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L1, L2 Regularization



Regularization

* Regularization is any means to help a machine learning
model to generalize better to data not used for training.

e Regularization is particularly important with neural
networks since they are so powerful and therefore prone
to overfitting.



Lo regularization in NNs

e To prevent the weight matrices from growing too big, we
can apply an L2 regularization term to each matrix by
augmenting the cross-entropy loss:

n 10
NG 1 1
Fer(WH 5O, W b)) = - =3 $ v logy () 4 [WOR, + W,

zlkl

 Here, |W|r?2 means the squared Frobenius norm of W.

e |t’s just the sum of squares of all the elements of W.



Lo regularization in NNs

e This results in a modified gradient for each weight matrix:

5 -y + W
gx' + W

Vwe fck

Vwo for



L1 regularization in NNs

* Alternatively, we can use L1 regularization, which
encourages entries of the weight matrix to be exactly O:
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 Here, |W| means the sum of the absolute values of each
element of W.



L1 regularization in NNs

e This results in the following gradient terms:
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L1 + L2 regularization

e \We can also combine both kinds of regularization with
different strengths for each weight matrix:
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* This results in several hyperparameters, all of which

should be optimized on a separate validation set (not the
test set).



Dropout



Dropout

 One of the most recently discovered regularization
methods is dropout, whereby a random set of neurons is
removed from the network for each gradient update.

e Surprisingly, this simple method can both help the

network to reach a better local minimum and prevent it
from overfitting.



Dropout

e Suppose we are training the NN shown below:
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Dropout

e Suppose we are training the NN shown below:

e For each step of SGD, we randomly select (with “keep”

probability p) some of the input and hidden neurons (not
the output neurons).
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Dropout

e Suppose we are training the NN shown below:

e We then remove these neurons and perform forward-
propagation on the reduced network.
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Dropout

e Suppose we are training the NN shown below:

 During back-propagation, we adjust the weights of only
those neurons that were retained in the reduced network.
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Dropout

 We then replace the neurons we had removed and
resume training. (During the next SGD iteration, we will
randomly select another set of neurons to remove, etc.)

0



Dropout: example

e Suppose the weights are:
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(For simplicity, assume that b(1)=b©=0.)
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Dropout: example

e Suppose the weights are:
@ i
1 2 3
‘71 Wt = [ 45 6 ]

* |f we drop the red neurons, then we will obtain y=[60, 132]T
for the input x=[0, 1, 2]T during forward-propagation.
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Dropout: example

e Suppose the weights are:
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1 2 3
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* |f we drop the red neurons, then we will obtain y=[60, 132]T
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Dropout: example

e Suppose the weights are:
- i
1 2 3
‘71 Wt = [ 4 5 6 ]

* |f we drop the red neurons, then we will obtain y=[60, 132]T
for the input x=[0, 1, 2]T during forward-propagation.
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Dropout: example

e Suppose the weights are:
@ i
1 2 3
‘71 Wt = [ 4 5 6 ]

e During back-propagation, we will update the weights of
only those neurons that were not removed.
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Dropout: why helpful?

e There are two main explanations for why dropout helps
improve the accuracy of neural networks:

e Symmetry breaking.

e Ensemble of many smaller networks.



Symmetry breaking

e Recall exercise 3 from Lecture 21 about weight initialization:

e Suppose that each weight matrix & bias vector consists
of the same row repeated many times.

e What will happen during SGD?

e The problem was that, when the rows of each weight matrix

were Initialized to be equal, the gradient updates for each
row were also equal.

e All the rows of each weight matrix moved in “lockstep”.



Symmetry breaking

e Recall exercise 3 from Lecture 21 about weight initialization:

e Suppose that each weight matrix & bias vector consists
of the same row repeated many times.

e What will happen during SGD?

 One of the reasons we initialize weights randomly is to break
symmetry between them, so they learn to produce
iIndependent values in the subsequent hidden layer.



Symmetry breaking

e Recall exercise 3 from Lecture 21 about weight initialization:
e Suppose that each weight matrix & bias vector consists
of the same row repeated many times.
e What will happen during SGD?
 Dropout can also help break symmetry since only some of

the elements of each weight matrix are updated during each
SGD iteration.



Ensemble of many smaller
networks

e Dropout-based NN training can be seen as approximating
a large ensemble of many smaller networks.

e Each member of the ensemble arises by randomly
dropping some of the whole network’s neurons:
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Ensemble of many smaller
networks

e At the end of SGD training, the final network approximates
the average prediction over all members of the ensemble.

e (Caveat: each member of the ensemble is constrained to
share the same weights with all other members.
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Data augmentation



Data augmentation

e The more training data you have, the less is the risk of
overfitting.

e Unfortunately, training data are often hard to find.

e Can we synthesize new training examples automatically?



Data augmentation

e Data augmentation is the creation of new examples
based on existing ones.

e |f we can alter an existing training example without
affecting its associated label, then we can generate many
new training examples and train on them.



Data augmentation

e Several commonly used methods of data augmentation:

e Adding noise to existing examples (e.g., Gaussian,
Laplacian).

e Geometric transformations (e.g., flip left/right, rotate,
translate).



Example: translation

e From an existing MNIST image, translate all the pixels by
some random amount (dx, dy).

-




Example: translation

e Data augmentation via translation encourages the NN to
learn translation-invariant features — they are useful for
classification no matter where in the image they occur.



Example: translation

 Here are the weights W) (transformed to 100x28x28) of a
MNIST classification network without data augmentation:

Acc=98.07




Example: translation

 Here are the weights W) (transformed to 100x28x28) of a
MNIST classification network with data augmentation:

Acc=98.44

e Compared to the previously shown weights, these show
visually more well-defined contours.



Multi-task learning



