
CS 453X: Class 21
Jacob Whitehill



More on forwards and 
backwards propagation



Computing the gradients
• Jacobian matrices and the chain rule provide a recipe for 

how to compute all the gradient terms efficiently.


• Consider the 3-layer NN below:

• From x, W(1), and b(1), we can compute z.

• From z and σ, we can compute h = σ(z).

• From h, W(2), and b(2), we can compute ŷ.

x1

x2

xm
zk

z1

W(1)

W(2)
ŷ1

…
…

ŷl
…

b(1) b(2)
hk

h1

…



Computing the gradients
• Jacobian matrices and the chain rule provide a recipe for 

how to compute all the gradient terms efficiently.


• Consider the 3-layer NN below:

• From x, W(1), and b(1), we can compute z.

• From z and σ, we can compute h = σ(z).

• From h, W(2), and b(2), we can compute ŷ.

x1

x2

xm
zk

z1

W(1)

W(2)
ŷ1

…
…

ŷl
…

b(1) b(2)
hk

h1

…



Computing the gradients
• Jacobian matrices and the chain rule provide a recipe for 

how to compute all the gradient terms efficiently.


• Consider the 3-layer NN below:

• From x, W(1), and b(1), we can compute z.

• From z and σ, we can compute h = σ(z).

• From h, W(2), and b(2), we can compute ŷ.

x1

x2

xm
zk

z1

W(1)

W(2)
ŷ1

…
…

ŷl
…

b(1) b(2)
hk

h1

…



Computing the gradients
• Jacobian matrices and the chain rule provide a recipe for 

how to compute all the gradient terms efficiently.


• This process is known as forward propagation.

• It produces all the intermediary (h, z) and final (ŷ) 

network outputs.

• From h, W(2), and b(2), we can compute ŷ.

x1

x2

xm
zk

z1

W(1)

W(2)
ŷ1

…
…

ŷl
…

b(1) b(2)
hk

h1

…



Computing the gradients
• Now, let’s look at how to compute each gradient term:

x1

x2
z2

z1

W(1)

W(2)

ŷ

b(1) b(2)
h2

h1

f

@f

@W(2)
=

@f

@ŷ

@ŷ

@W(2)

@f

@b(2)
=

@f

@ŷ

@ŷ

@b(2)

@f

@W(1)
=

@f

@ŷ

@ŷ

@h

@h

@z

@z

@W(1)

@f

@b(1)
=

@f

@ŷ

@ŷ

@h

@h

@z

@z

@b(1)



Computing the gradients
• Now, let’s look at how to compute each gradient term:

z2

z1

W(1)

W(2)

ŷ

b(1) b(2)
h2

h1

f

Redundant 
computation

@f

@W(2)
=

@f

@ŷ

@ŷ

@W(2)

@f

@b(2)
=

@f

@ŷ

@ŷ

@b(2)

@f

@W(1)
=

@f

@ŷ

@ŷ

@h

@h

@z

@z

@W(1)

@f

@b(1)
=

@f

@ŷ

@ŷ

@h

@h

@z

@z

@b(1)

x1

x2



@f

@W(2)
=

@f

@ŷ

@ŷ

@W(2)

@f

@b(2)
=

@f

@ŷ

@ŷ

@b(2)

@f

@W(1)
=

@f

@ŷ

@ŷ

@h

@h

@z

@z

@W(1)

@f

@b(1)
=

@f

@ŷ

@ŷ

@h

@h

@z

@z

@b(1)

Computing the gradients
• Here’s how we can compute all these efficiently:

z2

z1

W(1)

W(2)

ŷ

b(1) b(2)
h2

h1

f

@f

@ŷ

x1

x2



@f

@W(2)
=

@f

@ŷ

@ŷ

@W(2)

@f

@b(2)
=

@f

@ŷ

@ŷ

@b(2)

@f

@W(1)
=

@f

@ŷ

@ŷ

@h

@h

@z

@z

@W(1)

@f

@b(1)
=

@f

@ŷ

@ŷ

@h

@h

@z

@z

@b(1)

Computing the gradients
• Here’s how we can compute all these efficiently:

x1

x2
z2

z1

W(1)

W(2)

ŷ

b(1) b(2)
h2

h1

f

@f

@ŷ

@ŷ

@W(2)



@f

@W(2)
=

@f

@ŷ

@ŷ

@W(2)

@f

@b(2)
=

@f

@ŷ

@ŷ

@b(2)

@f

@W(1)
=

@f

@ŷ

@ŷ

@h

@h

@z

@z

@W(1)

@f

@b(1)
=

@f

@ŷ

@ŷ

@h

@h

@z

@z

@b(1)

Computing the gradients
• Here’s how we can compute all these efficiently:

x1

x2
z2

z1

W(1)

W(2)

ŷ

b(1) b(2)
h2

h1

f

@f

@ŷ

@ŷ

@W(2)

@ŷ

@b(2)



@f

@W(2)
=

@f

@ŷ

@ŷ

@W(2)

@f

@b(2)
=

@f

@ŷ

@ŷ

@b(2)

@f

@W(1)
=

@f

@ŷ

@ŷ

@h

@h

@z

@z

@W(1)

@f

@b(1)
=

@f

@ŷ

@ŷ

@h

@h

@z

@z

@b(1)

Computing the gradients
• Here’s how we can compute all these efficiently:

x1

x2
z2

z1

W(1)

W(2)

ŷ

b(1) b(2)
h2

h1

f

@f

@ŷ

@ŷ

@h



@f

@W(2)
=

@f

@ŷ

@ŷ

@W(2)

@f

@b(2)
=

@f

@ŷ

@ŷ

@b(2)

@f

@W(1)
=

@f

@ŷ

@ŷ

@h

@h

@z

@z

@W(1)

@f

@b(1)
=

@f

@ŷ

@ŷ

@h

@h

@z

@z

@b(1)

Computing the gradients
• Here’s how we can compute all these efficiently:

x1

x2
z2

z1

W(1)

W(2)

ŷ

b(1) b(2)
h2

h1

f

@f

@ŷ

@ŷ

@h
@h

@z



@f

@W(2)
=

@f

@ŷ

@ŷ

@W(2)

@f

@b(2)
=

@f

@ŷ

@ŷ

@b(2)

@f

@W(1)
=

@f

@ŷ

@ŷ

@h

@h

@z

@z

@W(1)

@f

@b(1)
=

@f

@ŷ

@ŷ

@h

@h

@z

@z

@b(1)

Computing the gradients
• Here’s how we can compute all these efficiently:

x1

x2
z2

z1

W(1)

W(2)

ŷ

b(1) b(2)
h2

h1

f

@f

@ŷ

@ŷ

@h
@h

@z

@z

@W(1)



Computing the gradients

x1

x2
z2

z1

W(1)

W(2)

ŷ

b(1) b(2)
h2

h1

f

@f

@ŷ

@ŷ

@h
@h

@z

@z

@W(1)

@z

@b(1)

• This process is known as backwards propagation 
(“backprop”):

• It produces the gradient terms of all the weight matrices 

and bias vectors.

•



Computing the gradients
• Where do these come from? 

 
 
 
 
 
 
where

(c) Conduct stochastic gradient descent, in a similar way as you did for homeworks 2 and 3, where you
compute the gradient updates using the expressions shown below. (Note that these expressions
are obtained by deriving and multiplying the Jacobian matrices as described in class, and then
simplifying the result analytically.)

rW(2)fCE = (ŷ � y)h(1)>

rb(2)fCE = (ŷ � y)

rW(1)fCE = gx
>

rb(1)fCE = g

where column-vector g is defined so that

g
> =

⇣
(ŷ> � y)W(2)

⌘
� relu0(z(1)

>
)

In the equation above, relu0 is the derivative of relu. Also, make sure that you follow the transposes
exactly!

Hyperparameter tuning: In this problem, there are several di↵erent hyperparameters that will
impact the network’s performance:

• Number of units in the hidden layer (suggestions: {30, 40, 50})
• Learning rate (suggestions: {0.001, 0.005, 0.01, 0.05, 0.1, 0.5})
• Minibatch size (suggestions: 16, 32, 64, 128, 256)

• Number of epochs

• Regularization strength

In order not to “cheat” – and thus overestimate the performance of the network – it is crucial to
optimize the hyperparameters only on the validation set; do not use the test set. (The training set
would be ok but typically leads to worse performance.) Download the validation data here:

• https://s3.amazonaws.com/jrwprojects/mnist_validation_images.npy

• https://s3.amazonaws.com/jrwprojects/mnist_validation_labels.npy

Your task: Use stochastic gradient descent to minimize the cross-entropy with respect to W1,W2,b1,
and b2. Specifically:

(a) Implement stochastic gradient descent for the network shown above. [60 points]

(b) Optimize the hyperparameters by training on the training set and selecting the parameter settings
that optimize performance on the validation set. You should systematically (i.e., in code)

try at least 10 (in total, not for each hyperparameter) di↵erent hyperparameter

settings; accordingly, make sure there is a method called findBestHyperparameters (and please
name it as such to help us during grading) [15 points]. Include a screenshot showing the progress
and final output (selected hyperparameter values) of your hyperparameter optimization.

(c) After you have optimized your hyperparameters, then run your trained network on the test

set and report (1) the cross-entropy and (2) the accuracy (percent correctly classified images).
Include a screenshot showing both these values during the last 20 epochs of SGD. The (unreg-

ularized) cross-entropy cost on the test set should be less than 0.16, and the accuracy

(percentage correctly classified test images) should be at least 95%. [5 points]

In addition to your Python code (homework6 WPIUSERNAME1.py

or homework6 WPIUSERNAME1 WPIUSERNAME2.py for teams), create a PDF file (homework6 WPIUSERNAME1.pdf

or homework6 WPIUSERNAME1 WPIUSERNAME2.pdf for teams) containing the screenshots described above.
Please submit both the PDF and Python files in a single Zip file.

2

z2

z1

W(1)

W(2)

ŷ

b(1) b(2)
h2

h1

f

(c) Conduct stochastic gradient descent, in a similar way as you did for homeworks 2 and 3, where you
compute the gradient updates using the expressions shown below. (Note that these expressions
are obtained by deriving and multiplying the Jacobian matrices as described in class, and then
simplifying the result analytically.)

rW(2)fCE = (ŷ � y)h(1)>

rb(2)fCE = (ŷ � y)

rW(1)fCE = gx
>

rb(1)fCE = g

where column-vector g is defined so that

g
> =

⇣
(ŷ> � y)W(2)

⌘
� relu0(z(1)

>
)

In the equation above, relu0 is the derivative of relu. Also, make sure that you follow the transposes
exactly!

Hyperparameter tuning: In this problem, there are several di↵erent hyperparameters that will
impact the network’s performance:

• Number of units in the hidden layer (suggestions: {30, 40, 50})
• Learning rate (suggestions: {0.001, 0.005, 0.01, 0.05, 0.1, 0.5})
• Minibatch size (suggestions: 16, 32, 64, 128, 256)

• Number of epochs

• Regularization strength

In order not to “cheat” – and thus overestimate the performance of the network – it is crucial to
optimize the hyperparameters only on the validation set; do not use the test set. (The training set
would be ok but typically leads to worse performance.) Download the validation data here:

• https://s3.amazonaws.com/jrwprojects/mnist_validation_images.npy

• https://s3.amazonaws.com/jrwprojects/mnist_validation_labels.npy

Your task: Use stochastic gradient descent to minimize the cross-entropy with respect to W1,W2,b1,
and b2. Specifically:

(a) Implement stochastic gradient descent for the network shown above. [60 points]

(b) Optimize the hyperparameters by training on the training set and selecting the parameter settings
that optimize performance on the validation set. You should systematically (i.e., in code)

try at least 10 (in total, not for each hyperparameter) di↵erent hyperparameter

settings; accordingly, make sure there is a method called findBestHyperparameters (and please
name it as such to help us during grading) [15 points]. Include a screenshot showing the progress
and final output (selected hyperparameter values) of your hyperparameter optimization.

(c) After you have optimized your hyperparameters, then run your trained network on the test

set and report (1) the cross-entropy and (2) the accuracy (percent correctly classified images).
Include a screenshot showing both these values during the last 20 epochs of SGD. The (unreg-

ularized) cross-entropy cost on the test set should be less than 0.16, and the accuracy

(percentage correctly classified test images) should be at least 95%. [5 points]

In addition to your Python code (homework6 WPIUSERNAME1.py

or homework6 WPIUSERNAME1 WPIUSERNAME2.py for teams), create a PDF file (homework6 WPIUSERNAME1.pdf

or homework6 WPIUSERNAME1 WPIUSERNAME2.pdf for teams) containing the screenshots described above.
Please submit both the PDF and Python files in a single Zip file.

2

x1

x2



Computing the gradients

z2

z1

W(1)

W(2)

ŷ

b(1) b(2)
h2

h1

f

@f

@W(1)
=

@f

@ŷ

@ŷ

@h

@h

@z

@z

@W(1)

ŷ = W(2)h+ b(2)

= W(2)
1 h1 +W(2)

2 h2 + b(2)

=) @ŷ

@h
=

h
@ŷ
@h1

@ŷ
@h2

i

=
h
W(2)

1 W(2)
2

i

= W(2)

• Let’s derive each gradient term in turn: 

• How does ŷ depend on h?

x1

x2



Computing the gradients

z2

z1

W(1)

W(2)

ŷ

b(1) b(2)
h2

h1

f

@f

@W(1)
=

@f

@ŷ

@ŷ

@h

@h

@z

@z

@W(1)

• Let’s derive each gradient term in turn: 

• How does h depend on z?
h =


relu(z1)
relu(z2)

�

=) @h

@z
=

"
@h1
@z1

@h1
@z2

@h2
@z1

@h2
@z2

#

=


relu0(z1) 0

0 relu0(z2)

�

x1

x2



Computing the gradients

z2

z1

W(1)

W(2)

ŷ

b(1) b(2)
h2

h1

f

@f

@W(1)
=

@f

@ŷ

@ŷ

@h

@h

@z

@z

@W(1)

• Let’s derive each gradient term in turn: 

• How does h depend on z?
h =


relu(z1)
relu(z2)

�

=) @h

@z
=

"
@h1
@z1

@h1
@z2

@h2
@z1

@h2
@z2

#

=


relu0(z1) 0

0 relu0(z2)

�

x1

x2



Computing the gradients

z2

z1

W(1)

W(2)

ŷ

b(1) b(2)
h2

h1

f

@f

@W(1)
=

@f

@ŷ

@ŷ

@h

@h

@z

@z

@W(1)

• Let’s derive each gradient term in turn: 

• How does h depend on z?
h =


relu(z1)
relu(z2)

�

=) @h

@z
=

"
@h1
@z1

@h1
@z2

@h2
@z1

@h2
@z2

#

=


relu0(z1) 0

0 relu0(z2)

�

x1

x2



z = W(1)x+ b(1)


z1
z2

�
=

"
W(1)

1 W(1)
2

W(1)
3 W(1)

4

# 
x1

x2

�
+

"
b(1)
1

b(1)
2

#

=) @z

@W(1)
=

" @z1

@W(1)
1

@z1

@W(1)
2

@z1

@W(1)
3

@z1

@W(1)
4

@z2

@W(1)
1

@z2

@W(1)
2

@z2

@W(1)
3

@z2

@W(1)
4

#

=


x1 x2 0 0
0 0 x1 x2

�

Computing the gradients

z2

z1

W(1)

W(2)

ŷ

b(1) b(2)
h2

h1

f

@f

@W(1)
=

@f

@ŷ

@ŷ

@h

@h

@z

@z

@W(1)

• Let’s derive each gradient term in turn: 

• How does z depend on W(1)?

x1

x2



z = W(1)x+ b(1)


z1
z2

�
=

"
W(1)

1 W(1)
2

W(1)
3 W(1)

4

# 
x1

x2

�
+

"
b(1)
1

b(1)
2

#

=) @z

@W(1)
=

" @z1

@W(1)
1

@z1

@W(1)
2

@z1

@W(1)
3

@z1

@W(1)
4

@z2

@W(1)
1

@z2

@W(1)
2

@z2

@W(1)
3

@z2

@W(1)
4

#

=


x1 x2 0 0
0 0 x1 x2

�

Computing the gradients

z2

z1

W(1)

W(2)

ŷ

b(1) b(2)
h2

h1

f

@f

@W(1)
=

@f

@ŷ

@ŷ

@h

@h

@z

@z

@W(1)

• Let’s derive each gradient term in turn: 

• How does z depend on W(1)?

x1

x2



z = W(1)x+ b(1)


z1
z2

�
=

"
W(1)

1 W(1)
2

W(1)
3 W(1)

4

# 
x1

x2

�
+

"
b(1)
1

b(1)
2

#

=) @z

@W(1)
=

" @z1

@W(1)
1

@z1

@W(1)
2

@z1

@W(1)
3

@z1

@W(1)
4

@z2

@W(1)
1

@z2

@W(1)
2

@z2

@W(1)
3

@z2

@W(1)
4

#

=


x1 x2 0 0
0 0 x1 x2

�

Computing the gradients

z2

z1

W(1)

W(2)

ŷ

b(1) b(2)
h2

h1

f

@f

@W(1)
=

@f

@ŷ

@ŷ

@h

@h

@z

@z

@W(1)

• Let’s derive each gradient term in turn: 

• How does z depend on W(1)?

For Jacobian matrix, we 
have to treat W(1) as if it 

were a vector.

x1

x2



Computing the gradients

z2

z1

W(1)

W(2)

ŷ

b(1) b(2)
h2

h1

f

@f

@W(1)
=

@f

@ŷ

@ŷ

@h

@h

@z

@z

@W(1)

• Let’s derive each gradient term in turn: 

• How does z depend on W(1)?

x1

x2

z = W(1)x+ b(1)


z1
z2

�
=

"
W(1)

1 W(1)
2

W(1)
3 W(1)

4

# 
x1

x2

�
+

"
b(1)
1

b(1)
2

#

=) @z

@W(1)
=

" @z1

@W(1)
1

@z1

@W(1)
2

@z1

@W(1)
3

@z1

@W(1)
4

@z2

@W(1)
1

@z2

@W(1)
2

@z2

@W(1)
3

@z2

@W(1)
4

#

=


x1 x2 0 0
0 0 x1 x2

�



@f

@W(1)
=

@f

@ŷ

@ŷ

@h

@h

@z

@z

@W(1)

= (ŷ � y)>W(2)


relu0(z1) 0

0 relu0(z2)

� 
x1 x2 0 0
0 0 x1 x2

�

=
⇣⇣

(ŷ � y)>W(2)
⌘
�
⇥
relu0(z1) relu0(z2)

⇤⌘ 
x1 x2 0 0
0 0 x1 x2

�

=
⇥
g1 g2

⇤  x1 x2 0 0
0 0 x1 x2

�

=
⇥
g1x1 g1x2 g2x1 g2x2

⇤

=) rW(1)f = gx>

Analytical simplification
• We can now finally derive the gradient update for W(1):



@f

@W(1)
=

@f

@ŷ

@ŷ

@h

@h

@z

@z

@W(1)

= (ŷ � y)>W(2)


relu0(z1) 0

0 relu0(z2)

� 
x1 x2 0 0
0 0 x1 x2

�

=
⇣⇣

(ŷ � y)>W(2)
⌘
�
⇥
relu0(z1) relu0(z2)

⇤⌘ 
x1 x2 0 0
0 0 x1 x2

�

=
⇥
g1 g2

⇤  x1 x2 0 0
0 0 x1 x2

�

=
⇥
g1x1 g1x2 g2x1 g2x2

⇤

=) rW(1)f = gx>

Analytical simplification
• We can now finally derive the gradient update for W(1):



@f

@W(1)
=

@f

@ŷ

@ŷ

@h

@h

@z

@z

@W(1)

= (ŷ � y)>W(2)


relu0(z1) 0

0 relu0(z2)

� 
x1 x2 0 0
0 0 x1 x2

�

=
⇣⇣

(ŷ � y)>W(2)
⌘
�
⇥
relu0(z1) relu0(z2)

⇤⌘ 
x1 x2 0 0
0 0 x1 x2

�

=
⇥
g1 g2

⇤  x1 x2 0 0
0 0 x1 x2

�

=
⇥
g1x1 g1x2 g2x1 g2x2

⇤

=) rW(1)f = gx>

Analytical simplification
• We can now finally derive the gradient update for W(1):

since multiplying by a diagonal matrix 
is equivalent to element-wise 

(Hadamard) product.



@f

@W(1)
=

@f

@ŷ

@ŷ

@h

@h

@z

@z

@W(1)

= (ŷ � y)>W(2)


relu0(z1) 0

0 relu0(z2)

� 
x1 x2 0 0
0 0 x1 x2

�

=
⇣⇣

(ŷ � y)>W(2)
⌘
�
⇥
relu0(z1) relu0(z2)

⇤⌘ 
x1 x2 0 0
0 0 x1 x2

�

=
⇥
g1 g2

⇤  x1 x2 0 0
0 0 x1 x2

�

=
⇥
g1x1 g1x2 g2x1 g2x2

⇤

=) rW(1)f = gx>

Analytical simplification
• We can now finally derive the gradient update for W(1):

To simplify notation, let’s 
define a new vector  that 

equals the first few terms.



@f

@W(1)
=

@f

@ŷ

@ŷ

@h

@h

@z

@z

@W(1)

= (ŷ � y)>W(2)


relu0(z1) 0

0 relu0(z2)

� 
x1 x2 0 0
0 0 x1 x2

�

=
⇣⇣

(ŷ � y)>W(2)
⌘
�
⇥
relu0(z1) relu0(z2)

⇤⌘ 
x1 x2 0 0
0 0 x1 x2

�

=
⇥
g1 g2

⇤  x1 x2 0 0
0 0 x1 x2

�

=
⇥
g1x1 g1x2 g2x1 g2x2

⇤

=) rW(1)f = gx>

Analytical simplification
• We can now finally derive the gradient update for W(1):



Analytical simplification
• We can now finally derive the gradient update for W(1):

@f

@W(1)
=

@f

@ŷ

@ŷ

@h

@h

@z

@z

@W(1)

= (ŷ � y)>W(2)


relu0(z1) 0

0 relu0(z2)

� 
x1 x2 0 0
0 0 x1 x2

�

=
⇣⇣

(ŷ � y)>W(2)
⌘
�
⇥
relu0(z1) relu0(z2)

⇤⌘ 
x1 x2 0 0
0 0 x1 x2

�

=
⇥
g1 g2

⇤  x1 x2 0 0
0 0 x1 x2

�

=
⇥
g1x1 g1x2 g2x1 g2x2

⇤

=) rW(1)f = gx>

Outer product



Weight initialization



NNs and convexity

• Neural networks are a non-convex ML model.


• Hence, the values you use to initialize the weights and 
bias terms can make a big difference on the accuracy of 
the network.


• The network might end up in a worse local minimum of 
the cost function.



Weight initialization: 
example

• Suppose we initialize all the weights and bias terms of a 
3-layer NN to be 0.


• What will happen during SGD?

z2

z1

W(1)

W(2)

ŷ

b(1) b(2)
h2

h1

f

x1

x2



Weight initialization: 
example

• Suppose we initialize all the weights and bias terms of a 
3-layer NN to be 0.


• What will happen during SGD?

z2

z1

W(1)

W(2)

ŷ

b(1) b(2)
h2

h1

f

x1

x2

During forwards propagation, z and h will be 0. Hence, ŷ will also be 0.



Weight initialization: 
example

• Suppose we initialize all the weights and bias terms of a 
3-layer NN to be 0.


• What will happen during SGD?

z2

z1

W(1)

W(2)

ŷ

b(1) b(2)
h2

h1

f

x1

x2

During backwards propagation, we have:

(c) Conduct stochastic gradient descent, in a similar way as you did for homeworks 2 and 3, where you
compute the gradient updates using the expressions shown below. (Note that these expressions
are obtained by deriving and multiplying the Jacobian matrices as described in class, and then
simplifying the result analytically.)

rW(2)fCE = (ŷ � y)h(1)>

rb(2)fCE = (ŷ � y)

rW(1)fCE = gx
>

rb(1)fCE = g

where column-vector g is defined so that

g
> =

⇣
(ŷ> � y)W(2)

⌘
� relu0(z(1)

>
)

In the equation above, relu0 is the derivative of relu. Also, make sure that you follow the transposes
exactly!

Hyperparameter tuning: In this problem, there are several di↵erent hyperparameters that will
impact the network’s performance:

• Number of units in the hidden layer (suggestions: {30, 40, 50})
• Learning rate (suggestions: {0.001, 0.005, 0.01, 0.05, 0.1, 0.5})
• Minibatch size (suggestions: 16, 32, 64, 128, 256)

• Number of epochs

• Regularization strength

In order not to “cheat” – and thus overestimate the performance of the network – it is crucial to
optimize the hyperparameters only on the validation set; do not use the test set. (The training set
would be ok but typically leads to worse performance.) Download the validation data here:

• https://s3.amazonaws.com/jrwprojects/mnist_validation_images.npy

• https://s3.amazonaws.com/jrwprojects/mnist_validation_labels.npy

Your task: Use stochastic gradient descent to minimize the cross-entropy with respect to W1,W2,b1,
and b2. Specifically:

(a) Implement stochastic gradient descent for the network shown above. [60 points]

(b) Optimize the hyperparameters by training on the training set and selecting the parameter settings
that optimize performance on the validation set. You should systematically (i.e., in code)

try at least 10 (in total, not for each hyperparameter) di↵erent hyperparameter

settings; accordingly, make sure there is a method called findBestHyperparameters (and please
name it as such to help us during grading) [15 points]. Include a screenshot showing the progress
and final output (selected hyperparameter values) of your hyperparameter optimization.

(c) After you have optimized your hyperparameters, then run your trained network on the test

set and report (1) the cross-entropy and (2) the accuracy (percent correctly classified images).
Include a screenshot showing both these values during the last 20 epochs of SGD. The (unreg-

ularized) cross-entropy cost on the test set should be less than 0.16, and the accuracy

(percentage correctly classified test images) should be at least 95%. [5 points]

In addition to your Python code (homework6 WPIUSERNAME1.py

or homework6 WPIUSERNAME1 WPIUSERNAME2.py for teams), create a PDF file (homework6 WPIUSERNAME1.pdf

or homework6 WPIUSERNAME1 WPIUSERNAME2.pdf for teams) containing the screenshots described above.
Please submit both the PDF and Python files in a single Zip file.

2

g> =
⇣
(ŷ � y)> W(2)

⌘
� relu0(z(1)

>
)



Weight initialization: 
example

• Suppose we initialize all the weights and bias terms of a 
3-layer NN to be 0.


• What will happen during SGD?

z2

z1

W(1)

W(2)

ŷ

b(1) b(2)
h2

h1

f

x1

x2

During backwards propagation, we have:

(c) Conduct stochastic gradient descent, in a similar way as you did for homeworks 2 and 3, where you
compute the gradient updates using the expressions shown below. (Note that these expressions
are obtained by deriving and multiplying the Jacobian matrices as described in class, and then
simplifying the result analytically.)

rW(2)fCE = (ŷ � y)h(1)>

rb(2)fCE = (ŷ � y)

rW(1)fCE = gx
>

rb(1)fCE = g

where column-vector g is defined so that

g
> =

⇣
(ŷ> � y)W(2)

⌘
� relu0(z(1)

>
)

In the equation above, relu0 is the derivative of relu. Also, make sure that you follow the transposes
exactly!

Hyperparameter tuning: In this problem, there are several di↵erent hyperparameters that will
impact the network’s performance:

• Number of units in the hidden layer (suggestions: {30, 40, 50})
• Learning rate (suggestions: {0.001, 0.005, 0.01, 0.05, 0.1, 0.5})
• Minibatch size (suggestions: 16, 32, 64, 128, 256)

• Number of epochs

• Regularization strength

In order not to “cheat” – and thus overestimate the performance of the network – it is crucial to
optimize the hyperparameters only on the validation set; do not use the test set. (The training set
would be ok but typically leads to worse performance.) Download the validation data here:

• https://s3.amazonaws.com/jrwprojects/mnist_validation_images.npy

• https://s3.amazonaws.com/jrwprojects/mnist_validation_labels.npy

Your task: Use stochastic gradient descent to minimize the cross-entropy with respect to W1,W2,b1,
and b2. Specifically:

(a) Implement stochastic gradient descent for the network shown above. [60 points]

(b) Optimize the hyperparameters by training on the training set and selecting the parameter settings
that optimize performance on the validation set. You should systematically (i.e., in code)

try at least 10 (in total, not for each hyperparameter) di↵erent hyperparameter

settings; accordingly, make sure there is a method called findBestHyperparameters (and please
name it as such to help us during grading) [15 points]. Include a screenshot showing the progress
and final output (selected hyperparameter values) of your hyperparameter optimization.

(c) After you have optimized your hyperparameters, then run your trained network on the test

set and report (1) the cross-entropy and (2) the accuracy (percent correctly classified images).
Include a screenshot showing both these values during the last 20 epochs of SGD. The (unreg-

ularized) cross-entropy cost on the test set should be less than 0.16, and the accuracy

(percentage correctly classified test images) should be at least 95%. [5 points]

In addition to your Python code (homework6 WPIUSERNAME1.py

or homework6 WPIUSERNAME1 WPIUSERNAME2.py for teams), create a PDF file (homework6 WPIUSERNAME1.pdf

or homework6 WPIUSERNAME1 WPIUSERNAME2.pdf for teams) containing the screenshots described above.
Please submit both the PDF and Python files in a single Zip file.

2

0
0

0

0

g> =
⇣
(ŷ � y)> W(2)

⌘
� relu0(z(1)

>
)



Weight initialization: 
example

• Because the gradients w.r.t. W(1), W(2), and b(1) are all 0, 
they will never change.


• Only b(2) will change (to the mean of the target values y).

z2

z1

W(1)

W(2)

ŷ

b(1) b(2)
h2

h1

f

x1

x2

During backwards propagation, we have:

(c) Conduct stochastic gradient descent, in a similar way as you did for homeworks 2 and 3, where you
compute the gradient updates using the expressions shown below. (Note that these expressions
are obtained by deriving and multiplying the Jacobian matrices as described in class, and then
simplifying the result analytically.)

rW(2)fCE = (ŷ � y)h(1)>

rb(2)fCE = (ŷ � y)

rW(1)fCE = gx
>

rb(1)fCE = g

where column-vector g is defined so that

g
> =

⇣
(ŷ> � y)W(2)

⌘
� relu0(z(1)

>
)

In the equation above, relu0 is the derivative of relu. Also, make sure that you follow the transposes
exactly!

Hyperparameter tuning: In this problem, there are several di↵erent hyperparameters that will
impact the network’s performance:

• Number of units in the hidden layer (suggestions: {30, 40, 50})
• Learning rate (suggestions: {0.001, 0.005, 0.01, 0.05, 0.1, 0.5})
• Minibatch size (suggestions: 16, 32, 64, 128, 256)

• Number of epochs

• Regularization strength

In order not to “cheat” – and thus overestimate the performance of the network – it is crucial to
optimize the hyperparameters only on the validation set; do not use the test set. (The training set
would be ok but typically leads to worse performance.) Download the validation data here:

• https://s3.amazonaws.com/jrwprojects/mnist_validation_images.npy

• https://s3.amazonaws.com/jrwprojects/mnist_validation_labels.npy

Your task: Use stochastic gradient descent to minimize the cross-entropy with respect to W1,W2,b1,
and b2. Specifically:

(a) Implement stochastic gradient descent for the network shown above. [60 points]

(b) Optimize the hyperparameters by training on the training set and selecting the parameter settings
that optimize performance on the validation set. You should systematically (i.e., in code)

try at least 10 (in total, not for each hyperparameter) di↵erent hyperparameter

settings; accordingly, make sure there is a method called findBestHyperparameters (and please
name it as such to help us during grading) [15 points]. Include a screenshot showing the progress
and final output (selected hyperparameter values) of your hyperparameter optimization.

(c) After you have optimized your hyperparameters, then run your trained network on the test

set and report (1) the cross-entropy and (2) the accuracy (percent correctly classified images).
Include a screenshot showing both these values during the last 20 epochs of SGD. The (unreg-

ularized) cross-entropy cost on the test set should be less than 0.16, and the accuracy

(percentage correctly classified test images) should be at least 95%. [5 points]

In addition to your Python code (homework6 WPIUSERNAME1.py

or homework6 WPIUSERNAME1 WPIUSERNAME2.py for teams), create a PDF file (homework6 WPIUSERNAME1.pdf

or homework6 WPIUSERNAME1 WPIUSERNAME2.pdf for teams) containing the screenshots described above.
Please submit both the PDF and Python files in a single Zip file.

2

0
0

0

0

g> =
⇣
(ŷ � y)> W(2)

⌘
� relu0(z(1)

>
)



Weight initialization: 
exercise 1

• Suppose we initialize W(1)=b(1)=0, but W(2), b(2) are non-zero.


• Assume relu'(0)=0.


• What will happen during SGD?

z2

z1

W(1)

W(2)

ŷ

b(1) b(2)
h2

h1

f

x1

x2

(c) Conduct stochastic gradient descent, in a similar way as you did for homeworks 2 and 3, where you
compute the gradient updates using the expressions shown below. (Note that these expressions
are obtained by deriving and multiplying the Jacobian matrices as described in class, and then
simplifying the result analytically.)

rW(2)fCE = (ŷ � y)h(1)>

rb(2)fCE = (ŷ � y)

rW(1)fCE = gx
>

rb(1)fCE = g

where column-vector g is defined so that

g
> =

⇣
(ŷ> � y)W(2)

⌘
� relu0(z(1)

>
)

In the equation above, relu0 is the derivative of relu. Also, make sure that you follow the transposes
exactly!

Hyperparameter tuning: In this problem, there are several di↵erent hyperparameters that will
impact the network’s performance:

• Number of units in the hidden layer (suggestions: {30, 40, 50})
• Learning rate (suggestions: {0.001, 0.005, 0.01, 0.05, 0.1, 0.5})
• Minibatch size (suggestions: 16, 32, 64, 128, 256)

• Number of epochs

• Regularization strength

In order not to “cheat” – and thus overestimate the performance of the network – it is crucial to
optimize the hyperparameters only on the validation set; do not use the test set. (The training set
would be ok but typically leads to worse performance.) Download the validation data here:

• https://s3.amazonaws.com/jrwprojects/mnist_validation_images.npy

• https://s3.amazonaws.com/jrwprojects/mnist_validation_labels.npy

Your task: Use stochastic gradient descent to minimize the cross-entropy with respect to W1,W2,b1,
and b2. Specifically:

(a) Implement stochastic gradient descent for the network shown above. [60 points]

(b) Optimize the hyperparameters by training on the training set and selecting the parameter settings
that optimize performance on the validation set. You should systematically (i.e., in code)

try at least 10 (in total, not for each hyperparameter) di↵erent hyperparameter

settings; accordingly, make sure there is a method called findBestHyperparameters (and please
name it as such to help us during grading) [15 points]. Include a screenshot showing the progress
and final output (selected hyperparameter values) of your hyperparameter optimization.

(c) After you have optimized your hyperparameters, then run your trained network on the test

set and report (1) the cross-entropy and (2) the accuracy (percent correctly classified images).
Include a screenshot showing both these values during the last 20 epochs of SGD. The (unreg-

ularized) cross-entropy cost on the test set should be less than 0.16, and the accuracy

(percentage correctly classified test images) should be at least 95%. [5 points]

In addition to your Python code (homework6 WPIUSERNAME1.py

or homework6 WPIUSERNAME1 WPIUSERNAME2.py for teams), create a PDF file (homework6 WPIUSERNAME1.pdf

or homework6 WPIUSERNAME1 WPIUSERNAME2.pdf for teams) containing the screenshots described above.
Please submit both the PDF and Python files in a single Zip file.

2

g> =
⇣
(ŷ � y)> W(2)

⌘
� relu0(z(1)

>
)



Weight initialization: 
exercise 1

• Since W(1)=b(1)=0, then z(1)=h(1)=0. Hence,              = 0.


• Since relu'(0) = 0, then g=0. Hence, gradients w.r.t. W(1) and b(1) 
are 0.


• Only b(2) can change (so that ŷ approaches mean of y).

z2

z1

W(1)

W(2)

ŷ

b(1) b(2)
h2

h1

f

x1

x2

(c) Conduct stochastic gradient descent, in a similar way as you did for homeworks 2 and 3, where you
compute the gradient updates using the expressions shown below. (Note that these expressions
are obtained by deriving and multiplying the Jacobian matrices as described in class, and then
simplifying the result analytically.)

rW(2)fCE = (ŷ � y)h(1)>

rb(2)fCE = (ŷ � y)

rW(1)fCE = gx
>

rb(1)fCE = g

where column-vector g is defined so that

g
> =

⇣
(ŷ> � y)W(2)

⌘
� relu0(z(1)

>
)

In the equation above, relu0 is the derivative of relu. Also, make sure that you follow the transposes
exactly!

Hyperparameter tuning: In this problem, there are several di↵erent hyperparameters that will
impact the network’s performance:

• Number of units in the hidden layer (suggestions: {30, 40, 50})
• Learning rate (suggestions: {0.001, 0.005, 0.01, 0.05, 0.1, 0.5})
• Minibatch size (suggestions: 16, 32, 64, 128, 256)

• Number of epochs

• Regularization strength

In order not to “cheat” – and thus overestimate the performance of the network – it is crucial to
optimize the hyperparameters only on the validation set; do not use the test set. (The training set
would be ok but typically leads to worse performance.) Download the validation data here:

• https://s3.amazonaws.com/jrwprojects/mnist_validation_images.npy

• https://s3.amazonaws.com/jrwprojects/mnist_validation_labels.npy

Your task: Use stochastic gradient descent to minimize the cross-entropy with respect to W1,W2,b1,
and b2. Specifically:

(a) Implement stochastic gradient descent for the network shown above. [60 points]

(b) Optimize the hyperparameters by training on the training set and selecting the parameter settings
that optimize performance on the validation set. You should systematically (i.e., in code)

try at least 10 (in total, not for each hyperparameter) di↵erent hyperparameter

settings; accordingly, make sure there is a method called findBestHyperparameters (and please
name it as such to help us during grading) [15 points]. Include a screenshot showing the progress
and final output (selected hyperparameter values) of your hyperparameter optimization.

(c) After you have optimized your hyperparameters, then run your trained network on the test

set and report (1) the cross-entropy and (2) the accuracy (percent correctly classified images).
Include a screenshot showing both these values during the last 20 epochs of SGD. The (unreg-

ularized) cross-entropy cost on the test set should be less than 0.16, and the accuracy

(percentage correctly classified test images) should be at least 95%. [5 points]

In addition to your Python code (homework6 WPIUSERNAME1.py

or homework6 WPIUSERNAME1 WPIUSERNAME2.py for teams), create a PDF file (homework6 WPIUSERNAME1.pdf

or homework6 WPIUSERNAME1 WPIUSERNAME2.pdf for teams) containing the screenshots described above.
Please submit both the PDF and Python files in a single Zip file.

2

g> =
⇣
(ŷ � y)> W(2)

⌘
� relu0(z(1)

>
)

0

rW(2)fCE



Weight initialization: 
exercise 1

• Since W(1)=b(1)=0, then z(1)=h(1)=0. Hence,              = 0.


• Since relu'(0) = 0, then g=0. Hence, gradients w.r.t. W(1) and b(1) 
are 0.


• Only b(2) can change (so that ŷ approaches mean of y).

z2

z1

W(1)

W(2)

ŷ

b(1) b(2)
h2

h1

f

x1

x2

(c) Conduct stochastic gradient descent, in a similar way as you did for homeworks 2 and 3, where you
compute the gradient updates using the expressions shown below. (Note that these expressions
are obtained by deriving and multiplying the Jacobian matrices as described in class, and then
simplifying the result analytically.)

rW(2)fCE = (ŷ � y)h(1)>

rb(2)fCE = (ŷ � y)

rW(1)fCE = gx
>

rb(1)fCE = g

where column-vector g is defined so that

g
> =

⇣
(ŷ> � y)W(2)

⌘
� relu0(z(1)

>
)

In the equation above, relu0 is the derivative of relu. Also, make sure that you follow the transposes
exactly!

Hyperparameter tuning: In this problem, there are several di↵erent hyperparameters that will
impact the network’s performance:

• Number of units in the hidden layer (suggestions: {30, 40, 50})
• Learning rate (suggestions: {0.001, 0.005, 0.01, 0.05, 0.1, 0.5})
• Minibatch size (suggestions: 16, 32, 64, 128, 256)

• Number of epochs

• Regularization strength

In order not to “cheat” – and thus overestimate the performance of the network – it is crucial to
optimize the hyperparameters only on the validation set; do not use the test set. (The training set
would be ok but typically leads to worse performance.) Download the validation data here:

• https://s3.amazonaws.com/jrwprojects/mnist_validation_images.npy

• https://s3.amazonaws.com/jrwprojects/mnist_validation_labels.npy

Your task: Use stochastic gradient descent to minimize the cross-entropy with respect to W1,W2,b1,
and b2. Specifically:

(a) Implement stochastic gradient descent for the network shown above. [60 points]

(b) Optimize the hyperparameters by training on the training set and selecting the parameter settings
that optimize performance on the validation set. You should systematically (i.e., in code)

try at least 10 (in total, not for each hyperparameter) di↵erent hyperparameter

settings; accordingly, make sure there is a method called findBestHyperparameters (and please
name it as such to help us during grading) [15 points]. Include a screenshot showing the progress
and final output (selected hyperparameter values) of your hyperparameter optimization.

(c) After you have optimized your hyperparameters, then run your trained network on the test

set and report (1) the cross-entropy and (2) the accuracy (percent correctly classified images).
Include a screenshot showing both these values during the last 20 epochs of SGD. The (unreg-

ularized) cross-entropy cost on the test set should be less than 0.16, and the accuracy

(percentage correctly classified test images) should be at least 95%. [5 points]

In addition to your Python code (homework6 WPIUSERNAME1.py

or homework6 WPIUSERNAME1 WPIUSERNAME2.py for teams), create a PDF file (homework6 WPIUSERNAME1.pdf

or homework6 WPIUSERNAME1 WPIUSERNAME2.pdf for teams) containing the screenshots described above.
Please submit both the PDF and Python files in a single Zip file.

2

g> =
⇣
(ŷ � y)> W(2)

⌘
� relu0(z(1)

>
)

rW(2)fCE

0

0

0
0



Weight initialization: 
exercise 2

• Suppose we initialize W(2)=b(2)=0, but W(1), b(1) are non-zero.


• What will happen during SGD?

z2

z1

W(1)

W(2)

ŷ

b(1) b(2)
h2

h1

f

x1

x2

(c) Conduct stochastic gradient descent, in a similar way as you did for homeworks 2 and 3, where you
compute the gradient updates using the expressions shown below. (Note that these expressions
are obtained by deriving and multiplying the Jacobian matrices as described in class, and then
simplifying the result analytically.)

rW(2)fCE = (ŷ � y)h(1)>

rb(2)fCE = (ŷ � y)

rW(1)fCE = gx
>

rb(1)fCE = g

where column-vector g is defined so that

g
> =

⇣
(ŷ> � y)W(2)

⌘
� relu0(z(1)

>
)

In the equation above, relu0 is the derivative of relu. Also, make sure that you follow the transposes
exactly!

Hyperparameter tuning: In this problem, there are several di↵erent hyperparameters that will
impact the network’s performance:

• Number of units in the hidden layer (suggestions: {30, 40, 50})
• Learning rate (suggestions: {0.001, 0.005, 0.01, 0.05, 0.1, 0.5})
• Minibatch size (suggestions: 16, 32, 64, 128, 256)

• Number of epochs

• Regularization strength

In order not to “cheat” – and thus overestimate the performance of the network – it is crucial to
optimize the hyperparameters only on the validation set; do not use the test set. (The training set
would be ok but typically leads to worse performance.) Download the validation data here:

• https://s3.amazonaws.com/jrwprojects/mnist_validation_images.npy

• https://s3.amazonaws.com/jrwprojects/mnist_validation_labels.npy

Your task: Use stochastic gradient descent to minimize the cross-entropy with respect to W1,W2,b1,
and b2. Specifically:

(a) Implement stochastic gradient descent for the network shown above. [60 points]

(b) Optimize the hyperparameters by training on the training set and selecting the parameter settings
that optimize performance on the validation set. You should systematically (i.e., in code)

try at least 10 (in total, not for each hyperparameter) di↵erent hyperparameter

settings; accordingly, make sure there is a method called findBestHyperparameters (and please
name it as such to help us during grading) [15 points]. Include a screenshot showing the progress
and final output (selected hyperparameter values) of your hyperparameter optimization.

(c) After you have optimized your hyperparameters, then run your trained network on the test

set and report (1) the cross-entropy and (2) the accuracy (percent correctly classified images).
Include a screenshot showing both these values during the last 20 epochs of SGD. The (unreg-

ularized) cross-entropy cost on the test set should be less than 0.16, and the accuracy

(percentage correctly classified test images) should be at least 95%. [5 points]

In addition to your Python code (homework6 WPIUSERNAME1.py

or homework6 WPIUSERNAME1 WPIUSERNAME2.py for teams), create a PDF file (homework6 WPIUSERNAME1.pdf

or homework6 WPIUSERNAME1 WPIUSERNAME2.pdf for teams) containing the screenshots described above.
Please submit both the PDF and Python files in a single Zip file.

2

g> =
⇣
(ŷ � y)> W(2)

⌘
� relu0(z(1)

>
)



Weight initialization: 
exercise 2

• Since W(2)=0, then g=0. Hence,                                 = 0.


• However, h is non-zero. Hence,                is nonzero =>        will change.


• During the next gradient update, g is non-zero => W(1), b(1) will change.


• In summary: this initialization does not severely inhibit the network’s 
performance (though initializing W(2), b(2) to 0 is still not recommended).

z2

z1

W(1)

W(2)

ŷ

b(1) b(2)
h2

h1

f

x1

x2

(c) Conduct stochastic gradient descent, in a similar way as you did for homeworks 2 and 3, where you
compute the gradient updates using the expressions shown below. (Note that these expressions
are obtained by deriving and multiplying the Jacobian matrices as described in class, and then
simplifying the result analytically.)

rW(2)fCE = (ŷ � y)h(1)>

rb(2)fCE = (ŷ � y)

rW(1)fCE = gx
>

rb(1)fCE = g

where column-vector g is defined so that

g
> =

⇣
(ŷ> � y)W(2)

⌘
� relu0(z(1)

>
)

In the equation above, relu0 is the derivative of relu. Also, make sure that you follow the transposes
exactly!

Hyperparameter tuning: In this problem, there are several di↵erent hyperparameters that will
impact the network’s performance:

• Number of units in the hidden layer (suggestions: {30, 40, 50})
• Learning rate (suggestions: {0.001, 0.005, 0.01, 0.05, 0.1, 0.5})
• Minibatch size (suggestions: 16, 32, 64, 128, 256)

• Number of epochs

• Regularization strength

In order not to “cheat” – and thus overestimate the performance of the network – it is crucial to
optimize the hyperparameters only on the validation set; do not use the test set. (The training set
would be ok but typically leads to worse performance.) Download the validation data here:

• https://s3.amazonaws.com/jrwprojects/mnist_validation_images.npy

• https://s3.amazonaws.com/jrwprojects/mnist_validation_labels.npy

Your task: Use stochastic gradient descent to minimize the cross-entropy with respect to W1,W2,b1,
and b2. Specifically:

(a) Implement stochastic gradient descent for the network shown above. [60 points]

(b) Optimize the hyperparameters by training on the training set and selecting the parameter settings
that optimize performance on the validation set. You should systematically (i.e., in code)

try at least 10 (in total, not for each hyperparameter) di↵erent hyperparameter

settings; accordingly, make sure there is a method called findBestHyperparameters (and please
name it as such to help us during grading) [15 points]. Include a screenshot showing the progress
and final output (selected hyperparameter values) of your hyperparameter optimization.

(c) After you have optimized your hyperparameters, then run your trained network on the test

set and report (1) the cross-entropy and (2) the accuracy (percent correctly classified images).
Include a screenshot showing both these values during the last 20 epochs of SGD. The (unreg-

ularized) cross-entropy cost on the test set should be less than 0.16, and the accuracy

(percentage correctly classified test images) should be at least 95%. [5 points]

In addition to your Python code (homework6 WPIUSERNAME1.py

or homework6 WPIUSERNAME1 WPIUSERNAME2.py for teams), create a PDF file (homework6 WPIUSERNAME1.pdf

or homework6 WPIUSERNAME1 WPIUSERNAME2.pdf for teams) containing the screenshots described above.
Please submit both the PDF and Python files in a single Zip file.

2

rW(1)fCE,rb(1)fCE

rW(2)fCE W(2)

g> =
⇣
(ŷ � y)> W(2)

⌘
� relu0(z(1)

>
)



Weight initialization: 
exercise 2

• Since W(2)=0, then g=0. Hence,                                 = 0.


• However, h is non-zero. Hence,                is nonzero =>        will change.


• During the next gradient update, g is non-zero => W(1), b(1) will change.


• In summary: this initialization does not severely inhibit the network’s 
performance (though initializing W(2), b(2) to 0 is still not recommended).

z2

z1

W(1)

W(2)

ŷ

b(1) b(2)
h2

h1

f

x1

x2

(c) Conduct stochastic gradient descent, in a similar way as you did for homeworks 2 and 3, where you
compute the gradient updates using the expressions shown below. (Note that these expressions
are obtained by deriving and multiplying the Jacobian matrices as described in class, and then
simplifying the result analytically.)

rW(2)fCE = (ŷ � y)h(1)>

rb(2)fCE = (ŷ � y)

rW(1)fCE = gx
>

rb(1)fCE = g

where column-vector g is defined so that

g
> =

⇣
(ŷ> � y)W(2)

⌘
� relu0(z(1)

>
)

In the equation above, relu0 is the derivative of relu. Also, make sure that you follow the transposes
exactly!

Hyperparameter tuning: In this problem, there are several di↵erent hyperparameters that will
impact the network’s performance:

• Number of units in the hidden layer (suggestions: {30, 40, 50})
• Learning rate (suggestions: {0.001, 0.005, 0.01, 0.05, 0.1, 0.5})
• Minibatch size (suggestions: 16, 32, 64, 128, 256)

• Number of epochs

• Regularization strength

In order not to “cheat” – and thus overestimate the performance of the network – it is crucial to
optimize the hyperparameters only on the validation set; do not use the test set. (The training set
would be ok but typically leads to worse performance.) Download the validation data here:

• https://s3.amazonaws.com/jrwprojects/mnist_validation_images.npy

• https://s3.amazonaws.com/jrwprojects/mnist_validation_labels.npy

Your task: Use stochastic gradient descent to minimize the cross-entropy with respect to W1,W2,b1,
and b2. Specifically:

(a) Implement stochastic gradient descent for the network shown above. [60 points]

(b) Optimize the hyperparameters by training on the training set and selecting the parameter settings
that optimize performance on the validation set. You should systematically (i.e., in code)

try at least 10 (in total, not for each hyperparameter) di↵erent hyperparameter

settings; accordingly, make sure there is a method called findBestHyperparameters (and please
name it as such to help us during grading) [15 points]. Include a screenshot showing the progress
and final output (selected hyperparameter values) of your hyperparameter optimization.

(c) After you have optimized your hyperparameters, then run your trained network on the test

set and report (1) the cross-entropy and (2) the accuracy (percent correctly classified images).
Include a screenshot showing both these values during the last 20 epochs of SGD. The (unreg-

ularized) cross-entropy cost on the test set should be less than 0.16, and the accuracy

(percentage correctly classified test images) should be at least 95%. [5 points]

In addition to your Python code (homework6 WPIUSERNAME1.py

or homework6 WPIUSERNAME1 WPIUSERNAME2.py for teams), create a PDF file (homework6 WPIUSERNAME1.pdf

or homework6 WPIUSERNAME1 WPIUSERNAME2.pdf for teams) containing the screenshots described above.
Please submit both the PDF and Python files in a single Zip file.

2

rW(1)fCE,rb(1)fCE

rW(2)fCE W(2)

g> =
⇣
(ŷ � y)> W(2)

⌘
� relu0(z(1)

>
)



Weight initialization: 
exercise 2

• Since W(2)=0, then g=0. Hence,                                 = 0.


• However, h is non-zero. Hence,                is nonzero =>        will change.


• During the next gradient update, g is non-zero => W(1), b(1) will change.


• In summary: this initialization does not severely inhibit the network’s 
performance (though initializing W(2), b(2) to 0 is still not recommended).

z2

z1

W(1)

W(2)

ŷ

b(1) b(2)
h2

h1

f

x1

x2

(c) Conduct stochastic gradient descent, in a similar way as you did for homeworks 2 and 3, where you
compute the gradient updates using the expressions shown below. (Note that these expressions
are obtained by deriving and multiplying the Jacobian matrices as described in class, and then
simplifying the result analytically.)

rW(2)fCE = (ŷ � y)h(1)>

rb(2)fCE = (ŷ � y)

rW(1)fCE = gx
>

rb(1)fCE = g

where column-vector g is defined so that

g
> =

⇣
(ŷ> � y)W(2)

⌘
� relu0(z(1)

>
)

In the equation above, relu0 is the derivative of relu. Also, make sure that you follow the transposes
exactly!

Hyperparameter tuning: In this problem, there are several di↵erent hyperparameters that will
impact the network’s performance:

• Number of units in the hidden layer (suggestions: {30, 40, 50})
• Learning rate (suggestions: {0.001, 0.005, 0.01, 0.05, 0.1, 0.5})
• Minibatch size (suggestions: 16, 32, 64, 128, 256)

• Number of epochs

• Regularization strength

In order not to “cheat” – and thus overestimate the performance of the network – it is crucial to
optimize the hyperparameters only on the validation set; do not use the test set. (The training set
would be ok but typically leads to worse performance.) Download the validation data here:

• https://s3.amazonaws.com/jrwprojects/mnist_validation_images.npy

• https://s3.amazonaws.com/jrwprojects/mnist_validation_labels.npy

Your task: Use stochastic gradient descent to minimize the cross-entropy with respect to W1,W2,b1,
and b2. Specifically:

(a) Implement stochastic gradient descent for the network shown above. [60 points]

(b) Optimize the hyperparameters by training on the training set and selecting the parameter settings
that optimize performance on the validation set. You should systematically (i.e., in code)

try at least 10 (in total, not for each hyperparameter) di↵erent hyperparameter

settings; accordingly, make sure there is a method called findBestHyperparameters (and please
name it as such to help us during grading) [15 points]. Include a screenshot showing the progress
and final output (selected hyperparameter values) of your hyperparameter optimization.

(c) After you have optimized your hyperparameters, then run your trained network on the test

set and report (1) the cross-entropy and (2) the accuracy (percent correctly classified images).
Include a screenshot showing both these values during the last 20 epochs of SGD. The (unreg-

ularized) cross-entropy cost on the test set should be less than 0.16, and the accuracy

(percentage correctly classified test images) should be at least 95%. [5 points]

In addition to your Python code (homework6 WPIUSERNAME1.py

or homework6 WPIUSERNAME1 WPIUSERNAME2.py for teams), create a PDF file (homework6 WPIUSERNAME1.pdf

or homework6 WPIUSERNAME1 WPIUSERNAME2.pdf for teams) containing the screenshots described above.
Please submit both the PDF and Python files in a single Zip file.

2

rW(1)fCE,rb(1)fCE

rW(2)fCE W(2)

g> =
⇣
(ŷ � y)> W(2)

⌘
� relu0(z(1)

>
)



Weight initialization: 
exercise 3

• Suppose that each weight matrix & bias vector consists of 
the same row repeated many times.


• What will happen during SGD?

z2

z1

W(1)

W(2)

ŷ

b(1) b(2)
h2

h1

f

x1

x2

(c) Conduct stochastic gradient descent, in a similar way as you did for homeworks 2 and 3, where you
compute the gradient updates using the expressions shown below. (Note that these expressions
are obtained by deriving and multiplying the Jacobian matrices as described in class, and then
simplifying the result analytically.)

rW(2)fCE = (ŷ � y)h(1)>

rb(2)fCE = (ŷ � y)

rW(1)fCE = gx
>

rb(1)fCE = g

where column-vector g is defined so that

g
> =

⇣
(ŷ> � y)W(2)

⌘
� relu0(z(1)

>
)

In the equation above, relu0 is the derivative of relu. Also, make sure that you follow the transposes
exactly!

Hyperparameter tuning: In this problem, there are several di↵erent hyperparameters that will
impact the network’s performance:

• Number of units in the hidden layer (suggestions: {30, 40, 50})
• Learning rate (suggestions: {0.001, 0.005, 0.01, 0.05, 0.1, 0.5})
• Minibatch size (suggestions: 16, 32, 64, 128, 256)

• Number of epochs

• Regularization strength

In order not to “cheat” – and thus overestimate the performance of the network – it is crucial to
optimize the hyperparameters only on the validation set; do not use the test set. (The training set
would be ok but typically leads to worse performance.) Download the validation data here:

• https://s3.amazonaws.com/jrwprojects/mnist_validation_images.npy

• https://s3.amazonaws.com/jrwprojects/mnist_validation_labels.npy

Your task: Use stochastic gradient descent to minimize the cross-entropy with respect to W1,W2,b1,
and b2. Specifically:

(a) Implement stochastic gradient descent for the network shown above. [60 points]

(b) Optimize the hyperparameters by training on the training set and selecting the parameter settings
that optimize performance on the validation set. You should systematically (i.e., in code)

try at least 10 (in total, not for each hyperparameter) di↵erent hyperparameter

settings; accordingly, make sure there is a method called findBestHyperparameters (and please
name it as such to help us during grading) [15 points]. Include a screenshot showing the progress
and final output (selected hyperparameter values) of your hyperparameter optimization.

(c) After you have optimized your hyperparameters, then run your trained network on the test

set and report (1) the cross-entropy and (2) the accuracy (percent correctly classified images).
Include a screenshot showing both these values during the last 20 epochs of SGD. The (unreg-

ularized) cross-entropy cost on the test set should be less than 0.16, and the accuracy

(percentage correctly classified test images) should be at least 95%. [5 points]

In addition to your Python code (homework6 WPIUSERNAME1.py

or homework6 WPIUSERNAME1 WPIUSERNAME2.py for teams), create a PDF file (homework6 WPIUSERNAME1.pdf

or homework6 WPIUSERNAME1 WPIUSERNAME2.pdf for teams) containing the screenshots described above.
Please submit both the PDF and Python files in a single Zip file.

2

g> =
⇣
(ŷ � y)> W(2)

⌘
� relu0(z(1)

>
)



Weight initialization: 
exercise 3

• In this case, every node of h (and z) has the same value.


• Therefore, the gradient update to each row of W(1) and b(1) has 
the same value.


• The NN is performing redundant computation — although it has 2 
hidden units, it might as well just have 1!

z2

z1

W(1)

W(2)

ŷ

b(1) b(2)
h2

h1

f

x1

x2

(c) Conduct stochastic gradient descent, in a similar way as you did for homeworks 2 and 3, where you
compute the gradient updates using the expressions shown below. (Note that these expressions
are obtained by deriving and multiplying the Jacobian matrices as described in class, and then
simplifying the result analytically.)

rW(2)fCE = (ŷ � y)h(1)>

rb(2)fCE = (ŷ � y)

rW(1)fCE = gx
>

rb(1)fCE = g

where column-vector g is defined so that

g
> =

⇣
(ŷ> � y)W(2)

⌘
� relu0(z(1)

>
)

In the equation above, relu0 is the derivative of relu. Also, make sure that you follow the transposes
exactly!

Hyperparameter tuning: In this problem, there are several di↵erent hyperparameters that will
impact the network’s performance:

• Number of units in the hidden layer (suggestions: {30, 40, 50})
• Learning rate (suggestions: {0.001, 0.005, 0.01, 0.05, 0.1, 0.5})
• Minibatch size (suggestions: 16, 32, 64, 128, 256)

• Number of epochs

• Regularization strength

In order not to “cheat” – and thus overestimate the performance of the network – it is crucial to
optimize the hyperparameters only on the validation set; do not use the test set. (The training set
would be ok but typically leads to worse performance.) Download the validation data here:

• https://s3.amazonaws.com/jrwprojects/mnist_validation_images.npy

• https://s3.amazonaws.com/jrwprojects/mnist_validation_labels.npy

Your task: Use stochastic gradient descent to minimize the cross-entropy with respect to W1,W2,b1,
and b2. Specifically:

(a) Implement stochastic gradient descent for the network shown above. [60 points]

(b) Optimize the hyperparameters by training on the training set and selecting the parameter settings
that optimize performance on the validation set. You should systematically (i.e., in code)

try at least 10 (in total, not for each hyperparameter) di↵erent hyperparameter

settings; accordingly, make sure there is a method called findBestHyperparameters (and please
name it as such to help us during grading) [15 points]. Include a screenshot showing the progress
and final output (selected hyperparameter values) of your hyperparameter optimization.

(c) After you have optimized your hyperparameters, then run your trained network on the test

set and report (1) the cross-entropy and (2) the accuracy (percent correctly classified images).
Include a screenshot showing both these values during the last 20 epochs of SGD. The (unreg-

ularized) cross-entropy cost on the test set should be less than 0.16, and the accuracy

(percentage correctly classified test images) should be at least 95%. [5 points]

In addition to your Python code (homework6 WPIUSERNAME1.py

or homework6 WPIUSERNAME1 WPIUSERNAME2.py for teams), create a PDF file (homework6 WPIUSERNAME1.pdf

or homework6 WPIUSERNAME1 WPIUSERNAME2.pdf for teams) containing the screenshots described above.
Please submit both the PDF and Python files in a single Zip file.

2

g> =
⇣
(ŷ � y)> W(2)

⌘
� relu0(z(1)

>
)



Weight initialization 
methods

• There are various different methods of initializing the 
weights of a neural network.


• One common approach:


• For weight matrix W(j), sample each component from a 
0-mean Gaussian with deviation 1/√cols(W(j)).


• Within certain NNs, helps to ensure that the 
gradients are usually non-zero.


• Optional: orthogonalize the rows of W(j) to reduce 
correlation between different units of the pre-activation 
layer z(j).



Weight initialization 
methods

• There are various different methods of initializing the 
weights of a neural network.


• One common approach:


• For weight matrix W(j), sample each component from a 
0-mean Gaussian with deviation 1/√cols(W(j)).


• Within certain NNs, helps to ensure that the 
gradients are usually non-zero.


• Optional: orthogonalize the rows of W(j) to reduce 
correlation between different units of the pre-activation 
layer z(j).



Regularization



L2 regularization in NNs

• To prevent the weight matrices from growing too big, we 
can apply an L2 regularization term to each matrix by 
augmenting the cross-entropy loss:


• Here, |W|Fr2 means the squared Frobenius norm of W.


• It’s just the sum of squares of all the elements of W.

fCE(W
(1),b(1),W(2),b(2)) = � 1

n

nX

i=1

10X

k=1

y(i)
k log ŷ(i)

k +
1

2
kW(1)k2Fr +

1

2
kW(2)k2Fr



L2 regularization in NNs

• In practice, this just means that the gradients have an 
additional term, e.g.:

rW(2)fCE = (ŷ � y)h(1)> +W(2)

rW(1)fCE = gx> +W(1)


