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(Unsupervised) 
pre-training



Feature representations

• One of the reasons why NNs are so powerful is that they 
can learn feature representations of the raw input data.


• Classifying/regressing the target variable ŷ is often easier 
once the raw data have been transformed into a different 
feature space.


• We saw this with XOR.



Feature representations

• One of the reasons why NNs are so powerful is that they 
can learn feature representations of the raw input data.


• Classifying/regressing the target variable ŷ is often easier 
once the raw data have been transformed into a different 
feature space.


• With MNIST, the NN seemed to recognize brush-
strokes:



Unlabeled data

• In some application domains (e.g., object recognition/
detection in images), collecting labeled data is hard, but 
collecting unlabeled data is easy.


• How might oodles of unlabeled data help us to train 
better ML models?



Learning good features
• We can harness unsupervised learning algorithms to learn 

good feature representations from unlabeled data.


• Unsupervised: examples without labels.


• Key intuition: a good representation captures the essence 
of the raw input data.


• We can “compress” the data into a smaller 
representation.


• We can “uncompress” it to reconstruct the original data.
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Auto-encoders
• Let x be the raw input data.


• Let h be the hidden representation that captures the 
“essence” of x. We say h has been encoded from x.


• We can compute h using a neural network (just 1 layer in 
this example, but could be deeper).
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Auto-encoders
• If h contains the essential features of x, then we can use h 

to reconstruct (approximate) the original data x.


• Let x denote our reconstruction of x. We say x has been 
decoded from h.
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Auto-encoders
• Putting the two components (encoder+decoder) together, 

we arrive at an auto-encoder.
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Auto-encoders: 
training loss function

fMSE(W
(1),b(1),W(2),b(2)) =

1

n

nX

i=1

(x̂(i) � x(i))2

=
1

n

nX

i=1

(x̂(i) � x(i))>(x̂(i) � x(i))

• With auto-encoders, we optimize W(1), W(2), b(1), b(2) to make 
our reconstructions as accurate as possible, i.e., minimize:

…
…

Auto-encoder

h1

hk

x1

x2

xm

…

x1

x2

xm

^

^

^

W(1)

b(1)

W(2)

b(2)



Auto-encoders: 
training loss function

• Notice that this loss function does not require any training 
labels — there is no mention of any y!
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Exercise
• If we let k=m, then what is an easy (but useless) way to 

set the weights to give a perfect reconstruction (0 MSE)?
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Exercise
• If we let k=m, then what is an easy (but useless) way to 

set the weights to give a perfect reconstruction (0 MSE)?
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• If k = m, then we can just set W(1) = W(2) = I (identity 
matrix). This gives 0 MSE but does not learn any 
interesting representation!



Exercise
• If we let k=m, then what is an easy (but useless) way to 

set the weights to give a perfect reconstruction (0 MSE)?
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• For this reason, we usually set k < m*; the hidden layer is 
then called a bottleneck.

*An important exception are de-noising auto-encoders.



Auto-encoders for 
unsupervised pre-training

• After training the auto-encoder NN, W(1) and b(1) have 
hopefully learned to encode x into a representation that is 
useful for a variety of classification/regression problems.


• We can now just “chop off” the decoder layer(s)…
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Auto-encoders for 
unsupervised pre-training

• After training the auto-encoder NN, W(1) and b(1) have 
hopefully learned to encode x into a representation that is 
useful for a variety of classification/regression problems.


• We can now just “chop off” the decoder layer(s)…
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Auto-encoders for 
unsupervised pre-training

• After training the auto-encoder NN, W(1) and b(1) have 
hopefully learned to encode x into a representation that is 
useful for a variety of classification/regression problems.


• …and keep just the encoder layer(s).
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Auto-encoders for 
unsupervised pre-training

• We now have a trained encoder network that can 
“compress” every input example x into its “essence” h.
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Auto-encoders for 
unsupervised pre-training

• Now, suppose we also have a (typically smaller) set of 
labeled examples                   .


• We can use the encoder network to convert each x to h to 
obtain                   .


• We then train a second NN to predict y from h.
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Auto-encoders for 
unsupervised pre-training

• Now, suppose we also have a (typically smaller) set of 
labeled examples                   .


• We can use the encoder network to convert each x to h to 
obtain                   .


• We then train a secondary NN (or any other ML model) to 
predict y from h.
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Auto-encoders for 
unsupervised pre-training

• After training, the two networks (encoder + secondary) 
can be seen as a single NN that analyzes each input x to 
make a prediction ŷ.

…
…h1

hk

x1

x2

xm

W(1)

b(1)

… … ŷ



Auto-encoders for 
unsupervised pre-training

• Why does this help?


• The first layers of the overall network were trained on a 
large amount of data.


• Compressing x into h makes the secondary predictions 
(hopefully) easier.

…
…h1

hk

x1

x2

xm

W(1)

b(1)

… … ŷ



Auto-encoders for 
unsupervised pre-training

• In addition to training the secondary NN, we can — optionally 
— adjust the parameters of the encoder network.


• Since the encoder was trained on a much larger (unlabeled) 
dataset, we don’t want to “mess up” its weights too much 
based on just a small labeled dataset.


• Hence, we often use a small learning rate ==> fine-tuning.
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Auto-encoders for 
unsupervised pre-training

• In addition to training the secondary NN, we can — optionally 
— adjust the parameters of the encoder network.


• Since the encoder was trained on a much larger (unlabeled) 
dataset, we don’t want to “mess up” its weights too much 
based on just a small labeled dataset.


• Hence, we often use a small learning rate ==> fine-tuning.
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(Supervised) 
pre-training



Supervised pre-training

• An alternative strategy to finding good feature 
representations is to borrow a NN from a related task.


• For instance, there now exist high-accuracy networks for 
recognizing 1000+ object categories from images (next 
slide).


• We can “borrow” the feature representation from one ML 
model and apply it to another application domain…



Learning representations

http://www.deeplearningbook.org/contents/intro.html

• The first feature representation looks vaguely like the 
representation learned by my MNIST network.



Learning representations

http://www.deeplearningbook.org/contents/intro.html

• Each layer of the network finds successively more abstract feature 
representations.


• This was not “hard-coded” — it just turned out that these 
representations were useful for predicting the target labels.



Supervised pre-training
• Might one (or more) of the feature representations from this 

NN do well on a different but related problem, e.g., smile 
detection or age estimation?


• Strategy:

1.Pre-train a NN on a large dataset for a general-purpose 
image recognition task.


2.“Chop off” the final layer(s).


3.Add a secondary network in place of the deleted layers, 
and train it for the new prediction task.


4.Optional: fine-tune the rest of the NN.



Supervised pre-training

http://www.deeplearningbook.org/contents/intro.html

Replace with secondary network 
for new application domain.



Supervised pre-training

http://www.deeplearningbook.org/contents/intro.html

Chop off.



Supervised pre-training

• This strategy is known as supervised pre-training and 
can be highly effective for application domains for which 
only a small number of labeled data are available.



Convolution neural 
networks


