
CS 453X: Class 2
Jacob Whitehill

Automatic smile detection
• Suppose we want to build an automatic smile detector

that analyzes a grayscale face image (24x24 pixels) and
reports whether the face is smiling.

• We can represent the detector as a function g that takes
an image x as an input and produces a guess ŷ as
output, where .

• Abstractly, g can be considered a “machine”:

Smile detector g 1

x ŷ

x 2 R24⇥24, ŷ 2 {0, 1}

Automatic smile detection
• Suppose we want to build an automatic smile detector

that analyzes a grayscale face image (24x24 pixels) and
reports whether the face is smiling.

• We can represent the detector as a function g that takes
an image x as an input and produces a guess ŷ as
output, where .

• Abstractly, g can be considered a “machine”:

Smile detector g 0

x

x 2 R24⇥24, ŷ 2 {0, 1}

ŷ

Automatic smile detection
• Suppose we build g so that its output depends on only a

single pair of pixels within the input face: 

• Which pairs (r1, c1), (r2, c2) would you choose?

• How good is it?

g(x) = I[xr1,c1 > xr2,c2]

• To evaluate the simple “smile detector” g, we need a test
set consisting of:

• Images { xi } of both classes (smile/1, non-smile/0)

• Corresponding labels { yi }.

• The exact composition (ratio of positive/negative
examples) is flexible but may impact the way we interpret
the machine’s accuracy.

Accuracy measurement

Dtest = {(xi, yi)}ni=1

Accuracy measurement

• Let’s try a few examples by hand in smile_demo.py

• What accuracy did we achieve with a single predictor?

• Is this “good”?

Selecting a baseline

• What fraction of faces in are smiling faces? 54.6%

• How accurate (fPC) would a predictor be that just always
output 1 no matter what the image looked like?

• 54.6%

• Note that there are other accuracy functions (e.g., fAUC)
that are invariant to the proportion of each class — aka
the prior probabilities — of each class in the test set.

Dtest

Combining multiple
predictors

• Determining smile/non-smile based on a single
comparison is very weak.

• What if we combined multiple pairs and took the majority-
vote (choose non-smile if tied) across all m comparisons?

g(j)(x) = I[xr1,c1 > xr2,c2]

ŷ = g(x) = I

2

4

0

@ 1

m

mX

j=1

g(j)(x)

1

A > 0.5

3

5

Combining multiple
predictors

• The accuracy of the “ensemble” can vary hugely
depending on how the m “weak” predictors were
selected.

• If the m weak predictors tend to give the same answer for
the same inputs — i.e., they are correlated — then the
ensemble predictor may not be much better than any of
the weak predictors.

• It is important to choose the m weak predictors to work
well in cooperation.

Combining multiple
predictors

• Let’s change notation slightly: 
 
 

• Each ɸ(j) is called a feature of the input x.

• In machine learning*, the features serve as the basis of the
machine’s predictions.

* With more recent “deep learning” algorithms, the distinction between “feature extraction”
and “prediction” is blurred.

g(j)(x) = I[�(j)(x) > 0]

�(j)(x) = xr1,c1 � xr2,c2

Feature set
• Since each g(j) examines only a single feature, choosing a

predictor g(j) is equivalent to choosing a feature ɸ(j).

• Let the set of all possible features be called .

• Note that each prediction ŷ implicitly depends on ɸ(1), …, ɸ(m).

• Our goal is to find the best combination of m features, i.e.,
the one whose accuracy is:

ŷ = g(x) = I

2

4

0

@ 1

m

mX

j=1

g(j)(x)

1

A > 0.5

3

5

max
(�(1),...,�(m))2Fm

fPC(y, ŷ)

F

Feature set

• What is the size of the feature set: 
 

1. 317952

2. 331200

3. 304704

4. 255024

F = {(r1, c1, r2, c2) 2 {0, . . . , 23}4 : (r1, c1) 6= (r2, c2)}

Feature set

• What is the size of the feature set: 
 

1. 317952

2. 331200

3. 304704

4. 255024 = 24*23*22*21

F = {(r1, c1, r2, c2) 2 {0, . . . , 23}4 : (r1, c1) 6= (r2, c2)}

Feature set

• What is the size of the feature set: 
 

1. 317952

2. 331200

3. 304704 = (24*23)*(24*23)

4. 255024 = 24*23*22*21

F = {(r1, c1, r2, c2) 2 {0, . . . , 23}4 : (r1, c1) 6= (r2, c2)}

Feature set

• What is the size of the feature set: 
 

1. 317952 = (24*23)*(24*24)

2. 331200

3. 304704 = (24*23)*(24*23)

4. 255024 = 24*23*22*21

F = {(r1, c1, r2, c2) 2 {0, . . . , 23}4 : (r1, c1) 6= (r2, c2)}

Feature set

• What is the size of the feature set: 
 

1. 317952 = (24*23)*(24*24)

2. 331200 = (24*24)*(24*24-1)
3. 304704 = (24*23)*(24*23)

4. 255024 = 24*23*22*21

F = {(r1, c1, r2, c2) 2 {0, . . . , 23}4 : (r1, c1) 6= (r2, c2)}

Feature set

• If , then even for m=5, we have 
 
 = 3985213938015928320000000000

• It is computationally intractable to enumerate over all of
these combinations of features!

• Overcoming the exponential computational costs of
brute-force (“try everything”) optimization is one fo the
chief goals of ML research.

|F5|

|F| = 331200

Step-wise classification
• Step-wise regression/classification is a greedy algorithm

for selecting features/predictors myopically, i.e., based
on “what looks best right now”.

• Instead of optimizing jointly to find: 
 
 
…we optimize iteratively:

max
(�(1),...,�(m))2Fm

fPC(y, ŷ;�
(1), . . . ,�(m))

We sometimes write the
parameters that a function

depends on after the ;

Step-wise classification
• Step-wise regression/classification is a greedy algorithm

for selecting features/predictors myopically, i.e., based
on “what looks best right now”.

• Instead of optimizing jointly to find: 
 
 
…we optimize iteratively:

max
(�(1),...,�(m))2Fm

fPC(y, ŷ;�
(1), . . . ,�(m))

max
�(1)2F

fPC(y, ŷ;�
(1)) Find the single best feature.

Step-wise classification
• Step-wise regression/classification is a greedy algorithm

for selecting features/predictors myopically, i.e., based
on “what looks best right now”.

• Instead of optimizing jointly to find: 
 
 
…we optimize iteratively:

max
(�(1),...,�(m))2Fm

fPC(y, ŷ;�
(1), . . . ,�(m))

max
�(1)2F

fPC(y, ŷ;�
(1))

max
�(2)2F

fPC(y, ŷ;�
(1),�(2))

Given we have already committed
to the first feature, which single

next feature is best in combination?

Step-wise classification
• Step-wise regression/classification is a greedy algorithm

for selecting features/predictors myopically, i.e., based
on “what looks best right now”.

• Instead of optimizing jointly to find: 
 
 
…we optimize iteratively:

max
(�(1),...,�(m))2Fm

fPC(y, ŷ;�
(1), . . . ,�(m))

max
�(1)2F

fPC(y, ŷ;�
(1))

max
�(2)2F

fPC(y, ŷ;�
(1),�(2))

max
�(3)2F

fPC(y, ŷ;�
(1),�(2),�(3))

…

Repeat.

Step-wise classification
• Instead of possible choices, we only have .

• This is doable!

• We have reduced the exponential growth into linear growth —
big difference!

• Note, however, that there is no guarantee that the solution is
optimal. Step-wise classification is an approximate solution
to selecting the m best features/predictors.

max
�(1)2F

fPC(y, ŷ;�
(1))

max
�(2)2F

fPC(y, ŷ;�
(1),�(2))

max
�(3)2F

fPC(y, ŷ;�
(1),�(2),�(3))

…

|F|m m⇥ |F|

Step-wise classification

• Pseudocode: 
 
predictors = [] # Empty list  
For j = 1, ..., m:  
 1. Find next best predictor given what's already in predictors 
 2. Add it to predictors

• Run smile_demo.py and optimize on 10 images.

Step-wise classification
• Accuracy (on 10 images): 100%.

• Learned feature (somewhat counterintuitive):

• What happened?

Overfitting
• When we optimized the m=1 features on a set of just 10 images,

we discovered a spurious relationship between the image x and
the target label y.

• Spurious: the relationship would not generalize to a much
larger set of images.

• Problem: we have many features (331200) but very few images
(10) we need to classify.

• Out of 331200, it’s not hard to find a few features that happen to
discriminate smiles/non-smiles just by chance.

• This is called overfitting to the dataset.

Training versus testing
• In machine learning, we always optimize the parameters/

features of our classifier/regressor on a 
training set .

• We then measure accuracy on a testing set that is
disjoint from (contains no common elements with) the
training set.

• The training and testing sets should be collected in the
same manner.

• What does this mean?

Dtrain

Dtest

Data distribution
• When we collect a dataset (for training or testing), we are

sampling from some universe of data.

• Face images from Google Image Search.

• DNA sequences from patients with a certain disease.

• Prices of stocks from NYSE.

• Pages of text from recently published books.

• …

Data distribution
• Each input x is sampled from a probability distribution

p(x).

• Each label y is sampled from a conditional probability
distribution p(y | x).

• Both probability distributions depend on the universe of
data under consideration.

• How we characterize the accuracy of our trained
“machine” will depend crucially on p(x), p(y | x).

Data distribution
• Example:

• Our “universe” is the 2018 population of undergraduate
WPI students.

• We randomly sample a profile picture x from the
universe according to p(x). This means that: 
 
 is less likely than 
 
 
 
 
i.e., p(x) < p(x').

x x'

Data distribution
• Example:

• Suppose we’re trying to predict each person’s favorite
weekend activity y from their profile picture.

• WPI students may do different things compared to
students at University of Florida (different climate, etc.).

• The conditional distribution p(y | x) — what is the
favorite activity y does it look like the person has, given
what their profile picture x looks like — can depend
highly on the universe under consideration.

Training versus testing

• The distributions p(x), p(y | x) used to sample training data
should be the same as the distributions used to sample
testing data.

• In practice, we typically sample a large dataset  
and then partition it into training and testing sets.

• 50%/50% and 80%/20% are common choices.

{(xi, yi)}ni=1

Training versus testing

• During training, we can do whatever we want to .

• During training, we should never look at .

• After training, we compute accuracy on and report
it.

• If we want to change the classifier design, we should re-
train and report accuracy on a different test set!

Dtest

Dtest

Dtrain

Training versus testing
• This ideal is hard to achieve in practice because labeled

data are often difficult to collect.

• There are some exceptions: computer games.

• In practice:

• The computer should never examine the test set.

• We humans should try to minimize how often we
examine performance on the test set.

Training versus testing
• Machine learning uses a different approach (training+testing)

compared to classical statistics.

• Approach in statistics:

• Hypothesis tests take into account the degrees of freedom (dof),
which depends on:

• Number of tunable parameters

• Number of examples in the dataset

• Advantage: just one dataset is required.

• Disadvantage: requires strong assumptions on distribution of data
and prediction errors.

Training versus testing

• In homework 1 (part II), the training and testing sets are
given to you.

• Run smile_demo.py

Weakness of our feature set

• So far, the feature we have considered are very weak:

• Is pixel (r1,c1) brighter than pixel (r2,c2)?

• We can’t even express simple relationships such as:

• “(r1,c1) is at least 5 bigger than (r2,c2)”

• “2 times (r1,c1) is bigger than (r2,c2)”

• “2 times (r1,c1) plus 4 times (r2,c2) is larger than (r3,c3)”.

Linear regression

• We can harness these more complex relationships using
linear regression.

• Let’s switch back to the age estimation problem…

Linear algebra
• A column vector is a (n x 1) matrix.

• A row vector is a (1 x n) matrix.

• The transpose of (n x k) matrix A, denoted AT, is (k x n).

• Multiplication of matrices A and B:

• Only possible when: A is (n x k) and B is (k x m)

• Result: (n x m)

• The inner product between two column vectors (same length) x, y
can be written as: xTy

