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Automatic smile detection

e Suppose we want to build an automatic smile detector
that analyzes a grayscale face image (24x24 pixels) and
reports whether the face is smiling.

* \We can represent the detector as a function g that takes
an image x as an input and produces a guess y as

AN

output, where x € R***?* ¢ € {0, 1}.

* Abstractly, g can be considered a “machine”:
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Automatic smile detection

e Suppose we build g so that its output depends on only a
single pair of pixels within the input face:

g(X) — I[[Xrlycl > X’l“27(32]

 Which pairs (r1, c1), (r2, c2) would you choose?

e How good is it?




Accuracy measurement

* Jo evaluate the simple “smile detector” g, we need a test
set D' = {(x;,y;)}I~, consisting of:

e Images { x; } of both classes (smile/1, non-smile/0)
* Corresponding labels { yi }.

* The exact composition (ratio of positive/negative
examples) is flexible but may impact the way we interpret
the machine’s accuracy.



Accuracy measurement

e | et’s try a few examples by hand in smile_demo.py
 \What accuracy did we achieve with a single predictor?

e |s this “good”?



Selecting a baseline

e What fraction of faces in D't are smiling faces? 54.6%

e How accurate (frc) would a predictor be that just always
output 1 no matter what the image looked like?

e 54.6%

 Note that there are other accuracy functions (e.g., fauc)
that are invariant to the proportion of each class — aka
the prior probabilities — of each class in the test set.



Combining multiple
predictors

* Determining smile/non-smile based on a single
comparison is very weak.

e What if we combined multiple pairs and took the majority-
vote (choose non-smile if tied) across all m comparisons?

g(j)(X) — H[Xm,cl >X7“2,62]

1 m
] = = ] — > 0.5
J = g(x) - EZ: (x)




Combining multiple
predictors

e The accuracy of the “ensemble” can vary hugely

depending on how the m "weak” predictors were
selected.

e |f the m weak predictors tend to give the same answer for
the same inputs — I.e., they are correlated — then the

ensemble predictor may not be much better than any of
the weak predictors.

* |tis important to choose the m weak predictors to work
well in cooperation.



Combining multiple
predictors

e | et’s change notation slightly:
gV (x) = Tp(x)> 0]

¢(j) (X) —  Xri,er T Xrgueo
e Each ¢U) is called a feature of the input x.

e |In machine learning’, the features serve as the basis of the
machine’s predictions.

* With more recent “deep learning” algorithms, the distinction between “feature extraction’
and “prediction” is blurred.



Feature set

Since each gV examines only a single feature, choosing a
predictor gV is equivalent to choosing a feature ¢u).

Let the set of all possible features be called F.

Note that each prediction y implicitly depends on ¢, ..., ¢im),

g =g(x)=1 (7711 Zg(j)(x)) > 0.5

Our goal is to find the best combination of m features, i.e.,
the one whose accuracy is:

1ma ]
(Qb(l) ,-..,¢(”}§))€Fm fPC <y Y)



Feature set

e \What is the size of the feature set:

F = {(7“1,01,7"2,62) - {O, . .,23}4 : (lecl) # (TZaCQ)}

317952
331200
304704
255024
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Feature set

e What is the size of the feature set:
F=A{(ri,c1,r2,¢2) €{0,...,23}* : (r1,c1) # (12, ¢2)}
317952 = (24*23)*(24*24)
331200 = (24*24)*(24*24-1)
304704 = (24*23)*(24*23)
255024 = 24*23*22*21
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Feature set

o If |F| = 331200, then even for m=5, we have

F . | = 3985213938015928320000000000

e |t is computationally intractable to enumerate over all of
these combinations of features!

e Overcoming the exponential computational costs of

brute-force (“try everything”) optimization is one fo the
chief goals of ML research.



Step-wise classification

o Step-wise regression/classification is a greedy algorithm

for selecting features/predictors myopically, i.e., based
on “what looks best right now”.

* Instead of optimizing jointly to find:
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Step-wise classification

e Instead of |F|" possible choices, we only have m x |F|.

e This is doable!

* We have reduced the exponential growth into linear growth —
big difference!

* Note, however, that there is no guarantee that the solution is
optimal. Step-wise classification is an approximate solution

to selecting the m best features/predictors.

max_frc(y,¥; 6™
oL eF

max_fpc(y,§; o, ¢?)
o2 e F

max_fpc(y,9; 0", ¢, ¢?))

dpBeF



Step-wise classification

e Pseudocode:

predictors = [] # Empty list

For 3 =1, ..., m:
1. Find next best predictor given what's already in predictors
2. Add it to predictors

* Run smile_demo.py and optimize on 10 images.



Step-wise classification

e Accuracy (on 10 images): 100%.

e | earned feature (somewhat counterintuitive):

e What happened?



Overfitting

* When we optimized the m=1 features on a set of just 10 images,
we discovered a spurious relationship between the image x and
the target label y.

e Spurious: the relationship would not generalize to a much
larger set of images.

* Problem: we have many features (331200) but very few images
(10) we need to classify.

e Qut of 331200, it’s not hard to find a few features that happen to
discriminate smiles/non-smiles just by chance.

* This is called overfitting to the dataset.



Training versus testing

* |In machine learning, we always optimize the parameters/
features of our classifier/regressor on a
training set D30,

e We then measure accuracy on a testing set D't that is
disjoint from (contains no common elements with) the
training set.

e The training and testing sets should be collected in the
same mannet.

e \What does this mean?



Data distribution

e When we collect a dataset (for training or testing), we are
sampling from some universe of data.

e Face images from Google Image Search.
e DNA sequences from patients with a certain disease.
e Prices of stocks from NYSE.

e Pages of text from recently published books.



Data distribution

Each input x is sampled from a probability distribution
p(x).

Each label y is sampled from a conditional probability
distribution p(y | x).

Both probabillity distributions depend on the universe of
data under consideration.

How we characterize the accuracy of our trained
“machine” will depend crucially on p(x), p(y | x).



Data distribution

e Example:

e Our “universe” is the 2018 population of undergraduate
WPI students.

* We randomly sample a profile picture x from the

universe according to p(x). This means that:
| —

g

L ‘ is less likely than




Data distributio

e Example:
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e Suppose we’re trying to predict each person’s favorite
weekend activity y from their profile picture.

e WPI students may do different things compared to
students at University of Florida (different climate, etc.).

e The conditional distribution p(y | X) — what is the
favorite activity y does it look like the person has, given
what their profile picture x looks like — can depend
highly on the universe under consideration.



Training versus testing

e The distributions p(x), p(y | X) used to sample training data
should be the same as the distributions used to sample
testing data.

e In practice, we typically sample a large dataset {(x;, ¥:)}i—1
and then partition it into training and testing sets.

e 50%/50% and 80%/20% are common choices.



Training versus testing

During training, we can do whatever we want to ptram
During training, we should never look at Dtest.

After training, we compute accuracy on D'***and report
It.

If we want to change the classifier design, we should re-
train and report accuracy on a different test set!



Training versus testing

 This ideal is hard to achieve in practice because labeled
data are often difficult to collect.

e [here are some exceptions: computer games.
e |n practice:
e The computer should never examine the test set.

e We humans should try to minimize how often we
examine performance on the test set.



Training versus testing

 Machine learning uses a different approach (training+testing)
compared to classical statistics.

e Approach in statistics:

 Hypothesis tests take into account the degrees of freedom (dof),
which depends on:

e Number of tunable parameters
e Number of examples in the dataset

 Advantage: just one dataset is required.

* Disadvantage: requires strong assumptions on distribution of data
and prediction errors.



Training versus testing

e In homework 1 (part ll), the training and testing sets are
given to you.

e Run smile_demo.py



Weakness of our feature set

e So far, the feature we have considered are very weak:
e |s pixel (r1,c1) brighter than pixel (r2,c2)?

e \We can’t even express simple relationships such as:
e “(r1,c4) is at least 5 bigger than (r2,c2)”
e “2times (r1,c1) is bigger than (rz,c2)”

e “2times (r1,c1) plus 4 times (r2,c2) is larger than (rs,c3)”.



Linear regression

e We can harness these more complex relationships using
linear regression.

e | et’s switch back to the age estimation problem...



Linear algebra

A column vector is a (n x 1) matrix.

A row vector is a (1 x n) matrix.

The transpose of (n x k) matrix A, denoted AT, is (k x n).
Multiplication of matrices A and B:

* Only possible when: Ais (n x k) and B is (k x m)

* Result: (n xm)

The inner product between two column vectors (same length) x, y
can be written as: x'y



