CS 453X: Class 23

Jacob Whitehill

(Unsupervised) pre-training

Feature representations

- One of the reasons why NNs are so powerful is that they can learn feature representations of the raw input data.
- Classifying/regressing the target variable ŷ is often easier once the raw data have been transformed into a different feature space.
 - We saw this with XOR.

Feature representations

- One of the reasons why NNs are so powerful is that they can learn feature representations of the raw input data.
- Classifying/regressing the target variable \hat{y} is often easier once the raw data have been transformed into a different feature space.
 - With MNIST, the NN seemed to recognize brushstrokes:

Unlabeled data

- In some application domains (e.g., object recognition/ detection in images), collecting *labeled* data is hard, but collecting *unlabeled* data is easy.
- How might oodles of unlabeled data help us to train better ML models?

Learning good features

- We can harness unsupervised learning algorithms to learn good feature representations from unlabeled data.
 - Unsupervised: examples without labels.

Learning good features

- We can harness unsupervised learning algorithms to learn good feature representations from unlabeled data.
 - Unsupervised: examples without labels.
- Key intuition: a good representation captures the essence of the raw input data.
 - We can "compress" the data into a smaller representation.
 - We can "uncompress" it to reconstruct the original data.

Auto-encoders

- Let x be the raw input data.
- Let h be the hidden representation that captures the "essence" of x. We say h has been encoded from x.
- We can compute h using a neural network (just 1 layer in this example, but could be deeper).

$$\mathbf{h} = \sigma^{(1)} \left(\mathbf{W}^{(1)} \mathbf{x} + \mathbf{b}^{(1)} \right)$$

Auto-encoders

- If h contains the essential features of x, then we can use h
 to reconstruct (approximate) the original data x.
- Let x̂ denote our reconstruction of x. We say x̂ has been decoded from h.

$$\hat{\mathbf{x}} = \sigma^{(2)} \left(\mathbf{W}^{(2)} \mathbf{h} + \mathbf{b}^{(2)} \right)$$

Auto-encoders

 Putting the two components (encoder+decoder) together, we arrive at an auto-encoder.

$$\hat{\mathbf{x}} = \sigma^{(2)} \left(\mathbf{W}^{(2)} \sigma^{(1)} \left(\mathbf{W}^{(1)} \mathbf{x} + \mathbf{b}^{(1)} \right) + \mathbf{b}^{(2)} \right)$$

Auto-encoder

Auto-encoders: training loss function

• With auto-encoders, we optimize **W**⁽¹⁾, **W**⁽²⁾, **b**⁽¹⁾, **b**⁽²⁾ to make our reconstructions as accurate as possible, i.e., minimize:

$$f_{\text{MSE}}(\mathbf{W}^{(1)}, \mathbf{b}^{(1)}, \mathbf{W}^{(2)}, \mathbf{b}^{(2)}) = \frac{1}{n} \sum_{i=1}^{n} (\hat{\mathbf{x}}^{(i)} - \mathbf{x}^{(i)})^{2}$$
$$= \frac{1}{n} \sum_{i=1}^{n} (\hat{\mathbf{x}}^{(i)} - \mathbf{x}^{(i)})^{\top} (\hat{\mathbf{x}}^{(i)} - \mathbf{x}^{(i)})$$

Auto-encoder

Auto-encoders: training loss function

 Notice that this loss function does not require any training labels — there is no mention of any y!

$$f_{\text{MSE}}(\mathbf{W}^{(1)}, \mathbf{b}^{(1)}, \mathbf{W}^{(2)}, \mathbf{b}^{(2)}) = \frac{1}{n} \sum_{i=1}^{n} (\hat{\mathbf{x}}^{(i)} - \mathbf{x}^{(i)})^{2}$$
$$= \frac{1}{n} \sum_{i=1}^{n} (\hat{\mathbf{x}}^{(i)} - \mathbf{x}^{(i)})^{\top} (\hat{\mathbf{x}}^{(i)} - \mathbf{x}^{(i)})$$

Auto-encoder

Exercise

• If we let *k*=*m*, then what is an easy (but useless) way to set the weights to give a perfect reconstruction (0 MSE)?

Exercise

- If we let k=m, then what is an easy (but useless) way to set the weights to give a perfect reconstruction (0 MSE)?
- If k = m, then we can just set $\mathbf{W}^{(1)} = \mathbf{W}^{(2)} = \mathbf{I}$ (identity matrix). This gives 0 MSE but does not learn any interesting representation!

Exercise

- If we let k=m, then what is an easy (but useless) way to set the weights to give a perfect reconstruction (0 MSE)?
- For this reason, we usually set k < m*; the hidden layer is then called a bottleneck.

^{*}An important exception are de-noising auto-encoders.

• After training the auto-encoder NN, $\mathbf{W}^{(1)}$ and $\mathbf{b}^{(1)}$ have hopefully learned to encode \mathbf{x} into a representation that is useful for a variety of classification/regression problems.

- After training the auto-encoder NN, **W**⁽¹⁾ and **b**⁽¹⁾ have hopefully learned to encode **x** into a representation that is useful for a variety of classification/regression problems.
- We can now just "chop off" the decoder layer(s)...

- After training the auto-encoder NN, **W**⁽¹⁾ and **b**⁽¹⁾ have hopefully learned to encode **x** into a representation that is useful for a variety of classification/regression problems.
- ...and keep just the encoder layer(s).

 We now have a trained encoder network that can "compress" every input example x into its "essence" h.

• Now, suppose we also have a (typically smaller) set of labeled examples $\{(\mathbf{x}^{(i)}, y^{(i)})\}_{i=1}^n$.

- Now, suppose we also have a (typically smaller) set of labeled examples $\{(\mathbf{x}^{(i)}, y^{(i)})\}_{i=1}^n$.
- We can use the encoder network to convert each \mathbf{x} to \mathbf{h} to obtain $\{(\mathbf{h}^{(i)}, y^{(i)})\}_{i=1}^n$.

- Now, suppose we also have a (typically smaller) set of labeled examples $\{(\mathbf{x}^{(i)}, y^{(i)})\}_{i=1}^n$.
- We can use the encoder network to convert each \mathbf{x} to \mathbf{h} to obtain $\{(\mathbf{h}^{(i)}, y^{(i)})\}_{i=1}^n$.
- We then train a secondary NN (or any other ML model) to predict y from h.

After training, the two networks (encoder + secondary)
can be seen as a single NN that analyzes each input x to
make a prediction ŷ.

- Why does this help?
- The first layers of the overall network were trained on a large amount of data.
- Compressing x into h makes the secondary predictions (hopefully) easier.

- In addition to training the secondary NN, we can optionally

 adjust the parameters of the encoder network.
- Since the encoder was trained on a much larger (unlabeled)
 dataset, we don't want to "mess up" its weights too much
 based on just a small labeled dataset.

- In addition to training the secondary NN, we can optionally

 adjust the parameters of the encoder network.
- Since the encoder was trained on a much larger (unlabeled)
 dataset, we don't want to "mess up" its weights too much
 based on just a small labeled dataset.
 - Hence, we often use a small learning rate ==> fine-tuning.

- An alternative strategy to finding good feature representations is to borrow a NN from a related task.
- For instance, there now exist high-accuracy networks for recognizing 1000+ object categories from images (next slide).
- We can "borrow" the feature representation from one ML model and apply it to another application domain...

Learning representations

 The first feature representation looks vaguely like the representation learned by my MNIST network.

Learning representations

- Each layer of the network finds successively more abstract feature representations.
 - This was not "hard-coded" it just turned out that these representations were useful for predicting the target labels.

 Might one (or more) of the feature representations from this NN do well on a different but related problem, e.g., smile detection or age estimation?

Strategy:

- 1.Pre-train a NN on a large dataset for a general-purpose image recognition task.
- 2. "Chop off" the final layer(s).
- 3.Add a secondary network in place of the deleted layers, and train it for the new prediction task.
- 4. Optional: fine-tune the rest of the NN.

Replace with secondary network for new application domain.

Chop off.

 This strategy is known as supervised pre-training and can be highly effective for application domains for which only a small number of labeled data are available.

Convolution neural networks