CS 453X: Class 21

Jacob Whitehill

More on forwards and
backwards propagation

Computing the gradients

e Jacobian matrices and the chain rule provide a recipe for
how to compute all the gradient terms efficiently.

e (Consider the 3-layer NN below:
e From x, W(), and b(1), we can compute z.

Computing the gradients

e Jacobian matrices and the chain rule provide a recipe for
how to compute all the gradient terms efficiently.

e (Consider the 3-layer NN below:
e From x, W(), and b(1), we can compute z.
* From z and g, we can compute h = 0(2).

Computing the gradients

e Jacobian matrices and the chain rule provide a recipe for
how to compute all the gradient terms efficiently.

e (Consider the 3-layer NN below:
e From x, W(), and b(1), we can compute z.
* From z and o, we can compute h = o(z).
* From h, W@, and b2, we can computey.

wQ)

e

Computing the gradients

e Jacobian matrices and the chain rule provide a recipe for
how to compute all the gradient terms efficiently.

* This process is known as forward propagation.

* |t produces all the intermediary (h, z) and final (y)
network outputs.

wQ)

e

Computing the gradients

e Now, let’s look at how to compute each gradient term:

of of 09
W@ 9j OW®)
o f of oy
ob® 9§ 0b®
of Of0joh Oz
oW 97 0h 0z OW 1)
of 0f0yoh Oz
b 9j Oh 9z db(D)
W
— we

I
—7

Computing the gradients

e Now, let’s look at how to compute each gradient term:

of of 0y
W@ 9§ OW®)
o f of oy
ob® 9§ 0b®
of Of0joh Oz
oW 9§ 0h 9z OW (1)
of 9f0yoh Oz
b 9) Oh 9z db(D)
W
— we

I
—7

Computing the gradients

* Here’s how we can compute all these efficiently:

of _ 9F
ow® 9y
wqQ)
® ®® wo
d
-1
z he
Xz b b

Computing the gradients

* Here’s how we can compute all these efficiently:

of _ 0f 0y
6W(2) - 0y OW (2)
Yy
W) OW (2)
® 6w U
/v' 3y,f
@ 6

Computing the gradients

* Here’s how we can compute all these efficiently:

of _of 0y
oW® 9y OW®)
of Of 0y
ob(2) 99 b2
0y
w) OW ()
‘ ‘ . W2 of
f

Computing the gradients

* Here’s how we can compute all these efficiently:

of of 07
W@ 9j OW®)
OFf Of 0
b 9) ob®
of 0f 9y
OW®) 9§ oh
dy
W) oh
‘ ‘ . w@e of
\ 5

Computing the gradients

* Here’s how we can compute all these efficiently:

of of 0y
W@ 9j OW®)
Of Of 0y
ob®) ob®
f Jf 0y oh
OWQ@) 99 Oh Oz
oh 9y
® W) . oh
z1—+hy w2 af
\ 5

Computing the gradients

* Here’s how we can compute all these efficiently:

of of 0y
W@ 9j OW®)
Of Of i
ob@ 9§ ob®
of Of0yoh Oz
oW 9y 0h 0z OW ()
0z
oW (1) Oh 9%y
W@ 2 oh
— we) 9f
\ 5

Computing the gradients

* This process is known as backwards propagation

(“backprop”):
e |t produces the gradient terms of all the weight matrices

and bias vectors.

Computing the gradients

e \Where do these come from?

Vwa fce = (¥ — Y)h(l)T
Vo fce = (¥—Y)
Vwo JeceE = gXT
Ve JcE = &

where
N
g’ = (0" ~y)W?) @relu/(z0))

O We
— *(2)‘
/ —f
Xo= 77 2)
b(1) b

Computing the gradients

e | et’s derive each gradient term in turn:

of 9f 0§ oh Oz
OWD — 9§ Oh 0z OW D)

* How does y depend on h?

W&h + b®?
= W’h; + Wh, +b®

Yy 95 9§ }
ah | 8h1 8h2

— _ W§2) Wg)}

N
|

Computing the gradients

e | et’s derive each gradient term in turn:

of 9f 0§ oh Oz
OWD — 9§ Oh 0z OW D)

e How does h depend on z?

relu(zy)

ho = [relu(ZQ)]

Computing the gradients

e | et’s derive each gradient term in turn:

of 9f 0§ oh Oz
OWD — 9§ Oh 0z OW D)

e How does h depend on z?

ho— - relu(z;)
| relu(zp)
oh [Oh; 9hy
— 5, = oL 5
Z i 8z1 aZQ
_ =B H— W0
/ _’f

Computing the gradients

e | et’s derive each gradient term in turn:

of 9f 0§ oh Oz
OWD — 9§ Oh 0z OW D)

e How does h depend on z?

ho— - relu(z;)
| relu(zp)
oh [Oh; Oh; |
— 5, = S b
Z i 8z1 aZQ _
| relu’(zy) 0
N 0 relu’ (zs)
~ — we

> —
b?)

w0/

Computing the gradients

e | et’s derive each gradient term in turn:
of Of 05 oh Oz
OWD — 9j 9h 9z oW (D)

e How does z depend on W(1)?
z = Whx4pW)

Computing the gradients

e | et’s derive each gradient term in turn:

of 9f 0§ oh Oz
OWD — 9§ Oh 0z OW D)

e How does z depend on W(1)?

z = Whx4pW)
2] | wowiY T x b{"
2o |~ | w® w || x| T p®
3 4 2
) BB Wo

Computing the gradients

e | et’s derive each gradient term in turn:

of 9f 0§ oh Oz
OWD — 9§ Oh 0z OW D)

e How does z depend on W(1)?

2z — WOx 1 p®
2] | wowiY T x b{"
Z o (1) (1) X + (1)
2 W57 W, 2 b,
8 8Z%) 8Z%) az% 8Z%
1 1 1) 1)
L owlT awT awl) aw(D

Computing the gradients

e | et’s derive each gradient term in turn:

of 9f 0§ oh Oz
OWD — 9§ Oh 0z OW D)

e How does z depend on W(1)?

z = Whx4pW)
2] | wowiY T x b{"
Z o (1) (1) X _|_ (1)
2 W57 W, 2 b,
8 8Z%) 8Z%) az% 8Z%
1 1 1) 1)
— aVVZ(U — 8?;; 82\23 82\23 83‘;3]
L owl? aw(Y owl) aw(V
B [x; X9 0 0
o i 0 0 X1 X9

Analytical simplification

 We can now finally derive the gradient update for W():

of of 0y oh 0z

owd 9y 0h 9z OW (1)

Analytical simplification

 We can now finally derive the gradient update for W():

of of 0y oh 0z

owd 9y 0h 9z OW (1)

/
e o Tw(@ | relui(zi) 0 x;1 x93 0 O
Y-y W [0 relu’ (z2) 0 0 x; X9

Analytical simplification

 We can now finally derive the gradient update for W():

of of 0y oh 0z

owd 9y 0h 9z OW (1)

/
e o Tw@ | relui(zi) 0 x;1 x93 0 O
Y-y W [0 relu’ (zs) 0 0 x; X9

— (((S’—Y)TW(Q)) ® | relu'(z1) relu'(zs) D [381 x2 0 O]

0 X1 X9

Analytical simplification

 We can now finally derive the gradient update for W():

af

EALYASY,

0f 0y oh 0z

0y oh 0z OW (1)

(y—y) W [

| &1 gz}[

relu’ (z1)

0 relu’ (z2)

X7 X9 0 0

0

0 X1 X9

0

|

|

X1 X9 0

0

0
0 X1 X9

X1 X9 0 0

(((y—y)TW(Q)) ® | relu'(z1) relu'(zs) D [0

0 X1 X9

|

Analytical simplification

 We can now finally derive the gradient update for W():

of of 0y oh 0z

ow® 9y 0h 9z OW (D)

/
e o Tw(@ | relui(zi) 0 x;1 x93 0 O
Y-y W [0 relu’ (z2) 0 0 x; X9

— (((}A’—Y)TW(Q)) ® [relu’(z1) relu'(z2) D [381 xo 0 0]

0 X1 X9

T X7 X9 0 0

= :g1X1 g1X2 82X1 82X2}

Analytical simplification

 We can now finally derive the gradient update for W():

of 0f 0y oh 0z
BAVAR Jdy 0h 0z OW)

/
e o Tw(@ | relui(zi) 0 x;1 x93 0 O
Y-y W [0 relu’ (z2) 0 0 x; X9

— o —v) T (2)) / /) x3 x2 0 0
(((y y) W)@ | relu'(z1) relu'(zz) | [0 0 x x
T X7 X9 0 0

— | 81 82 } [0 0 %1 X]

= :g1X1 g1X2 82X1 82X2}
T

— Vwof = gx

|

Weight initialization

NNs and convexity

e Neural networks are a non-convex ML model.

e Hence, the values you use to initialize the weights and
bias terms can make a big difference on the accuracy of
the network.

e The network might end up in a worse local minimum of
the cost function.

Weight initialization:
example

e Suppose we initialize all the weights and bias terms of a
3-layer NN to be 0.

e What will happen during SGD?

Weight initialization:
example

e Suppose we initialize all the weights and bias terms of a
3-layer NN to be 0.

e What will happen during SGD?

Weight initialization:
example

e Suppose we initialize all the weights and bias terms of a
3-layer NN to be 0.

e What will happen during SGD?

Vwao fce = (¥ - Y)h(1>T
Vo fce = (¥-y)
Vwo foe = gx'
Ve fce = g

-
gT — ((y _ y)T W(2)) ® relu’(z(l))

— —> *(2)‘
/ —>f
" w bm//' b

Weight initialization:
example

e Suppose we initialize all the weights and bias terms of a
3-layer NN to be 0.

e What will happen during SGD?

Vwao fce = (¥ - Y)h(1>T
Vo fce = (¥-y)
Vwo foe = gx'
Ve fce = g

-
gT — ((y _ y)T W(2)) ® relu’(z(l))

— —> *(2)‘
/ —>f
" w bm//' b

Weight initialization:
example

 Because the gradients w.r.t. W(), W@, and b(") are all O,
they will never change.

 Only b@ will change (to the mean of the target values y).

Vwao fce = (¥ - Y)h(1>T
Vo fce = (¥-y)
Vwo foe = gx'
Ve fce = g

-
gT — ((y _ y)T W(2)) ® relu’(z(l))

Weight initialization:
exercise 1

e Suppose we initialize W=b(1)=0, but W@, b are non-zero.
e Assume relu'(0)=0.
e \What will happen during SGD?

Vwao fce = (¥ - Y)h(1>T
Vo fce = (¥-y)
Vwo foe = gx'
Ve fce = g

-
gT — ((y _ y)T W(2)) ® relu’(z(l))

— —> *(2)‘
/ —>f
" w bm//' b

Weight initialization:
exercise 1

e Since W()=b("=0, then z("=h(=0. Hence, Vw® fce= 0.

Vwao fce = (¥ - Y)h(1>T
Vo fce = (¥-y)
Vwo foe = gx'
Ve fce = g

Weight initialization:
exercise 1

e Since W()=b("=0, then z("=h(=0. Hence, Vw® fce= 0.

e Since relu'(0) = 0, then g=0. Hence, gradients w.r.t. W(1) and b(1)
are 0.

e Only b@ can change (so that y approaches mean of y).

Vwao fce = (¥ - Y)h(1>T
Vo fce = (¥-y)
Vwo foe = gx'
Ve fce = g

A T
gT — ((y _ y)T W(2)) ® relu’(z(l))

—> W(Q2)

> —
b?)

w0/

Weight initialization:
exercise 2

e Suppose we initialize W@=b®=0, but W), b(1) are non-zero.

e What will happen during SGD?

Vwao fce = (¥ - Y)h(1>T
Vo fce = (¥-y)
Vwo foe = gx'
Ve fce = g

-
gT — ((y _ y)T W(2)) ® relu’(z(l))

—> W(Q2)

> —
b?)

w0/

Weight initialization:
exercise 2

e Since W@=0, then g=0. Hence, Vwo) fce, Vo fce = 0.

Vwao fce = (¥ - Y)h(1>T
Vo fce = (¥-y)
Vwo foe = gx'
Ve fce = 8

Weight initialization:
exercise 2

e Since W@=0, then g=0. Hence, Vwo) fce, Vo fce = 0.

* However, h is non-zero. Hence, Vw @ fcris nonzero =>W® will change.

) T
Vwo fece = (¥ —y)h®
Ve fce = Y-y
Vwo fce = gXT
Vi fce = g
ol = ((y —9)7 W<2>) o relu’ (z0)
~ — we

Weight initialization:
exercise 2

e Since W@=0, then g=0. Hence, Vwo) fce, Vo fce = 0.
* However, h is non-zero. Hence, Vw @ fcris nonzero =>W® will change.
e During the next gradient update, g is non-zero => W), b() will change.

* In summary: this initialization does not severely inhibit the network’s
performance (though initializing W@, bl to 0 is still not recommended).

Vwao fce = (¥ - Y)h(1>T
Vo fce = (¥-y)
Vwo foe = gx'
Ve fce = g

A T
gT — ((y _ y)T W(2)) ® relu’(z(l))

—> W(Q2)

> —
b?)

w0/

Weight initialization:
exercise 3

e Suppose that each weight matrix & bias vector consists of
the same row repeated many times.

e \What will happen during SGD?

Vwao fce = (¥ - Y)h(1>T
Vo fce = (¥-y)
Vwo foe = gx'
Ve fce = g

A T
gT — ((y _ y)T W(2)) ® relu’(z(l))

— —> *(2)‘
/ —>f
" w bm//' b

Weight initialization:
exercise 3

* In this case, every node of h (and z) has the same value.

* Therefore, the gradient update to each row of W() and b(!) has
the same value.

* The NN is performing redundant computation — although it has 2
hidden units, it might as well just have 1!

Vwao fce = (¥ - Y)h(1>T
Vo fce = (¥-y)
Vwo foe = gx'
Ve fce = g

A T
gT — ((y _ y)T W(2)) ® relu’(z(l))

—> W(Q2)

> —
b?)

w0/

Weight initialization
methods

e There are various different methods of initializing the
weights of a neural network.

e One common approach:

 For weight matrix W), sample each component from a
0-mean Gaussian with deviation 1/,/cols(W).

* Within certain NNs, helps to ensure that the
gradients are usually non-zero.

Weight initialization
methods

There are various different methods of initializing the
weights of a neural network.

One common approach:

 For weight matrix W), sample each component from a
0-mean Gaussian with deviation 1/,/cols(W).

* Within certain NNs, helps to ensure that the
gradients are usually non-zero.

* QOptional: orthogonalize the rows of W0) to reduce

correlation between different units of the pre-activation
layer z0).

Regularization

Lo regularization in NNs

e To prevent the weight matrices from growing too big, we
can apply an L2 regularization term to each matrix by
augmenting the cross-entropy loss:

n 10
NG 1 1
Fer(WH 5O, W b)) = - =3 $ v logy () 4 [WOR, + W,

zlkl

 Here, |W|r?2 means the squared Frobenius norm of W.

e |t’s just the sum of squares of all the elements of W.

Lo regularization in NNs

e |n practice, this just means that the gradients have an
additional term, e.q.:

5 —yhV "+ W
gx' + W

Vwe fck

Vwo for

