
CS 453X: Class 23
Jacob Whitehill

(Unsupervised) 
pre-training

Feature representations

• One of the reasons why NNs are so powerful is that they
can learn feature representations of the raw input data.

• Classifying/regressing the target variable ŷ is often easier
once the raw data have been transformed into a different
feature space.

• We saw this with XOR.

Feature representations

• One of the reasons why NNs are so powerful is that they
can learn feature representations of the raw input data.

• Classifying/regressing the target variable ŷ is often easier
once the raw data have been transformed into a different
feature space.

• With MNIST, the NN seemed to recognize brush-
strokes:

Unlabeled data

• In some application domains (e.g., object recognition/
detection in images), collecting labeled data is hard, but
collecting unlabeled data is easy.

• How might oodles of unlabeled data help us to train
better ML models?

Learning good features
• We can harness unsupervised learning algorithms to learn

good feature representations from unlabeled data.

• Unsupervised: examples without labels.

• Key intuition: a good representation captures the essence
of the raw input data.

• We can “compress” the data into a smaller
representation.

• We can “uncompress” it to reconstruct the original data.

Learning good features
• We can harness unsupervised learning algorithms to learn

good feature representations from unlabeled data.

• Unsupervised: examples without labels.

• Key intuition: a good representation captures the essence
of the raw input data.

• We can “compress” the data into a smaller
representation.

• We can “uncompress” it to reconstruct the original data.

Auto-encoders
• Let x be the raw input data.

• Let h be the hidden representation that captures the
“essence” of x. We say h has been encoded from x.

• We can compute h using a neural network (just 1 layer in
this example, but could be deeper).

…
…

Encoder

h1

hk

x1

x2

xm

h = �(1)
⇣
W(1)x+ b(1)

⌘

W(1)

b(1)

Auto-encoders
• If h contains the essential features of x, then we can use h

to reconstruct (approximate) the original data x.

• Let x denote our reconstruction of x. We say x has been
decoded from h.

…
…

Decoder

…

x1

x2

xm

^

^

^

h1

hk

x̂ = �(2)
⇣
W(2)h+ b(2)

⌘

x1

x2

xm

^ ^

W(1)

b(1)

W(2)

b(2)

Auto-encoders
• Putting the two components (encoder+decoder) together,

we arrive at an auto-encoder.

…
…

Auto-encoder

x̂ = �(2)
⇣
W(2)�(1)

⇣
W(1)x+ b(1)

⌘
+ b(2)

⌘

h1

hk

x1

x2

xm

…

x1

x2

xm

^

^

^

W(1)

b(1)

W(2)

b(2)

Auto-encoders: 
training loss function

fMSE(W
(1),b(1),W(2),b(2)) =

1

n

nX

i=1

(x̂(i) � x(i))2

=
1

n

nX

i=1

(x̂(i) � x(i))>(x̂(i) � x(i))

• With auto-encoders, we optimize W(1), W(2), b(1), b(2) to make
our reconstructions as accurate as possible, i.e., minimize:

…
…

Auto-encoder

h1

hk

x1

x2

xm

…

x1

x2

xm

^

^

^

W(1)

b(1)

W(2)

b(2)

Auto-encoders: 
training loss function

• Notice that this loss function does not require any training
labels — there is no mention of any y!

…
…

Auto-encoder

h1

hk

x1

x2

xm

…

x1

x2

xm

^

^

^

fMSE(W
(1),b(1),W(2),b(2)) =

1

n

nX

i=1

(x̂(i) � x(i))2

=
1

n

nX

i=1

(x̂(i) � x(i))>(x̂(i) � x(i))

W(1)

b(1)

W(2)

b(2)

Exercise
• If we let k=m, then what is an easy (but useless) way to

set the weights to give a perfect reconstruction (0 MSE)?

…
…

Auto-encoder

h1

hk

x1

x2

xm

…

x1

x2

xm

^

^

^

W(1)

b(1)

W(2)

b(2)

Exercise
• If we let k=m, then what is an easy (but useless) way to

set the weights to give a perfect reconstruction (0 MSE)?

…
…

Auto-encoder

h1

hk

x1

x2

xm

…

x1

x2

xm

^

^

^

W(1)

b(1)

W(2)

b(2)

• If k = m, then we can just set W(1) = W(2) = I (identity
matrix). This gives 0 MSE but does not learn any
interesting representation!

Exercise
• If we let k=m, then what is an easy (but useless) way to

set the weights to give a perfect reconstruction (0 MSE)?

…
…

Auto-encoder

h1

hk

x1

x2

xm

…

x1

x2

xm

^

^

^

W(1)

b(1)

W(2)

b(2)

• For this reason, we usually set k < m*; the hidden layer is
then called a bottleneck.

*An important exception are de-noising auto-encoders.

Auto-encoders for
unsupervised pre-training

• After training the auto-encoder NN, W(1) and b(1) have
hopefully learned to encode x into a representation that is
useful for a variety of classification/regression problems.

• We can now just “chop off” the decoder layer(s)…

…
…

Auto-encoder

h1

hk

x1

x2

xm

…

x1

x2

xm

^

^

^

W(1)

b(1)

W(2)

b(2)

Auto-encoders for
unsupervised pre-training

• After training the auto-encoder NN, W(1) and b(1) have
hopefully learned to encode x into a representation that is
useful for a variety of classification/regression problems.

• We can now just “chop off” the decoder layer(s)…

…
…

Auto-encoder

h1

hk

x1

x2

xm

…

x1

x2

xm

^

^

^

W(1)

b(1)

W(2)

b(2)

Auto-encoders for
unsupervised pre-training

• After training the auto-encoder NN, W(1) and b(1) have
hopefully learned to encode x into a representation that is
useful for a variety of classification/regression problems.

• …and keep just the encoder layer(s).

…
…h1

hk

x1

x2

xm

W(1)

b(1)

Encoder

Auto-encoders for
unsupervised pre-training

• We now have a trained encoder network that can
“compress” every input example x into its “essence” h.

…
…h1

hk

x1

x2

xm

W(1)

b(1)

Encoder

Auto-encoders for
unsupervised pre-training

• Now, suppose we also have a (typically smaller) set of
labeled examples .

• We can use the encoder network to convert each x to h to
obtain .

• We then train a second NN to predict y from h.

…
…h1

hk

x1

x2

xm

W(1)

b(1)

Encoder

{(x(i), y(i))}ni=1

Auto-encoders for
unsupervised pre-training

• Now, suppose we also have a (typically smaller) set of
labeled examples .

• We can use the encoder network to convert each x to h to
obtain .

• We then train a second NN to predict y from h.

…
…h1

hk

x1

x2

xm

W(1)

b(1)

Encoder

{(x(i), y(i))}ni=1

{(h(i), y(i))}ni=1

Auto-encoders for
unsupervised pre-training

• Now, suppose we also have a (typically smaller) set of
labeled examples .

• We can use the encoder network to convert each x to h to
obtain .

• We then train a secondary NN (or any other ML model) to
predict y from h.

…
…h1

hk

x1

x2

xm

W(1)

b(1)

{(x(i), y(i))}ni=1

{(h(i), y(i))}ni=1

… … ŷ

Secondary network

Auto-encoders for
unsupervised pre-training

• After training, the two networks (encoder + secondary)
can be seen as a single NN that analyzes each input x to
make a prediction ŷ.

…
…h1

hk

x1

x2

xm

W(1)

b(1)

… … ŷ

Auto-encoders for
unsupervised pre-training

• Why does this help?

• The first layers of the overall network were trained on a
large amount of data.

• Compressing x into h makes the secondary predictions
(hopefully) easier.

…
…h1

hk

x1

x2

xm

W(1)

b(1)

… … ŷ

Auto-encoders for
unsupervised pre-training

• In addition to training the secondary NN, we can — optionally
— adjust the parameters of the encoder network.

• Since the encoder was trained on a much larger (unlabeled)
dataset, we don’t want to “mess up” its weights too much
based on just a small labeled dataset.

• Hence, we often use a small learning rate ==> fine-tuning.

…
…h1

hk

x1

x2

xm

W(1)

b(1)

… … ŷ

Auto-encoders for
unsupervised pre-training

• In addition to training the secondary NN, we can — optionally
— adjust the parameters of the encoder network.

• Since the encoder was trained on a much larger (unlabeled)
dataset, we don’t want to “mess up” its weights too much
based on just a small labeled dataset.

• Hence, we often use a small learning rate ==> fine-tuning.

…
…h1

hk

x1

x2

xm

W(1)

b(1)

… … ŷ

(Supervised) 
pre-training

Supervised pre-training

• An alternative strategy to finding good feature
representations is to borrow a NN from a related task.

• For instance, there now exist high-accuracy networks for
recognizing 1000+ object categories from images (next
slide).

• We can “borrow” the feature representation from one ML
model and apply it to another application domain…

Learning representations

http://www.deeplearningbook.org/contents/intro.html

• The first feature representation looks vaguely like the
representation learned by my MNIST network.

Learning representations

http://www.deeplearningbook.org/contents/intro.html

• Each layer of the network finds successively more abstract feature
representations.

• This was not “hard-coded” — it just turned out that these
representations were useful for predicting the target labels.

Supervised pre-training
• Might one (or more) of the feature representations from this

NN do well on a different but related problem, e.g., smile
detection or age estimation?

• Strategy:

1.Pre-train a NN on a large dataset for a general-purpose
image recognition task.

2.“Chop off” the final layer(s).

3.Add a secondary network in place of the deleted layers,
and train it for the new prediction task.

4.Optional: fine-tune the rest of the NN.

Supervised pre-training

http://www.deeplearningbook.org/contents/intro.html

Replace with secondary network
for new application domain.

Supervised pre-training

http://www.deeplearningbook.org/contents/intro.html

Chop off.

Supervised pre-training

• This strategy is known as supervised pre-training and
can be highly effective for application domains for which
only a small number of labeled data are available.

Convolution neural
networks

