CS 453X: Class 26

Jacob Whitehill
Practical suggestions
Start small

• Debug your code on a small subset of the data.
 • Less time for initialization.
 • Less time for training.
Start small

- Debug your code on a small subset of the data.
 - Less time for initialization.
 - Less time for training.
- But make sure the statistics of the sample match (approximately) those of the whole dataset.
 - All classes are represented!
Start simple

- Until you gain confidence & experience, train a simple model first:
 - They’re often faster to train and easier to debug than more powerful models.

- Make sure your model’s accuracy is above chance:
 - Take the prior class probabilities into account! (If the classes are 90/10, then the baseline rate for guessing the majority class is 90%.)

- Make sure your model is not always predicting the dominant class.
Start simple

• Until you gain confidence & experience, train a simple model first:
 • They’re often faster to train and easier to debug than more powerful models.

• Make sure your model’s accuracy is above chance:
 • Take the prior class probabilities into account! (If the classes are 90/10, then the baseline rate for guessing the majority class is 90%.)
 • Make sure your model is not always predicting the dominant class.
Start small & simple

• Try to find a model (and hyper-parameters) whose training loss decreases *smoothly*.

• Afterwards, increase the size of the training set and model complexity.
Regularization

• If there is a large divergence between training accuracy and testing accuracy (i.e., overfitting), then try regularizing the model:

 • Increasing L_1, L_2 regularization strength.

 • Adding/increasing dropout (for NNs).

 • Reducing number of training epochs (for NNs).

 • Synthesizing more training examples with label-preserving transformations (geometric & noise-based).
Hyper-parameter optimization

• Try a variety of hyper-parameters:

 • Pick a reasonable range (e.g., for learning rate, $1e^{-5}$ to $1e^{0}$, spaced logarithmically)

 • Search systematically and automatically (ideally in parallel) on a validation set, not the test set!

 • As fun as it is (and believe me — this is addictive), try not to stare at the training trajectory too much — it rarely helps.
Normalization

- It can be helpful to put every feature onto the same scale.
- In particular, the scale can interact with the L_2 regularization strength.
Normalization: example

• Suppose you are predicting tomorrow’s temperature based on (1) today’s temperature and (2) wind speed.

• Suppose we measure temperature in Kelvin and wind speed in km/h.

• Suppose the optimal weights w_1, w_2 for these two features, for L_2-regularized linear regression, are 1 and 2, i.e.:

 $\hat{y} = w_1 t + w_2 s$ ($t =$ today’s temp, $s =$ today’s wind speed)

 $\hat{y} = 1^*t + 2^*s$
Normalization: example

• Now, suppose we change the units for wind speed from km/h to m/s.

 • E.g., 18 km/h = 5 m/s **Numerical values reduced by 3.6x**

• If we don’t adjust our model weights w_1, w_2, then our predictions will be wrong:

 • $\hat{y} = 1*t + 2*s$

 $\hat{y}(4, 18) = 4 + 36 = 40 \quad \text{km/h}$
 $\hat{y}(4, 5) = 4 + 10 = 14 \quad \text{m/s}$
Normalization: example

- Because the numerical values of the wind speed were reduced by factor of 3.6, the corresponding weight w_2 must compensate by increasing by 3.6x, i.e.:

 - $\hat{y} = w_1 t + \tilde{w}_2 s$ ($t =$ today’s temp, $s =$ today’s wind speed)
 $\hat{y} = 1^* t + 3.6^* 2^* s$

- Without regularization, the training procedure (e.g., minimize f_{MSE}) will account for the change-of-scale seamlessly, i.e.:

 $\arg\min_{\tilde{w}_2} f_{\text{MSE}}^{m/s}(\cdot) = 3.6 \times \arg\min_{w_2} f_{\text{MSE}}^{\text{km/h}}(\cdot)$
Normalization: example

- But with L_2 regularization, the issue is more complicated:

$$\arg\min_{\tilde{w}_2} \left[f_{\text{MSE}}(\cdot) + \frac{1}{2} w_2^2 \right]$$

- The regularization term “discourages” w_2 from growing too big:

 - When we rescale from km/h to m/s, the L_2 term prevents the weight w_2 from compensating exactly.
Normalization: recommendations

- For features in a finite range, try rescaling to [0,1] or [-1,1].
- For features in infinite range, try subtracting the mean and dividing by standard deviation (so that the distribution has zero-mean and unit standard deviation).
Pre-training & fine-tuning

- For a ML problem with a relatively small (only a few thousand examples or less), try fine-tuning a pre-trained model for a related task.

 - E.g., VGG & Inception networks for image recognition.

 - This can be very effective at harnessing a powerful model for a new problem domain without overfitting.
Where to next?
Where to next

• Try your hand at a real ML problem.
 • Kaggle, DataDriven, KDDCup, etc.

• Keep your expectations modest at first, e.g.:
 • Try to reduce the baseline error rate by 1/2.
 • Try to keep improving your accuracy, even if the improvements are small.
Where to next

• Take a graduate course, e.g.:
 • CS 541 (deep learning)
 • CS 539 (machine learning)
 • CS 540 (artificial intelligence)
 • DS 501, 502, 503, 504 (data science courses)
Where to next

• Take an online course, e.g.:
 • Deep learning for natural language processing (NLP): https://cs224d.stanford.edu
 • Convolutional neural networks for visual recognition: http://cs231n.stanford.edu/
Where to next

- Read papers from ML conferences, e.g.:
 - NIPS, ICML, ICLR, AAAI, arxiv.

- But keep your expectations modest (again):
 - ML papers are often highly technical.

- Read through a few abstracts; see which ones you understand the most; read those papers.
Where to next

- Ideally, try to find an internship or research assistantship related to machine learning.

 - Very helpful to talk to other people while tackling an ML problem.