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Linear algebra

A column vector is a (n x 1) matrix.
A row vector is a (1 x n) matrix.
The transpose of (n x k) matrix A, denoted AT, is (k X n).

Multiplication of matrices A and B:
 Only possible when: Ais (n x k) and B is (k x m)

e Result: (n x m)

The inner product between two column vectors (same length) x, y can
be written as: xTy

The Hadamard (element-wise) product between two matrices A and B is
written as A © B.



Weakness of our feature set

e So far, the feature we have considered are very weak:
e |s pixel (r1,c1) brighter than pixel (r2,c2)?

e \We can’t even express simple relationships such as:
e “(r1,c4) is at least 5 bigger than (r2,c2)”
e “2times (r1,c1) is bigger than (rz,c2)”

e “2times (r1,c1) plus 4 times (r2,c2) is larger than (rs,c3)”.



Linear regression

e We can harness these more complex relationships using
linear regression.

e | et’s switch back to the age estimation problem...



Linear regression

e Linear regression is built as a linear combination of all the
iInputs X:

Y= g(x; W) ZXJW]—XW

e Here, we treat the image x as a vector (even though it
represents a 2-d image).
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Linear regression

e Linear regression is built as a linear combination of all the
iInputs X:

Y = g X]W]—XW

* Vectorw represent an “overlay image” that weights the
different pixel intensities of x.

Age estimator g 36




Linear regression

* Image a 2x2 pixel “image” x and a weight matrix w:

e Theny=2"1+53 +0"2 + 34 =22



Linear regression

* How should we choose each “weight” w;?

e | et’s define the loss function that we seek to minimize:
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Linear regression

e W IS an unconstrained real-valued vector; hence, we can
use differential calculus to find the minimum of fusk.

e Just derive the gradient of fuse w.r.t. w, set to 0, and
solve.

* Since fuse is a convex function, we are guaranteed that
this critical point is a global minimum.



Matrix/vector calculus

e For areal-valued function f : R"™ — R, we define the

gradient w.r.t. w as:
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e |n other words, the gradient is a column vector containing
all first partial derivatives w.r.t. w.



Solving for w

 The gradient of fuse is thus:
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Solving for w

 The gradient of fuse is thus:
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Solving for w

e By setting to 0, splitting the sum apart, and solving, we
reach the solution:



Solving for w

e By setting to 0, splitting the sum apart, and solving, we
reach the solution:

_me( () ' o — y<>)

0 — Z OGN Z ROMO
3 <O = S xDy®)

—1
N (ZX@X@T) 3 x(y®



Matrix notation

* Let’s define a matrix X to contain all the training images:

X=|x1b ... x(m
- |

* |n statistics, X is called the design matrix.

* |Let’s define vector y to contain all the training labels:
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Matrix notation

 Using summation notation, we derived:
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e Using matrix notation, we can write the solution as:
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where X —

1. w= (XTX)_ley
2 w=(XoX) 'oX"y

. P

3. w=(XXT) ' Xy



Matrix notation

The solution for the optimal w can be re-written as:
—1
w=(XX") Xy
To compute this, do not use np.linalg.inv.

Instead, use np.linalg.solve, which avoids explicitly
computing the matrix inverse.

Show demo.



