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Linear algebra
• A column vector is a (n x 1) matrix.


• A row vector is a (1 x n) matrix.


• The transpose of (n x k) matrix A, denoted AT, is (k x n).


• Multiplication of matrices A and B:


• Only possible when: A is (n x k) and B is (k x m)


• Result: (n x m)


• The inner product between two column vectors (same length) x, y can 
be written  as:  xTy 

• The Hadamard (element-wise) product between two matrices A and B is 
written as A ⊙ B.



Weakness of our feature set

• So far, the feature we have considered are very weak:


• Is pixel (r1,c1) brighter than pixel (r2,c2)?


• We can’t even express simple relationships such as:


• “(r1,c1) is at least 5 bigger than (r2,c2)”


• “2 times (r1,c1) is bigger than (r2,c2)”


• “2 times (r1,c1) plus 4 times (r2,c2) is larger than (r3,c3)”.



Linear regression

• We can harness these more complex relationships using 
linear regression.


• Let’s switch back to the age estimation problem…



Linear regression
• Linear regression is built as a linear combination of all the 

inputs x:


• Here, we treat the image x as a vector (even though it 
represents a 2-d image).
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Linear regression
• Linear regression is built as a linear combination of all the 

inputs x:


• Vector w represent an “overlay image” that weights the 
different pixel intensities of x.

image pixels

Age estimator g 36

x ŷ

ŷ = g(x;w) =
mX

j=1

xjwj = x>w

w



Linear regression

• Image a 2x2 pixel “image” x and a weight matrix w:


• Then ŷ = 2*1 + 5*3 + 0*2 + 3*4 = 22
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Linear regression

• How should we choose each “weight” wj?


• Let’s define the loss function that we seek to minimize:
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The 2 in the denominator will 
slightly simplify the algebra later…



Linear regression

• w is an unconstrained real-valued vector; hence, we can 
use differential calculus to find the minimum of fMSE.


• Just derive the gradient of fMSE w.r.t. w, set to 0, and 
solve.


• Since fMSE is a convex function, we are guaranteed that 
this critical point is a global minimum.



Matrix/vector calculus

• For a real-valued function                       , we define the 
gradient w.r.t. w as:


• In other words, the gradient is a column vector containing 
all first partial derivatives w.r.t. w.
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Solving for w
• The gradient of fMSE is thus:

rwfMSE(y, ŷ;w) = rw
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Solving for w
• The gradient of fMSE is thus:

rwfMSE(y, ŷ;w) = rw
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Solving for w

• By setting to 0, splitting the sum apart, and solving, we 
reach the solution:
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Solving for w
• By setting to 0, splitting the sum apart, and solving, we 

reach the solution:

2-layer neural networks (linear regression)
CS525 191D 2018 – Jacob Whitehill (jrwhitehill@wpi.edu)

1 Basic setup and solution

We can define a linear regressor (2-layer neural network) with weights w 2 Rn
such that the prediction

ŷ = x>w. Then, based on a training set {x(i)
, y

(i)}mi=1 consisting of m examples, where each xi 2 Rn
and

each yi 2 {0, 1}, we can define a cost function J :
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(i)
)
2

=
1

2

X

i

(y
(i) � x(i)>w)

2

We then derive the gradient of J w.r.t. w as:

rwJ(w) = �
X

i

x(i)
(y

(i) � x(i)>w)

=

X

i

x(i)x(i)>w �
X

i

x(i)
y
(i)

We then set to 0 and solve:
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We can also derive the same solution more compactly using matrix/vector notation. Let matrix n⇥m matrix

X contain the m data points as column vectors, and let y be an m-dimensional column vector containing

the corresponding labels. Then we can define J , and derive the minimizing solution, as:

J(w) =
1

2
(y �X>w)

>
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rwJ(w) = X(y �X>w)

0 = Xy �XX>w

w = (XX>
)
�1Xy

2 Regularization

To discourage overfitting, we can impose a penalty on the magnitude of the weights w; this becomes another

term we add to our cost function, with an associated hyperparameter ↵. This is known as L2 regularization
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Matrix notation

• Let’s define a matrix X to contain all the training images: 
 

• In statistics, X is called the design matrix.


• Let’s define vector y to contain all the training labels:



Matrix notation
• Using summation notation, we derived:


• Using matrix notation, we can write the solution as:
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Matrix notation

• The solution for the optimal w can be re-written as:


• To compute this, do not use np.linalg.inv.


• Instead, use np.linalg.solve, which avoids explicitly 
computing the matrix inverse.


• Show demo.


