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Automatic smile detection
• Suppose we want to build an automatic smile detector 

that analyzes a grayscale face image (24x24 pixels) and 
reports whether the face is smiling.


• We can represent the detector as a function g that takes 
an image x as an input and produces a guess ŷ  as 
output, where                                   .


• Abstractly, g can be considered a “machine”:

Smile detector g 1

x ŷ

x 2 R24⇥24, ŷ 2 {0, 1}
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Automatic smile detection
• Suppose we build g so that its output depends on only a 

single pair of pixels within the input face: 

• Which pairs (r1, c1), (r2, c2) would you choose?


• How good is it?

g(x) = I[xr1,c1 > xr2,c2 ]



• To evaluate the simple “smile detector” g, we need a test 
set                                  consisting of:


• Images { xi } of both classes (smile/1, non-smile/0)


• Corresponding labels { yi }.


• The exact composition (ratio of positive/negative 
examples) is flexible but may impact the way we interpret 
the machine’s accuracy.

Accuracy measurement

Dtest = {(xi, yi)}ni=1



Accuracy measurement

• Let’s try a few examples by hand in smile_demo.py


• What accuracy did we achieve with a single predictor?


• Is this “good”?



Selecting a baseline

• What fraction of faces in          are smiling faces? 54.6%


• How accurate (fPC) would a predictor be that just always 
output 1 no matter what the image looked like?


• 54.6%


• Note that there are other accuracy functions (e.g., fAUC) 
that are invariant to the proportion of each class — aka 
the prior probabilities — of each class in the test set.

Dtest



Combining multiple 
predictors

• Determining smile/non-smile based on a single 
comparison is very weak.


• What if we combined multiple pairs and took the majority-
vote (choose non-smile if tied) across all m comparisons?

g(j)(x) = I[xr1,c1 > xr2,c2 ]

ŷ = g(x) = I
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Combining multiple 
predictors

• The accuracy of the “ensemble” can vary hugely 
depending on how the m “weak” predictors were 
selected.


• If the m weak predictors tend to give the same answer for 
the same inputs — i.e., they are correlated — then the 
ensemble predictor may not be much better than any of 
the weak predictors.


• It is important to choose the m weak predictors to work 
well in cooperation.



Combining multiple 
predictors

• Let’s change notation slightly: 
 
 

• Each ɸ(j) is called a feature of the input x.


• In machine learning*, the features serve as the basis of the 
machine’s predictions.

* With more recent “deep learning” algorithms, the distinction between “feature extraction” 
and “prediction” is blurred.

g(j)(x) = I[�(j)(x) > 0]

�(j)(x) = xr1,c1 � xr2,c2



Feature set
• Since each g(j) examines only a single feature, choosing a 

predictor g(j) is equivalent to choosing a feature ɸ(j).


• Let the set of all possible features be called    .


• Note that each prediction ŷ implicitly depends on ɸ(1), …, ɸ(m).


• Our goal is to find the best combination of m features, i.e., 
the one whose accuracy is:

ŷ = g(x) = I
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Feature set

• What is the size of the feature set: 
 

1. 317952

2. 331200

3. 304704

4. 255024

F = {(r1, c1, r2, c2) 2 {0, . . . , 23}4 : (r1, c1) 6= (r2, c2)}
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Feature set

• What is the size of the feature set: 
 

1. 317952 = (24*23)*(24*24)

2. 331200 = (24*24)*(24*24-1) 
3. 304704 = (24*23)*(24*23)

4. 255024 = 24*23*22*21

F = {(r1, c1, r2, c2) 2 {0, . . . , 23}4 : (r1, c1) 6= (r2, c2)}



Feature set

• If                        , then even for m=5, we have 
 
        = 3985213938015928320000000000


• It is computationally intractable to enumerate over all of 
these combinations of features!


• Overcoming the exponential computational costs of 
brute-force (“try everything”) optimization is one fo the 
chief goals of ML research.

|F5|

|F| = 331200



Step-wise classification
• Step-wise regression/classification is a greedy algorithm 

for selecting features/predictors myopically, i.e., based 
on “what looks best right now”.


• Instead of optimizing jointly to find: 
 
 
…we optimize iteratively:

max
(�(1),...,�(m))2Fm

fPC(y, ŷ;�
(1), . . . ,�(m))

We sometimes write the 
parameters that a function 

depends on after the ;
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Step-wise classification
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Step-wise classification
• Instead of          possible choices, we only have              .


• This is doable!


• We have reduced the exponential growth into linear growth — 
big difference!


• Note, however, that there is no guarantee that the solution is 
optimal. Step-wise classification is an approximate solution 
to selecting the m best features/predictors.

max
�(1)2F

fPC(y, ŷ;�
(1))

max
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(1),�(2))

max
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…

|F|m m⇥ |F|



Step-wise classification

• Pseudocode: 
 
predictors = []  # Empty list  
For j = 1, ..., m:  
  1. Find next best predictor given what's already in predictors 
  2. Add it to predictors 

• Run smile_demo.py and optimize on 10 images.



Step-wise classification
• Accuracy (on 10 images): 100%.


• Learned feature (somewhat counterintuitive):


• What happened?



Overfitting
• When we optimized the m=1 features on a set of just 10 images, 

we discovered a spurious relationship between the image x and 
the target label y.


• Spurious: the relationship would not generalize to a much 
larger set of images.


• Problem: we have many features (331200) but very few images 
(10) we need to classify.


• Out of 331200, it’s not hard to find a few features that happen to 
discriminate smiles/non-smiles just by chance.


• This is called overfitting to the dataset.



Training versus testing
• In machine learning, we always optimize the parameters/

features of our classifier/regressor on a 
training set            .


• We then measure accuracy on a testing set           that is 
disjoint from (contains no common elements with) the 
training set.


• The training and testing sets should be collected in the 
same manner.


• What does this mean?

Dtrain

Dtest



Data distribution
• When we collect a dataset (for training or testing), we are 

sampling from some universe of data.


• Face images from Google Image Search.


• DNA sequences from patients with a certain disease.


• Prices of stocks from NYSE.


• Pages of text from recently published books.


• …



Data distribution
• Each input x is sampled from a probability distribution 

p(x).


• Each label y is sampled from a conditional probability 
distribution p(y | x).


• Both probability distributions depend on the universe of 
data under consideration.


• How we characterize the accuracy of our trained 
“machine” will depend crucially on p(x), p(y | x).



Data distribution
• Example:


• Our “universe” is the 2018 population of undergraduate 
WPI students.


• We randomly sample a profile picture x from the 
universe according to p(x). This means that: 
 
                          is less likely than 
 
 
 
 
i.e., p(x) < p(x').

x x'



Data distribution
• Example:


• Suppose we’re trying to predict each person’s favorite 
weekend activity y from their profile picture.


• WPI students may do different things compared to 
students at University of Florida (different climate, etc.).


• The conditional distribution p(y | x) — what is the 
favorite activity y does it look like the person has, given 
what their profile picture x looks like — can depend 
highly on the universe under consideration.



Training versus testing

• The distributions p(x), p(y | x) used to sample training data 
should be the same as the distributions used to sample 
testing data.


• In practice, we typically sample a large dataset  
and then partition it into training and testing sets.


• 50%/50% and 80%/20% are common choices.

{(xi, yi)}ni=1



Training versus testing

• During training, we can do whatever we want to           .


• During training, we should never look at          .


• After training, we compute accuracy on           and report 
it.


• If we want to change the classifier design, we should re-
train and report accuracy on a different test set!

Dtest

Dtest

Dtrain



Training versus testing
• This ideal is hard to achieve in practice because labeled 

data are often difficult to collect.


• There are some exceptions: computer games.


• In practice:


• The computer should never examine the test set.


• We humans should try to minimize how often we 
examine performance on the test set.



Training versus testing
• Machine learning uses a different approach (training+testing) 

compared to classical statistics.


• Approach in statistics:


• Hypothesis tests take into account the degrees of freedom (dof), 
which depends on:

• Number of tunable parameters

• Number of examples in the dataset


• Advantage: just one dataset is required.


• Disadvantage: requires strong assumptions on distribution of data 
and prediction errors.



Training versus testing

• In homework 1 (part II), the training and testing sets are 
given to you.


• Run smile_demo.py



Weakness of our feature set

• So far, the feature we have considered are very weak:


• Is pixel (r1,c1) brighter than pixel (r2,c2)?


• We can’t even express simple relationships such as:


• “(r1,c1) is at least 5 bigger than (r2,c2)”


• “2 times (r1,c1) is bigger than (r2,c2)”


• “2 times (r1,c1) plus 4 times (r2,c2) is larger than (r3,c3)”.



Linear regression

• We can harness these more complex relationships using 
linear regression.


• Let’s switch back to the age estimation problem…



Linear algebra
• A column vector is a (n x 1) matrix.


• A row vector is a (1 x n) matrix.


• The transpose of (n x k) matrix A, denoted AT, is (k x n).


• Multiplication of matrices A and B:


• Only possible when: A is (n x k) and B is (k x m)


• Result: (n x m)


• The inner product between two column vectors (same length) x, y 
can be written  as:  xTy


