
CS 453X: Class 3
Jacob Whitehill

Linear algebra
• A column vector is a (n x 1) matrix.

• A row vector is a (1 x n) matrix.

• The transpose of (n x k) matrix A, denoted AT, is (k x n).

• Multiplication of matrices A and B:

• Only possible when: A is (n x k) and B is (k x m)

• Result: (n x m)

• The inner product between two column vectors (same length) x, y can
be written as: xTy

• The Hadamard (element-wise) product between two matrices A and B is
written as A ⊙ B.

Weakness of our feature set

• So far, the feature we have considered are very weak:

• Is pixel (r1,c1) brighter than pixel (r2,c2)?

• We can’t even express simple relationships such as:

• “(r1,c1) is at least 5 bigger than (r2,c2)”

• “2 times (r1,c1) is bigger than (r2,c2)”

• “2 times (r1,c1) plus 4 times (r2,c2) is larger than (r3,c3)”.

Linear regression

• We can harness these more complex relationships using
linear regression.

• Let’s switch back to the age estimation problem…

Linear regression
• Linear regression is built as a linear combination of all the

inputs x:

• Here, we treat the image x as a vector (even though it
represents a 2-d image).

image pixels

Age estimator g 36

x ŷ

ŷ = g(x;w) =
mX

j=1

xjwj = x>w

Linear regression
• Linear regression is built as a linear combination of all the

inputs x:

• Vector w represent an “overlay image” that weights the
different pixel intensities of x.

image pixels

Age estimator g 36

x ŷ

ŷ = g(x;w) =
mX

j=1

xjwj = x>w

w

Linear regression

• Image a 2x2 pixel “image” x and a weight matrix w:

• Then ŷ = 2*1 + 5*3 + 0*2 + 3*4 = 22

2 5

0 3

1 3

2 4
x w

Linear regression

• How should we choose each “weight” wj?

• Let’s define the loss function that we seek to minimize:

fMSE(y, ŷ;w) =
1

2n

nX

i=1

⇣
g(x(i);w)� y(i)

⌘2

=
1

2n

nX

i=1

⇣
x(i)>w � y(i)

⌘2

The 2 in the denominator will
slightly simplify the algebra later…

Linear regression

• w is an unconstrained real-valued vector; hence, we can
use differential calculus to find the minimum of fMSE.

• Just derive the gradient of fMSE w.r.t. w, set to 0, and
solve.

• Since fMSE is a convex function, we are guaranteed that
this critical point is a global minimum.

Matrix/vector calculus

• For a real-valued function , we define the
gradient w.r.t. w as:

• In other words, the gradient is a column vector containing
all first partial derivatives w.r.t. w.

f : Rm ! R

rwf =

2

64

@f
@w1

...
@f

@wm

3

75

Solving for w
• The gradient of fMSE is thus:

rwfMSE(y, ŷ;w) = rw

"
1

2n

nX

i=1

⇣
x(i)>w � y(i)

⌘2
#

=
1

2n

nX

i=1

rw

⇣
x(i)>w � y(i)

⌘2
�

=
1

n

nX

i=1

x(i)
⇣
x(i)>w � y(i)

⌘
?

1

n

nX

i=1

x(i)
⇣
x(i)>w � y(i)

⌘

1

n

nX

i=1

⇣
x(i)>w � y(i)

⌘
x(i)

1

n

nX

i=1

⇣
x(i)>wx(i) � x(i)y(i)

⌘

1

n

nX

i=1

⇣
x(i)>w � y(i)

⌘
x(i)>

1.

2.

3.

4.

Solving for w
• The gradient of fMSE is thus:

rwfMSE(y, ŷ;w) = rw

"
1

2n

nX

i=1

⇣
x(i)>w � y(i)

⌘2
#

=
1

2n

nX

i=1

rw

⇣
x(i)>w � y(i)

⌘2
�

=
1

n

nX

i=1

x(i)
⇣
x(i)>w � y(i)

⌘

1

n

nX

i=1

x(i)
⇣
x(i)>w � y(i)

⌘

1

n

nX

i=1

⇣
x(i)>w � y(i)

⌘
x(i)

1

n

nX

i=1

⇣
x(i)>wx(i) � x(i)y(i)

⌘

1

n

nX

i=1

⇣
x(i)>w � y(i)

⌘
x(i)>

1.

2.

3.

4.

Correct

Solving for w

• By setting to 0, splitting the sum apart, and solving, we
reach the solution:

w =

nX

i=1

x(i)x(i)>
!�1 nX

i=1

x(i)y(i)
!

Solving for w
• By setting to 0, splitting the sum apart, and solving, we

reach the solution:

2-layer neural networks (linear regression)
CS525 191D 2018 – Jacob Whitehill (jrwhitehill@wpi.edu)

1 Basic setup and solution

We can define a linear regressor (2-layer neural network) with weights w 2 Rn
such that the prediction

ŷ = x>w. Then, based on a training set {x(i)
, y

(i)}mi=1 consisting of m examples, where each xi 2 Rn
and

each yi 2 {0, 1}, we can define a cost function J :

J(w) =
1

2

mX

i=1

(y
(i) � ŷ

(i)
)
2

=
1

2

X

i

(y
(i) � x(i)>w)

2

We then derive the gradient of J w.r.t. w as:

rwJ(w) = �
X

i

x(i)
(y

(i) � x(i)>w)

=

X

i

x(i)x(i)>w �
X

i

x(i)
y
(i)

We then set to 0 and solve:

0 =

X

i

x(i)x(i)>w �
X

i

x(i)
y
(i)

X

i

x(i)x(i)>w =

X

i

x(i)
y
(i)

w =

X

i

x(i)x(i)>
!�1X

i

x(i)
y
(i)

We can also derive the same solution more compactly using matrix/vector notation. Let matrix n⇥m matrix

X contain the m data points as column vectors, and let y be an m-dimensional column vector containing

the corresponding labels. Then we can define J , and derive the minimizing solution, as:

J(w) =
1

2
(y �X>w)

>
(y �X>w)

rwJ(w) = X(y �X>w)

0 = Xy �XX>w

w = (XX>
)
�1Xy

2 Regularization

To discourage overfitting, we can impose a penalty on the magnitude of the weights w; this becomes another

term we add to our cost function, with an associated hyperparameter ↵. This is known as L2 regularization

1

1

n

nX

i=1

x(i)
⇣
x(i)>w � y(i)

⌘

1

n

nX

i=1

⇣
x(i)>w � y(i)

⌘
x(i)

1

n

nX

i=1

⇣
x(i)>wx(i) � x(i)y(i)

⌘

1

n

nX

i=1

⇣
x(i)>w � y(i)

⌘
x(i)>

Matrix notation

• Let’s define a matrix X to contain all the training images: 
 

• In statistics, X is called the design matrix.

• Let’s define vector y to contain all the training labels:

Matrix notation
• Using summation notation, we derived:

• Using matrix notation, we can write the solution as:

w =

nX

i=1

x(i)x(i)>
!�1 nX

i=1

x(i)y(i)
!

where

1.

2.

3.

Matrix notation

• The solution for the optimal w can be re-written as:

• To compute this, do not use np.linalg.inv.

• Instead, use np.linalg.solve, which avoids explicitly
computing the matrix inverse.

• Show demo.

