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Linear regression in 2-d

e | et’s examine again how linear regression works with just
2 dimensions and just a single training example:
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Linear regression:
matrix notation

e Suppose we have n images, each with just 2 pixels.

vy = X'w
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1-d example

* Linear regression finds the weight vector w that minimizes
the fuse. Here’s an example where each x is just 1-d...
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Exercise

e Which of the following regression lines would be

predicted using the model described above?
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Exercise

e Which of the following regression lines would be
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Bias term

e |n order to account for target values with non-zero mean,
we could add a bias term to our model:

g=x'w+b

* We could then compute the gradient w.r.t. both w and b
and solve.
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Bias term

e Alternatively, we can implicitly include a bias term by
augmenting each input vector x with a 1 at the end:

1)

 Correspondingly, our weight vector w will have an extra
component (bias term) at the end.
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Bias term

e Jo see why, notice that:




Bias term

 We can find the optimal w and b based on all the training
data using matrix notation.

e First define an augmented design matrix:
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e Then compute:
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Example 1: age estimation

e Regress the age from 48x48 face images.

e Show demo...



Data Augmentation

e How can we easily increase the number of training
images?

e Flip them left-right:
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Data Augmentation

e |n numpy:
e Let faces be a (n x 48 x 48) matrix containing n images.

e Then facesFlipped = faces[:, :, ::-1]
contains the left-right flipped images.
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Data Augmentation

* Avoid leakage of facial identity information:

» Make sure that no “flipped” image in the testing set has
an “unflipped” image in the training set (and vice-
versa).

 Data leakage: information in the training set which
divulges information about the test set and which can
bias the accuracy estimates.



Learned weights

e |nspecting what the machine learned can be useful for
debugging (and kinda fun to look at).

e For age estimation:

Furrows around nose?
Wrinkles in forehead?

G 10 20 30 10

X w
Higher temperatures associated
with larger age values.



