
CS 453X: Class 26
Jacob Whitehill



Practical suggestions



Start small

• Debug your code on a small subset of the data.


• Less time for initialization.


• Less time for training.


• But make sure the statistics of the sample match 
(approximately) those of the whole dataset.


• All classes are represented!



Start small

• Debug your code on a small subset of the data.


• Less time for initialization.


• Less time for training.


• But make sure the statistics of the sample match 
(approximately) those of the whole dataset.


• All classes are represented!



Start simple
• Until you gain confidence & experience, train a simple model first:


• They’re often faster to train and easier to debug than more 
powerful models.


• Make sure your model’s accuracy is above chance:


• Take the prior class probabilities into account! (If the classes 
are 90/10, then the baseline rate for guessing the majority 
class is 90%.)


• Make sure your model is not always predicting the dominant 
class.



Start simple
• Until you gain confidence & experience, train a simple model first:


• They’re often faster to train and easier to debug than more 
powerful models.


• Make sure your model’s accuracy is above chance:


• Take the prior class probabilities into account! (If the classes 
are 90/10, then the baseline rate for guessing the majority 
class is 90%.)


• Make sure your model is not always predicting the dominant 
class.



Start small & simple

• Try to find a model (and hyper-parameters) whose training 
loss decreases smoothly.


• Afterwards, increase the size of the training set and model 
complexity.



Regularization
• If there is a large divergence between training accuracy 

and testing accuracy (i.e., overfitting), then try regularizing 
the model:


• Increasing L1, L2 regularization strength.


• Adding/increasing dropout (for NNs).


• Reducing number of training epochs (for NNs).


• Synthesizing more training examples with label-
preserving transformations (geometric & noise-based).



Hyper-parameter 
optimization

• Try a variety of hyper-parameters:


• Pick a reasonable range (e.g., for learning rate, 1e-5 to 
1e0, spaced logarithmically)


• Search systematically and automatically (ideally in 
parallel) on a validation set, not the test set!


• As fun as it is (and believe me — this is addictive), try 
not to stare at the training trajectory too much — it 
rarely helps.



Normalization

• It can be helpful to put every feature onto the same scale.


• In particular, the scale can interact with the L2 
regularization strength.



Normalization: example
• Suppose you are predicting tomorrow’s temperature 

based on (1) today’s temperature and (2) wind speed.


• Suppose we measure temperature in Kelvin and wind 
speed in km/h.


• Suppose the optimal weights w1, w2 for these two 
features, for L2-regularized linear regression, are 1 and 2, 
i.e.:


• ŷ = w1t + w2s (t = today’s temp, s = today’s wind speed) 
ŷ = 1*t + 2*s



Normalization: example

• Now, suppose we change the units for wind speed from 
km/h to m/s.


• E.g., 18 km/h = 5 m/s


• If we don’t adjust our model weights w1, w2, then our 
predictions will be wrong:


• ŷ =1*t + 2*s 
ŷ(4, 18) = 4 + 36 = 40 
ŷ(4, 5) = 4 + 10 = 14

Numerical values reduced by 3.6x

km/h
m/s



Normalization: example

• Because the numerical values of the wind speed were 
reduced by factor of 3.6, the corresponding weight w2 
must compensate by increasing by 3.6x, i.e.:


• ŷ = w1t + w2s (t = today’s temp, s = today’s wind speed) 
ŷ = 1*t + 3.6*2*s 

• Without regularization, the training procedure (e.g., 
minimize fMSE) will account for the change-of-scale 
seamlessly, i.e.:

~

= 3.6 *argmin
w̃2

fm/s
MSE(·) argmin

w2

fkm/h
MSE (·)



Normalization: example

• But with L2 regularization, the issue is more complicated:


• The regularization term “discourages” w2 from growing 
too big:


• When we rescale from km/h to m/s, the L2 term 
prevents the weight w2 from compensating exactly.

argmin
w̃2


fkm/h
MSE (·) + 1

2
w2

2

�



Normalization: 
recommendations

• For features in a finite range, try rescaling to [0,1] or [-1,1].


• For features in infinite range, try subtracting the mean and 
dividing by standard deviation (so that the distribution has 
zero-mean and unit standard deviation).



Pre-training & fine-tuning

• For a ML problem with a relatively small (only a few 
thousand examples or less), try fine-tuning a pre-trained 
model for a related task.


• E.g., VGG & Inception networks for image recognition.


• This can be very effective at harnessing a powerful 
model for a new problem domain without overfitting.



Where to next?



Where to next

• Try your hand at a real ML problem.


• Kaggle, DataDriven, KDDCup, etc.


• Keep your expectations modest at first, e.g.:


• Try to reduce the baseline error rate by 1/2.


• Try to keep improving your accuracy, even if the 
improvements are small.



Where to next

• Take a graduate course, e.g.:


• CS 541 (deep learning)


• CS 539 (machine learning)


• CS 540 (artificial intelligence)


• DS 501, 502, 503, 504 (data science courses)



Where to next

• Take an online course, e.g.:


• Machine learning on edX: 
https://www.edx.org/course/machine-learning-
columbiax-csmm-102x-2 


• Deep learning for natural language processing (NLP): 
https://cs224d.stanford.edu


• Convolutional neural networks for visual recognition: 
http://cs231n.stanford.edu/



Where to next

• Read papers from ML conferences, e.g.:


• NIPS, ICML, ICLR, AAAI, arxiv.


• But keep your expectations modest (again):


• ML papers are often highly technical.


• Read through a few abstracts; see which ones you 
understand the most; read those papers.



Where to next

• Ideally, try to find an internship or research assistantship 
related to machine learning.


• Very helpful to talk to other people while tackling an ML 
problem.


