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L1, L2 Regularization



Regularization

• Regularization is any means to help a machine learning 
model to generalize better to data not used for training.


• Regularization is particularly important with neural 
networks since they are so powerful and therefore prone 
to overfitting.



L2 regularization in NNs

• To prevent the weight matrices from growing too big, we 
can apply an L2 regularization term to each matrix by 
augmenting the cross-entropy loss:


• Here, |W|Fr2 means the squared Frobenius norm of W.


• It’s just the sum of squares of all the elements of W.
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L2 regularization in NNs

• This results in a modified gradient for each weight matrix:

rW(2)fCE = (ŷ � y)h(1)> +W(2)

rW(1)fCE = gx> +W(1)



L1 regularization in NNs

• Alternatively, we can use L1 regularization, which 
encourages entries of the weight matrix to be exactly 0:


• Here, |W| means the sum of the absolute values of each 
element of W.
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L1 regularization in NNs

• This results in the following gradient terms:
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L1 + L2 regularization

• We can also combine both kinds of regularization with 
different strengths for each weight matrix:


• This results in several hyperparameters, all of which 
should be optimized on a separate validation set (not the 
test set).
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Dropout



Dropout

• One of the most recently discovered regularization 
methods is dropout, whereby a random set of neurons is 
removed from the network for each gradient update.


• Surprisingly, this simple method can both help the 
network to reach a better local minimum and prevent it 
from overfitting.



Dropout
• Suppose we are training the NN shown below:


• For each step of SGD, we randomly select (with 
probability p) some of the input and hidden neurons (not 
the output neurons).



Dropout
• Suppose we are training the NN shown below:


• For each step of SGD, we randomly select (with “keep” 
probability p) some of the input and hidden neurons (not 
the output neurons).



Dropout
• Suppose we are training the NN shown below:


• We then remove these neurons and perform forward-
propagation on the reduced network.



Dropout
• Suppose we are training the NN shown below:


• During back-propagation, we adjust the weights of only 
those neurons that were retained in the reduced network.



Dropout
• We then replace the neurons we had removed and 

resume training. (During the next SGD iteration, we will 
randomly select another set of neurons to remove, etc.)



Dropout: example
• Suppose the weights are: 

 
 
 
(For simplicity, assume that b(1)=b(2)=0.)
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Dropout: example
• Suppose the weights are:


• If we drop the red neurons, then we will obtain ŷ=[60, 132]T 
for the input x=[0, 1, 2]T during forward-propagation.
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Dropout: example
• Suppose the weights are:


• If we drop the red neurons, then we will obtain ŷ=[60, 132]T 
for the input x=[0, 1, 2]T during forward-propagation.
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z1=1*0 +3*2=6 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Dropout: example

W(1) =

2

4
1 2 3
4 5 6
7 8 9

3

5 W(2) =


1 2 3
4 5 6

�

h1=6 
h2=18

• Suppose the weights are:


• If we drop the red neurons, then we will obtain ŷ=[60, 132]T 
for the input x=[0, 1, 2]T during forward-propagation.
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Dropout: example

W(1) =
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ŷ1=1*6+3*18=60 
ŷ2=4*6+6*18=132

• Suppose the weights are:


• If we drop the red neurons, then we will obtain ŷ=[60, 132]T 
for the input x=[0, 1, 2]T during forward-propagation.
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Dropout: example
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• Suppose the weights are:


• During back-propagation, we will update the weights of 
only those neurons that were not removed.



Dropout: why helpful?

• There are two main explanations for why dropout helps 
improve the accuracy of neural networks:


• Symmetry breaking.


• Ensemble of many smaller networks.



Symmetry breaking
• Recall exercise 3 from Lecture 21 about weight initialization:


• The problem was that, when the rows of each weight matrix 
were initialized to be equal, the gradient updates for each 
row were also equal.


• All the rows of each weight matrix moved in “lockstep”.

• Suppose that each weight matrix & bias vector consists 
of the same row repeated many times.


• What will happen during SGD?



Symmetry breaking
• Recall exercise 3 from Lecture 21 about weight initialization:


• One of the reasons we initialize weights randomly is to break 
symmetry between them, so they learn to produce 
independent values in the subsequent hidden layer.

• Suppose that each weight matrix & bias vector consists 
of the same row repeated many times.


• What will happen during SGD?



Symmetry breaking
• Recall exercise 3 from Lecture 21 about weight initialization:


• Dropout can also help break symmetry since only some of 
the elements of each weight matrix are updated during each 
SGD iteration.

• Suppose that each weight matrix & bias vector consists 
of the same row repeated many times.


• What will happen during SGD?



Ensemble of many smaller 
networks

• Dropout-based NN training can be seen as approximating 
a large ensemble of many smaller networks.


• Each member of the ensemble arises by randomly 
dropping some of the whole network’s neurons:

…

Ensemble of many networks



Ensemble of many smaller 
networks

• At the end of SGD training, the final network approximates 
the average prediction over all members of the ensemble.


• Caveat: each member of the ensemble is constrained to 
share the same weights with all other members.

…

Ensemble of many networks



Data augmentation



Data augmentation

• The more training data you have, the less is the risk of 
overfitting.


• Unfortunately, training data are often hard to find.


• Can we synthesize new training examples automatically?



Data augmentation

• Data augmentation is the creation of new examples 
based on existing ones.


• If we can alter an existing training example without 
affecting its associated label, then we can generate many 
new training examples and train on them.



Data augmentation

• Several commonly used methods of data augmentation:


• Adding noise to existing examples (e.g., Gaussian, 
Laplacian).


• Geometric transformations (e.g., flip left/right, rotate, 
translate).



Example: translation
• From an existing MNIST image, translate all the pixels by 

some random amount (dx, dy).

Label-preserving 
transformation 

(translation)



Example: translation

• Data augmentation via translation encourages the NN to 
learn translation-invariant features — they are useful for 
classification no matter where in the image they occur.



Example: translation

• Here are the weights W(1) (transformed to 100x28x28) of a 
MNIST classification network without data augmentation:

Acc=98.07



Example: translation

• Here are the weights W(1) (transformed to 100x28x28) of a 
MNIST classification network with data augmentation:


• Compared to the previously shown weights, these show 
visually more well-defined contours.

Acc=98.44



Multi-task learning


