.g., -2.1).

• How can we make it better — increase it or decrease it?

• What does the slope of fMSE tell us to do?

The slope at fMSE(-2.1) is
negative, i.e., we can decrease

our cost by increasing w.

Gradient descent
• Or maybe our initial guess for w was 3.9.

• How can we make it better — increase it or decrease it?

• What does the slope of fMSE tell us to do?

The slope at fMSE(3.9) is positive,
i.e., we can decrease our cost

by decreasing w.

Gradient descent
• How do we know the slope? Compute the gradient of

fMSE w.r.t. w:

rwfMSE(y, ŷ;w) = rw

"
1

2n

nX

i=1

⇣
x

(i)>
w � y(i)

⌘2
#

=
1

2n

nX

i=1

rw

⇣
x

(i)>
w � y(i)

⌘2
�

=
1

n

nX

i=1

x

(i)
⇣
x

(i)>
w � y(i)

⌘

=
1

n
X

�
X>w � y

�

Gradient descent
• How do we know the slope? Compute the gradient of

fMSE w.r.t. w:

rwfMSE(y, ŷ;w) = rw

"
1

2n

nX

i=1

⇣
x

(i)>
w � y(i)

⌘2
#

=
1

2n

nX

i=1

rw

⇣
x

(i)>
w � y(i)

⌘2
�

=
1

n

nX

i=1

x

(i)
⇣
x

(i)>
w � y(i)

⌘

• Then plug in the current value of w. 
(Note that X and y are computed from the data and are constant.)

=
1

n
X

�
X>w � y

�

Gradient descent
• How far do we “move” left or right?

• Notice that, in the graph below, the magnitude of the
slope (aka gradient) gives an indication of how far we need
to go to reach the optimal w.

rwfMSE(�3.0) = �4.53

rwfMSE(0.7) = �.65

Gradient descent algorithm
• Set w to random values; call this initial choice w(0).

• Compute the gradient:

• Update w by moving opposite the gradient, multiplied by
a step size ε.

• Repeat…

• …until convergence:

Gradient descent algorithm
• Set w to random values; call this initial choice w(0).

• Compute the gradient:

• Update w by moving opposite the gradient, multiplied by
a step size ε.

• Repeat…

• …until convergence:

rwf(w(0))

Gradient descent algorithm
• Set w to random values; call this initial choice w(0).

• Compute the gradient:

• Update w by moving opposite the gradient, multiplied by
a step size ε.

• Repeat…

• …until convergence:

rwf(w(0))

w(1) w(0) � ✏rwf(w(0))

Gradient descent algorithm
• Set w to random values; call this initial choice w(0).

• Compute the gradient:

• Update w by moving opposite the gradient, multiplied by
a step size ε.

• Repeat…

• …until convergence:

rwf(w(0))

w(1) w(0) � ✏rwf(w(0))

w(2) w(1) � ✏rwf(w(1))

w(3) w(2) � ✏rwf(w(2))

w(t) w(t�1) � ✏rwf(w(t�1))

…

Gradient descent algorithm
• Set w to random values; call this initial choice w(0).

• Compute the gradient:

• Update w by moving opposite the gradient, multiplied by
a step size ε.

• Repeat…

• …until convergence:

rwf(w(0))

w(1) w(0) � ✏rwf(w(0))

w(2) w(1) � ✏rwf(w(1))

w(3) w(2) � ✏rwf(w(2))

w(t) w(t�1) � ✏rwf(w(t�1))

…

|f(w(t�1))� f(w(t))| < � δ is a chosen
convergence tolerance.

Gradient descent demos

• 1-d

• 2-d

