
CS 453X: Class 22
Jacob Whitehill

L1, L2 Regularization

Regularization

• Regularization is any means to help a machine learning
model to generalize better to data not used for training.

• Regularization is particularly important with neural
networks since they are so powerful and therefore prone
to overfitting.

L2 regularization in NNs

• To prevent the weight matrices from growing too big, we
can apply an L2 regularization term to each matrix by
augmenting the cross-entropy loss:

• Here, |W|Fr2 means the squared Frobenius norm of W.

• It’s just the sum of squares of all the elements of W.

fCE(W
(1),b(1),W(2),b(2)) = � 1

n

nX

i=1

10X

k=1

y(i)
k log ŷ(i)

k +
1

2
kW(1)k2Fr +

1

2
kW(2)k2Fr

L2 regularization in NNs

• This results in a modified gradient for each weight matrix:

rW(2)fCE = (ŷ � y)h(1)> +W(2)

rW(1)fCE = gx> +W(1)

L1 regularization in NNs

• Alternatively, we can use L1 regularization, which
encourages entries of the weight matrix to be exactly 0:

• Here, |W| means the sum of the absolute values of each
element of W.

fCE(W
(1),b(1),W(2),b(2)) = � 1

n

nX

i=1

10X

k=1

y(i)
k log ŷ(i)

k + |W(1)|+ |W(2)|

L1 regularization in NNs

• This results in the following gradient terms:

rW(2)fCE = (ŷ � y)h(1)> + sign
⇣
W(2)

⌘

rW(1)fCE = gx> + sign
⇣
W(1)

⌘

L1 + L2 regularization

• We can also combine both kinds of regularization with
different strengths for each weight matrix:

• This results in several hyperparameters, all of which
should be optimized on a separate validation set (not the
test set).

rW(2)fCE = (ŷ � y)h(1)> + ↵(2)W(2) + �(2)sign
⇣
W(2)

⌘

rW(1)fCE = gx> + ↵(1)W(1) + �(1)sign
⇣
W(1)

⌘

Dropout

Dropout

• One of the most recently discovered regularization
methods is dropout, whereby a random set of neurons is
removed from the network for each gradient update.

• Surprisingly, this simple method can both help the
network to reach a better local minimum and prevent it
from overfitting.

Dropout
• Suppose we are training the NN shown below:

• For each step of SGD, we randomly select (with
probability p) some of the input and hidden neurons (not
the output neurons).

Dropout
• Suppose we are training the NN shown below:

• For each step of SGD, we randomly select (with “keep”
probability p) some of the input and hidden neurons (not
the output neurons).

Dropout
• Suppose we are training the NN shown below:

• We then remove these neurons and perform forward-
propagation on the reduced network.

Dropout
• Suppose we are training the NN shown below:

• During back-propagation, we adjust the weights of only
those neurons that were retained in the reduced network.

Dropout
• We then replace the neurons we had removed and

resume training. (During the next SGD iteration, we will
randomly select another set of neurons to remove, etc.)

Dropout: example
• Suppose the weights are: 

 
 
 
(For simplicity, assume that b(1)=b(2)=0.)

W(1) =

2

4
1 2 3
4 5 6
7 8 9

3

5 W(2) =


1 2 3
4 5 6

�

Dropout: example
• Suppose the weights are:

• If we drop the red neurons, then we will obtain ŷ=[60, 132]T
for the input x=[0, 1, 2]T during forward-propagation.

W(1) =

2

4
1 2 3
4 5 6
7 8 9

3

5 W(2) =


1 2 3
4 5 6

�

0

2

Dropout: example
• Suppose the weights are:

• If we drop the red neurons, then we will obtain ŷ=[60, 132]T
for the input x=[0, 1, 2]T during forward-propagation.

W(1) =

2

4
1 2 3
4 5 6
7 8 9

3

5 W(2) =


1 2 3
4 5 6

�

z1=1*0 +3*2=6 
z2=7*0 +9*2=18

0

2

6

18

Dropout: example

W(1) =

2

4
1 2 3
4 5 6
7 8 9

3

5 W(2) =


1 2 3
4 5 6

�

h1=6 
h2=18

• Suppose the weights are:

• If we drop the red neurons, then we will obtain ŷ=[60, 132]T
for the input x=[0, 1, 2]T during forward-propagation.

0

2

6

18

Dropout: example

W(1) =

2

4
1 2 3
4 5 6
7 8 9

3

5 W(2) =


1 2 3
4 5 6

�

ŷ1=1*6+3*18=60 
ŷ2=4*6+6*18=132

• Suppose the weights are:

• If we drop the red neurons, then we will obtain ŷ=[60, 132]T
for the input x=[0, 1, 2]T during forward-propagation.

h1=6 
h2=18

0

2

6

18

60

132

Dropout: example

W(1) =

2

4
1 2 3
4 5 6
7 8 9

3

5 W(2) =


1 2 3
4 5 6

�
• Suppose the weights are:

• During back-propagation, we will update the weights of
only those neurons that were not removed.

Dropout: why helpful?

• There are two main explanations for why dropout helps
improve the accuracy of neural networks:

• Symmetry breaking.

• Ensemble of many smaller networks.

Symmetry breaking
• Recall exercise 3 from Lecture 21 about weight initialization:

• The problem was that, when the rows of each weight matrix
were initialized to be equal, the gradient updates for each
row were also equal.

• All the rows of each weight matrix moved in “lockstep”.

• Suppose that each weight matrix & bias vector consists
of the same row repeated many times.

• What will happen during SGD?

Symmetry breaking
• Recall exercise 3 from Lecture 21 about weight initialization:

• One of the reasons we initialize weights randomly is to break
symmetry between them, so they learn to produce
independent values in the subsequent hidden layer.

• Suppose that each weight matrix & bias vector consists
of the same row repeated many times.

• What will happen during SGD?

Symmetry breaking
• Recall exercise 3 from Lecture 21 about weight initialization:

• Dropout can also help break symmetry since only some of
the elements of each weight matrix are updated during each
SGD iteration.

• Suppose that each weight matrix & bias vector consists
of the same row repeated many times.

• What will happen during SGD?

Ensemble of many smaller
networks

• Dropout-based NN training can be seen as approximating
a large ensemble of many smaller networks.

• Each member of the ensemble arises by randomly
dropping some of the whole network’s neurons:

…

Ensemble of many networks

Ensemble of many smaller
networks

• At the end of SGD training, the final network approximates
the average prediction over all members of the ensemble.

• Caveat: each member of the ensemble is constrained to
share the same weights with all other members.

…

Ensemble of many networks

Data augmentation

Data augmentation

• The more training data you have, the less is the risk of
overfitting.

• Unfortunately, training data are often hard to find.

• Can we synthesize new training examples automatically?

Data augmentation

• Data augmentation is the creation of new examples
based on existing ones.

• If we can alter an existing training example without
affecting its associated label, then we can generate many
new training examples and train on them.

Data augmentation

• Several commonly used methods of data augmentation:

• Adding noise to existing examples (e.g., Gaussian,
Laplacian).

• Geometric transformations (e.g., flip left/right, rotate,
translate).

Example: translation
• From an existing MNIST image, translate all the pixels by

some random amount (dx, dy).

Label-preserving
transformation

(translation)

Example: translation

• Data augmentation via translation encourages the NN to
learn translation-invariant features — they are useful for
classification no matter where in the image they occur.

Example: translation

• Here are the weights W(1) (transformed to 100x28x28) of a
MNIST classification network without data augmentation:

Acc=98.07

Example: translation

• Here are the weights W(1) (transformed to 100x28x28) of a
MNIST classification network with data augmentation:

• Compared to the previously shown weights, these show
visually more well-defined contours.

Acc=98.44

Multi-task learning

