### CS 453X: Class 3

Jacob Whitehill

# Linear algebra

- A column vector is a (n x 1) matrix.
- A row vector is a (1 x n) matrix.
- The **transpose** of  $(n \times k)$  matrix **A**, denoted  $\mathbf{A}^T$ , is  $(k \times n)$ .
- Multiplication of matrices A and B:
  - Only possible when: **A** is  $(n \times k)$  and **B** is  $(k \times m)$
  - Result: (*n* x *m*)
- The inner product between two column vectors (same length) x, y can be written as: x<sup>T</sup>y
- The Hadamard (element-wise) product between two matrices A and B is written as A ⊙ B.

#### Weakness of our feature set

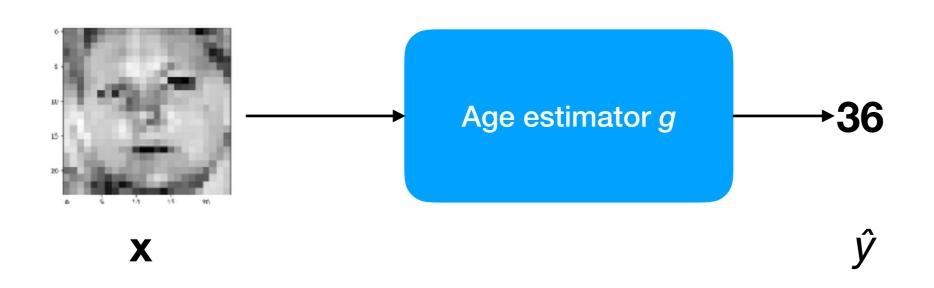
- So far, the feature we have considered are very weak:
  - Is pixel  $(r_1,c_1)$  brighter than pixel  $(r_2,c_2)$ ?
- We can't even express simple relationships such as:
  - " $(r_1,c_1)$  is at least 5 bigger than  $(r_2,c_2)$ "
  - "2 times  $(r_1,c_1)$  is bigger than  $(r_2,c_2)$ "
  - "2 times  $(r_1,c_1)$  plus 4 times  $(r_2,c_2)$  is larger than  $(r_3,c_3)$ ".

- We can harness these more complex relationships using linear regression.
- Let's switch back to the age estimation problem...

 Linear regression is built as a linear combination of all the inputs x:

$$\hat{y} = g(\mathbf{x}; \mathbf{w}) = \sum_{j=1}^m \mathbf{x}_j \mathbf{w}_j = \mathbf{x}^{ op} \mathbf{w}_j$$

 Here, we treat the image x as a vector (even though it represents a 2-d image).



 Linear regression is built as a linear combination of all the inputs x:

$$\hat{y} = g(\mathbf{x}; \mathbf{w}) = \sum_{j=1}^{m} \mathbf{x}_j \mathbf{w}_j = \mathbf{x}^{ op} \mathbf{w}_j$$

 Vector w represent an "overlay image" that weights the different pixel intensities of x.

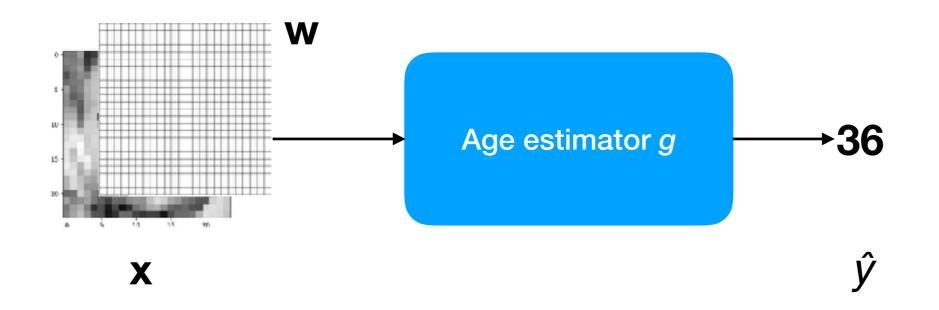


Image a 2x2 pixel "image" x and a weight matrix w:

| 2 | 5 |
|---|---|
| 0 | 3 |
| X |   |

• Then  $\hat{y} = 2*1 + 5*3 + 0*2 + 3*4 = 22$ 

- How should we choose each "weight" w<sub>j</sub>?
- Let's define the loss function that we seek to minimize:

$$f_{\text{MSE}}(\mathbf{y}, \hat{\mathbf{y}}; \mathbf{w}) = \frac{1}{2n} \sum_{i=1}^{n} \left( g(\mathbf{x}^{(i)}; \mathbf{w}) - y^{(i)} \right)^{2}$$
$$= \frac{1}{2n} \sum_{i=1}^{n} \left( \mathbf{x}^{(i)} \mathbf{w} - y^{(i)} \right)^{2}$$

The 2 in the denominator will slightly simplify the algebra later...

- **w** is an unconstrained real-valued vector; hence, we can use differential calculus to find the minimum of  $f_{MSE}$ .
- Just derive the gradient of f<sub>MSE</sub> w.r.t. w, set to 0, and solve.
- Since  $f_{MSE}$  is a convex function, we are guaranteed that this critical point is a global minimum.

#### Matrix/vector calculus

• For a real-valued function  $f: \mathbb{R}^m \to \mathbb{R}$ , we define the gradient w.r.t. **w** as:

$$abla_{\mathbf{w}} f = \left[ \begin{array}{c} \frac{\partial f}{\partial \mathbf{w}_1} \\ \vdots \\ \frac{\partial f}{\partial \mathbf{w}_m} \end{array} \right]$$

 In other words, the gradient is a column vector containing all first partial derivatives w.r.t. w.

• The gradient of  $f_{MSE}$  is thus:

$$\nabla_{\mathbf{w}} f_{\text{MSE}}(\mathbf{y}, \hat{\mathbf{y}}; \mathbf{w}) = \nabla_{\mathbf{w}} \left[ \frac{1}{2n} \sum_{i=1}^{n} \left( \mathbf{x}^{(i)} \mathbf{w} - y^{(i)} \right)^{2} \right]$$

$$= \frac{1}{2n} \sum_{i=1}^{n} \nabla_{\mathbf{w}} \left[ \left( \mathbf{x}^{(i)}^{\top} \mathbf{w} - y^{(i)} \right)^{2} \right]$$

1. 
$$\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}^{(i)} \left( \mathbf{x}^{(i)}^{\top} \mathbf{w} - y^{(i)} \right)$$

2. 
$$\frac{1}{n} \sum_{i=1}^{n} \left( \mathbf{x}^{(i)^{\top}} \mathbf{w} - y^{(i)} \right) \mathbf{x}^{(i)}$$

3. 
$$\frac{1}{n} \sum_{i=1}^{n} \left( \mathbf{x}^{(i)^{\top}} \mathbf{w} \mathbf{x}^{(i)} - \mathbf{x}^{(i)} y^{(i)} \right)$$

4. 
$$\frac{1}{n} \sum_{i=1}^{n} \left( \mathbf{x}^{(i)}^{\top} \mathbf{w} - y^{(i)} \right) \mathbf{x}^{(i)}^{\top}$$

• The gradient of  $f_{MSE}$  is thus:

$$\nabla_{\mathbf{w}} f_{\text{MSE}}(\mathbf{y}, \hat{\mathbf{y}}; \mathbf{w}) = \nabla_{\mathbf{w}} \left[ \frac{1}{2n} \sum_{i=1}^{n} \left( \mathbf{x}^{(i)^{\top}} \mathbf{w} - y^{(i)} \right)^{2} \right]$$

$$= \frac{1}{2n} \sum_{i=1}^{n} \nabla_{\mathbf{w}} \left[ \left( \mathbf{x}^{(i)^{\top}} \mathbf{w} - y^{(i)} \right)^{2} \right]$$

$$= \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}^{(i)} \left( \mathbf{x}^{(i)^{\top}} \mathbf{w} - y^{(i)} \right)$$

1. 
$$\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}^{(i)} \left( \mathbf{x}^{(i)^{\top}} \mathbf{w} - y^{(i)} \right)$$
 Correct

 By setting to 0, splitting the sum apart, and solving, we reach the solution:

 By setting to 0, splitting the sum apart, and solving, we reach the solution:

$$\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}^{(i)} \left( \mathbf{x}^{(i)}^{\top} \mathbf{w} - y^{(i)} \right)$$

$$0 = \sum_{i} \mathbf{x}^{(i)} \mathbf{x}^{(i)^{\top}} \mathbf{w} - \sum_{i} \mathbf{x}^{(i)} y^{(i)}$$
$$\sum_{i} \mathbf{x}^{(i)} \mathbf{x}^{(i)^{\top}} \mathbf{w} = \sum_{i} \mathbf{x}^{(i)} y^{(i)}$$
$$\mathbf{w} = \left(\sum_{i} \mathbf{x}^{(i)} \mathbf{x}^{(i)^{\top}}\right)^{-1} \sum_{i} \mathbf{x}^{(i)} y^{(i)}$$

#### Matrix notation

Let's define a matrix X to contain all the training images:

$$\mathbf{X} = \left[ egin{array}{ccccc} \mathbf{x}^{(1)} & \dots & \mathbf{x}^{(n)} \\ & & & & \end{array} 
ight]$$

- In statistics, X is called the design matrix.
- Let's define vector y to contain all the training labels:

$$\mathbf{y} = \left[ \begin{array}{c} y^{(1)} \\ \vdots \\ y^{(n)} \end{array} \right]$$

#### Matrix notation

Using summation notation, we derived:

$$\mathbf{w} = \left(\sum_{i=1}^{n} \mathbf{x}^{(i)} \mathbf{x}^{(i)}^{\top}\right)^{-1} \left(\sum_{i=1}^{n} \mathbf{x}^{(i)} y^{(i)}\right)$$

Using matrix notation, we can write the solution as:

where 
$$\mathbf{X} = \left[ \begin{array}{ccc} \mathbf{x}^{(1)} & \dots & \mathbf{x}^{(n)} \\ \mathbf{1} & & \end{array} \right]$$

1. 
$$\mathbf{w} = (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{y}$$

2. 
$$\mathbf{w} = (\mathbf{X} \odot \mathbf{X})^{-1} \odot \mathbf{X}^{\mathsf{T}} \mathbf{y}$$

3. 
$$\mathbf{w} = \left(\mathbf{X}\mathbf{X}^{\top}\right)^{-1}\mathbf{X}\mathbf{y}$$

#### Matrix notation

The solution for the optimal w can be re-written as:

$$\mathbf{w} = (\mathbf{X}\mathbf{X}^{\top})^{-1}\mathbf{X}\mathbf{y}$$

- To compute this, do **not** use np.linalg.inv.
- Instead, use np.linalg.solve, which avoids explicitly computing the matrix inverse.
- Show demo.