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More on forwards and
backwards propagation



Computing the gradients

e Jacobian matrices and the chain rule provide a recipe for
how to compute all the gradient terms efficiently.

e (Consider the 3-layer NN below:
e From x, W(), and b(1), we can compute z.
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Computing the gradients

e Jacobian matrices and the chain rule provide a recipe for
how to compute all the gradient terms efficiently.

e (Consider the 3-layer NN below:
e From x, W(), and b(1), we can compute z.
* From z and o, we can compute h = o(z).
* From h, W@, and b2, we can computey.
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Computing the gradients

e Jacobian matrices and the chain rule provide a recipe for
how to compute all the gradient terms efficiently.

* This process is known as forward propagation.

* |t produces all the intermediary (h, z) and final (y)
network outputs.
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Computing the gradients

e Now, let’s look at how to compute each gradient term:
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Computing the gradients

* Here’s how we can compute all these efficiently:
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Computing the gradients

* Here’s how we can compute all these efficiently:
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Computing the gradients
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Computing the gradients

* Here’s how we can compute all these efficiently:
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Computing the gradients

* This process is known as backwards propagation

(“backprop”):
e |t produces the gradient terms of all the weight matrices

and bias vectors.




Computing the gradients

e \Where do these come from?

Vwa fce = (¥ — Y)h(l)T
Vo fce = (¥—Y)
Vwo JeceE = gXT
Ve JcE = &

where
N
g’ = (0" ~y)W?) @relu/(z0))

O We
— *(2)‘
/ —f
Xo= 77 2)
b(1) b



Computing the gradients

e | et’s derive each gradient term in turn:

of  9f 0§ oh Oz
OWD — 9§ Oh 0z OW D)

* How does y depend on h?

W&h + b®?
= W’h; + Wh, +b®

Yy 95 9§ }
ah | 8h1 8h2

— _ W§2) Wg)}

N
|




Computing the gradients

e | et’s derive each gradient term in turn:
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e How does h depend on z?
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Computing the gradients

e | et’s derive each gradient term in turn:
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Computing the gradients

e | et’s derive each gradient term in turn:
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Computing the gradients

e | et’s derive each gradient term in turn:
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Computing the gradients

e | et’s derive each gradient term in turn:
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Computing the gradients

e | et’s derive each gradient term in turn:
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Computing the gradients

e | et’s derive each gradient term in turn:
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Analytical simplification

 We can now finally derive the gradient update for W():
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Analytical simplification

 We can now finally derive the gradient update for W():
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Analytical simplification

 We can now finally derive the gradient update for W():
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Analytical simplification

 We can now finally derive the gradient update for W():
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Weight initialization



NNs and convexity

e Neural networks are a non-convex ML model.

e Hence, the values you use to initialize the weights and
bias terms can make a big difference on the accuracy of
the network.

e The network might end up in a worse local minimum of
the cost function.



Weight initialization:
example

e Suppose we initialize all the weights and bias terms of a
3-layer NN to be 0.

e What will happen during SGD?
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Weight initialization:
example

 Because the gradients w.r.t. W(), W@, and b(") are all O,
they will never change.

 Only b@ will change (to the mean of the target values y).

Vwao fce = (¥ - Y)h(1>T
Vo fce = (¥-y)
Vwo foe = gx'
Ve fce = g
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Weight initialization:
exercise 1

e Suppose we initialize W=b(1)=0, but W@, b are non-zero.
e Assume relu'(0)=0.
e \What will happen during SGD?
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Weight initialization:
exercise 1

e Since W()=b("=0, then z("=h(=0. Hence, Vw® fce= 0.

Vwao fce = (¥ - Y)h(1>T
Vo fce = (¥-y)
Vwo foe = gx'
Ve fce = g




Weight initialization:
exercise 1

e Since W()=b("=0, then z("=h(=0. Hence, Vw® fce= 0.

e Since relu'(0) = 0, then g=0. Hence, gradients w.r.t. W(1) and b(1)
are 0.

e Only b@ can change (so that y approaches mean of y).
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Weight initialization:
exercise 2

e Suppose we initialize W@=b®=0, but W), b(1) are non-zero.

e What will happen during SGD?

Vwao fce = (¥ - Y)h(1>T
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Ve fce = g
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Weight initialization:
exercise 2

e Since W@=0, then g=0. Hence, Vwo) fce, Vo fce = 0.
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Vo fce = (¥-y)
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Weight initialization:
exercise 2

e Since W@=0, then g=0. Hence, Vwo) fce, Vo fce = 0.

* However, h is non-zero. Hence, Vw @ fcris nonzero =>W® will change.
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Weight initialization:
exercise 2

e Since W@=0, then g=0. Hence, Vwo) fce, Vo fce = 0.
* However, h is non-zero. Hence, Vw @ fcris nonzero =>W® will change.
e During the next gradient update, g is non-zero => W), b() will change.

* In summary: this initialization does not severely inhibit the network’s
performance (though initializing W@, bl to 0 is still not recommended).
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Weight initialization:
exercise 3

e Suppose that each weight matrix & bias vector consists of
the same row repeated many times.

e \What will happen during SGD?
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Weight initialization:
exercise 3

* In this case, every node of h (and z) has the same value.

* Therefore, the gradient update to each row of W() and b(!) has
the same value.

* The NN is performing redundant computation — although it has 2
hidden units, it might as well just have 1!
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Weight initialization
methods

e There are various different methods of initializing the
weights of a neural network.

e One common approach:

 For weight matrix W), sample each component from a
0-mean Gaussian with deviation 1/,/cols(W).

* Within certain NNs, helps to ensure that the
gradients are usually non-zero.



Weight initialization
methods

There are various different methods of initializing the
weights of a neural network.

One common approach:

 For weight matrix W), sample each component from a
0-mean Gaussian with deviation 1/,/cols(W).

* Within certain NNs, helps to ensure that the
gradients are usually non-zero.

* QOptional: orthogonalize the rows of W0) to reduce

correlation between different units of the pre-activation
layer z0).



Regularization



Lo regularization in NNs

e To prevent the weight matrices from growing too big, we
can apply an L2 regularization term to each matrix by
augmenting the cross-entropy loss:

n 10
NG 1 1
Fer(WH 5O, W b)) = - =3 $ v logy () 4 [WOR, + W,

zlkl

 Here, |W|r?2 means the squared Frobenius norm of W.

e |t’s just the sum of squares of all the elements of W.



Lo regularization in NNs

e |n practice, this just means that the gradients have an
additional term, e.q.:
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