CS 453X: Class 23

Jacob Whitehill

(Unsupervised)
pre-training

Feature representations

e One of the reasons why NNs are so powerful is that they
can learn feature representations of the raw input data.

e (Classifying/regressing the target variable y is often easier
once the raw data have been transformed into a different
feature space.

e \We saw this with XOR.

Feature representations

e One of the reasons why NNs are so powerful is that they
can learn feature representations of the raw input data.

e (Classifying/regressing the target variable y is often easier
once the raw data have been transformed into a different
feature space.

e With MNIST, the NN seemed to recognize brush-
strokes:

Al
g g ey

4 -~ J & ("-':" . t 7
:) v Ne <R " "..:' ’ : ig o b B }; A / , r /?

e v'

.
/

‘.
A |

Unlabeled data

e In some application domains (e.g., object recognition/
detection in images), collecting labeled data is hard, but
collecting unlabeled data is easy.

e How might oodles of unlabeled data help us to train
better ML models?

Learning good features

e We can harness unsupervised learning algorithms to learn
good feature representations from unlabeled data.

 Unsupervised: examples without labels.

Learning good features

e We can harness unsupervised learning algorithms to learn
good feature representations from unlabeled data.

 Unsupervised: examples without labels.

e Key intuition: a good representation captures the essence
of the raw input data.

* We can “compress” the data into a smaller
representation.

 We can “uncompress” it to reconstruct the original data.

Auto-encoders

Let x be the raw input data.

Let h be the hidden representation that captures the
“essence” of x. We say h has been encoded from x.

We can compute h using a neural network (just 1 layer in
this example, but could be deeper).

h— o0 (Wu)x X b<1>)

Auto-encoders

* |f h contains the essential features of x, then we can use h
to reconstruct (approximate) the original data x.

e Let X denote our reconstruction of x. We say x has been
decoded from h.

5 — 52 (W<2>h n b<2>)

Auto-encoders

e Putting the two components (encoder+decoder) together,
we arrive at an auto-encoder.

% =@ (W<2>0<1> (Wu)X n b<1>) n b<2>)

W) W©e

Auto-encoders:
training loss function

* With auto-encoders, we optimize W), W@, b(1), b2 to make
our reconstructions as accurate as possible, i.e., minimize:

1 — . .
WO b W@ p@)y = _E (1) o (2))2
fMSE(9 . ,) n i:1(x X)

L s (i i o (i i
— Ez:(x()_X())T(X()_X())
i=1

Auto-encoders:
training loss function

e Notice that this loss function does not require any training
labels — there is no mention of any y!

1 — . .
WO b W@ p@)y = _E (1) o (2))2
fMSE(9 . ,) n i:1(x X)

L s (i i o (i i
— Ez:(x()_X())T(X()_X())
i=1

Exercise

e If we let k=m, then what is an easy (but useless) way to
set the weights to give a perfect reconstruction (0 MSE)?

Exercise

e If we let k=m, then what is an easy (but useless) way to
set the weights to give a perfect reconstruction (0 MSE)?

* |f Kk =m, then we can just set W) = W@ =] (identity
matrix). This gives 0 MSE but does not learn any
interesting representation!

Exercise

e If we let k=m, then what is an easy (but useless) way to
set the weights to give a perfect reconstruction (0 MSE)?

* For this reason, we usually set k < m*; the hidden layer is
then called a bottleneck.

Auto-encoders for
unsupervised pre-training
e After training the auto-encoder NN, W() and b(") have

hopefully learned to encode x into a representation that is
useful for a variety of classification/regression problems.

Auto-encoders for
unsupervised pre-training
e After training the auto-encoder NN, W() and b(") have
hopefully learned to encode x into a representation that is

useful for a variety of classification/regression problems.

e We can now just “chop off” the decoder layer(s)...

Auto-encoders for
unsupervised pre-training

e After training the auto-encoder NN, W() and b(") have
hopefully learned to encode x into a representation that is
useful for a variety of classification/regression problems.

e ...and keep just the encoder layer(s).

Auto-encoders for
unsupervised pre-training

e We now have a trained encoder network that can
“compress” every input example x into its “essence” h.

Auto-encoders for
unsupervised pre-training

e Now, suppose we also have a (typically smaller) set of

labeled examples {(x,y")}r ;.

Auto-encoders for
unsupervised pre-training

e Now, suppose we also have a (typically smaller) set of
labeled examples {(x,y")}r ;.

e \We can use the encoder network to convert each x to h to
obtain {(h?,y)}

Auto-encoders for
unsupervised pre-training

e Now, suppose we also have a (typically smaller) set of
labeled examples {(x,y")}r ;.

e \We can use the encoder network to convert each x to h to
obtain {(h?,y)}

* We then train a secondary NN (or any other ML model) to
predict y from h.

Auto-encoders for
unsupervised pre-training

e After training, the two networks (encoder + secondary)

can be seen as a single NN that analyzes each input x to
make a prediction y.

=t

Auto-encoders for
unsupervised pre-training

e \Why does this help?

e The first layers of the overall network were trained on a
large amount of data.

e Compressing x into h makes the secondary predictions
(hopefully) easier.

Auto-encoders for
unsupervised pre-training

* |n addition to training the secondary NN, we can — optionally
— adjust the parameters of the encoder network.

e Since the encoder was trained on a much larger (unlabeled)
dataset, we don’t want to “mess up” its weights too much
based on just a small labeled dataset.

Auto-encoders for
unsupervised pre-training

* |n addition to training the secondary NN, we can — optionally
— adjust the parameters of the encoder network.

e Since the encoder was trained on a much larger (unlabeled)
dataset, we don’t want to “mess up” its weights too much
based on just a small labeled dataset.

* Hence, we often use a small learning rate ==> fine-tuning.

(Supervised)
pre-training

Supervised pre-training

e An alternative strategy to finding good feature
representations is to borrow a NN from a related task.

e For instance, there now exist high-accuracy networks for

recognizing 1000+ object categories from images (next
slide).

e We can “borrow” the feature representation from one ML
model and apply it to another application domain...

Learning representations

Qutput
(object identity)

3rd hidden layer
{object parts)

2nd hidden layer
(corners and
contours)

Ist hidden layer
(edges)

Visible layer
(input pixels)

* The first feature representation looks vaguely like the
representation learned by my MNIST network.

http://www.deeplearningbook.org/contents/intro.html

Learning representations

Qutput
(object identity)

3rd hidden layer
{object parts)

2nd hidden layer
(corners and

-4 contours)
Ist hidden layer
-~
b b (edges)

Visible layer
(input pixels)

* Each layer of the network finds successively more abstract feature

representations.

* This was not “hard-coded” — it just turned out that these
representations were useful for predicting the target labels.

http://www.deeplearningbook.org/contents/intro.html

Supervised pre-training

* Might one (or more) of the feature representations from this
NN do well on a different but related problem, e.g., smile
detection or age estimation?

e Strategy:

1.Pre-train a NN on a large dataset for a general-purpose
image recognition task.

2.“Chop off” the final layer(s).

3.Add a secondary network in place of the deleted layers,
and train it for the new prediction task.

4.0ptional: fine-tune the rest of the NN.

Supervised pre-training

Replace with secondary network
for new application domain.

2nd hidden layer
(corners and

_— contours)
- Ist hidden layer
b b (edges)

Visible layer
(input pixels)

http://www.deeplearningbook.org/contents/intro.html

Supervised pre-training

2nd hidden layer
{corners and
contours)

Ist hidden layer
(edges)

Visible layer
(input pixels)

http://www.deeplearningbook.org/contents/intro.html

Supervised pre-training

* This strategy is known as supervised pre-training and
can be highly effective for application domains for which
only a small number of labeled data are available.

Convolution neural
networks

