CS 453X: Class 26

Jacob Whitehill



Practical suggestions



Start small

e Debug your code on a small subset of the data.
e | ess time for initialization.

e Less time for training.



Start small

e Debug your code on a small subset of the data.
e | ess time for initialization.
e Less time for training.

e But make sure the statistics of the sample match
(approximately) those of the whole dataset.

e All classes are represented!



Start simple

e Until you gain confidence & experience, train a simple model first:

* They’re often faster to train and easier to debug than more
powerful models.



Start simple

e Until you gain confidence & experience, train a simple model first:

* They’re often faster to train and easier to debug than more
powerful models.

* Make sure your model’s accuracy is above chance:

e Take the prior class probabilities into account! (If the classes

are 90/10, then the baseline rate for guessing the majority
class is 90%.)

* Make sure your model is not always predicting the dominant
class.



Start small & simple

e Try to find a model (and hyper-parameters) whose training
loss decreases smoothly.

e Afterwards, increase the size of the training set and model
complexity.



Regularization

e |f there is a large divergence between training accuracy
and testing accuracy (i.e., overfitting), then try regularizing
the model:

* Increasing L1, L2 regularization strength.
e Adding/increasing dropout (for NNs).
e Reducing number of training epochs (for NNs).

e Synthesizing more training examples with label-
preserving transformations (geometric & noise-based).



Hyper-parameter
optimization

e Try a variety of hyper-parameters:

 Pick a reasonable range (e.g., for learning rate, 1e-5to
1e0, spaced logarithmically)

e Search systematically and automatically (ideally in
parallel) on a validation set, not the test set!

e As fun as itis (and believe me — this is addictive), try
not to stare at the training trajectory too much — it
rarely helps.



Normalization

e |t can be helpful to put every feature onto the same scale.

* |n particular, the scale can interact with the Lo
regularization strength.



Normalization: example

e Suppose you are predicting tomorrow’s temperature
based on (1) today’s temperature and (2) wind speed.

e Suppose we measure temperature in Kelvin and wind
speed in km/h.

e Suppose the optimal weights w1, w2 for these two

features, for Lo-regularized linear regression, are 1 and 2,
l.e.:

w1t + wes (t = today’s temp, s = today’s wind speed)
1"t + 27s

A
y



Normalization: example

e Now, suppose we change the units for wind speed from
km/h to m/s.

e E.g.,18 km/h=5m/s

* |f we don’t adjust our model weights w1, wo, then our
predictions will be wrong:

e y=1"t+2%s
y(4,18) =4 + 36 = 40
y4,5=4+10=14



Normalization: example

e Because the numerical values of the wind speed were
reduced by factor of 3.6, the corresponding weight wo>
must compensate by increasing by 3.6x, I.e.:

e yv=wit+ wss (t =today’s temp, s = today’s wind speed)
y =1t + 3.6™2"s

e \Without regularization, the training procedure (e.g.,
minimize fuse) will account for the change-of-scale
seamlessly, I.e.:

arg min fola () =38.6* arg min fast (-



Normalization: example

 But with L2 regularization, the issue is more complicated:

: km/h 1
arg min { Mt () F 5@!)3}

* The regularization term “discourages” w2 from growing
too big:

e \When we rescale from km/h to m/s, the L» term
prevents the weight w2 from compensating exactly.



Normalization:
recommendations

e For features in a finite range, try rescaling to [0,1] or [-1,1].

e For features in infinite range, try subtracting the mean and
dividing by standard deviation (so that the distribution has
zero-mean and unit standard deviation).



Pre-training & fine-tuning

e For a ML problem with a relatively small (only a few
thousand examples or less), try fine-tuning a pre-trained
model for a related task.

e E.g., VGG & Inception networks for image recognition.

e This can be very effective at harnessing a powerful
model for a new problem domain without overfitting.



Where to next?



Where to next

e Try your hand at a real ML problem.
o Kaggle, DataDriven, KDDCup, etc.

e Keep your expectations modest at first, e.g.:
e Try to reduce the baseline error rate by 1/2.

e Try to keep improving your accuracy, even if the
Improvements are small.



Where to next

 Jake a graduate course, e.g.:
e CS 541 (deep learning)
e CS 539 (machine learning)
e CS 540 (artificial intelligence)
e DS 501, 502, 503, 504 (data science courses)



Where to next

e Take an online course, e.g.:

e Machine learning on edX:
https://www.edx.org/course/machine-learning-
columbiax-csmm-102x-2

e Deep learning for natural language processing (NLP):
https://cs224d.stanford.edu

e (Convolutional neural networks for visual recognition:
http://cs231n.stanford.edu/



Where to next

e Read papers from ML conferences, e.g.:
e NIPS, ICML, ICLR, AAAI, arxiv.

e But keep your expectations modest (again):
e ML papers are often highly technical.

e Read through a few abstracts; see which ones you
understand the most; read those papers.



Where to next

e |deally, try to find an internship or research assistantship
related to machine learning.

e Very helpful to talk to other people while tackling an ML
problem.



