CS 453X: Class 2

Jacob Whitehill
Automatic smile detection

- Suppose we want to build an automatic smile detector that analyzes a grayscale face image (24x24 pixels) and reports whether the face is smiling.

- We can represent the detector as a function g that takes an image x as an input and produces a guess \hat{y} as output, where $x \in \mathbb{R}^{24 \times 24}$, $\hat{y} \in \{0, 1\}$.

- Abstractly, g can be considered a “machine”:
Automatic smile detection

• Suppose we want to build an automatic smile detector that analyzes a grayscale face image (24x24 pixels) and reports whether the face is smiling.

• We can represent the detector as a function g that takes an image x as an input and produces a guess \hat{y} as output, where $x \in \mathbb{R}^{24 \times 24}$, $\hat{y} \in \{0, 1\}$.

• Abstractly, g can be considered a “machine”:
Automatic smile detection

• Suppose we build g so that its output depends on only a single pair of pixels within the input face:

$$g(x) = \mathbb{1}[x_{r_1,c_1} > x_{r_2,c_2}]$$

• Which pairs $(r_1, c_1), (r_2, c_2)$ would you choose?

• How good is it?
Accuracy measurement

- To evaluate the simple “smile detector” g, we need a test set $\mathcal{D}^{\text{test}} = \{(x_i, y_i)\}_{i=1}^{n}$ consisting of:
 - Images $\{x_i\}$ of both classes (smile/1, non-smile/0)
 - Corresponding labels $\{y_i\}$.
- The exact composition (ratio of positive/negative examples) is flexible but may impact the way we interpret the machine’s accuracy.
Accuracy measurement

- Let’s try a few examples by hand in smile_demo.py
- What accuracy did we achieve with a single predictor?
- Is this “good”?
Selecting a baseline

- What fraction of faces in D^{test} are smiling faces? 54.6%

- How accurate (f_{PC}) would a predictor be that just always output 1 no matter what the image looked like?

 - 54.6%

- Note that there are other accuracy functions (e.g., f_{AUC}) that are invariant to the proportion of each class — aka the prior probabilities — of each class in the test set.
Combining multiple predictors

- Determining smile/non-smile based on a single comparison is very weak.

- What if we combined *multiple* pairs and took the majority-vote (choose non-smile if tied) across all m comparisons?

\[
g^{(j)}(x) = \mathbb{I}[x_{r_1,c_1} > x_{r_2,c_2}]
\]

\[
\hat{y} = g(x) = \mathbb{I} \left[\left(\frac{1}{m} \sum_{j=1}^{m} g^{(j)}(x) \right) > 0.5 \right]
\]
Combining multiple predictors

- The accuracy of the “ensemble” can vary hugely depending on how the m “weak” predictors were selected.

- If the m weak predictors tend to give the same answer for the same inputs — i.e., they are correlated — then the ensemble predictor may not be much better than any of the weak predictors.

- It is important to choose the m weak predictors to work well in cooperation.
Combining multiple predictors

- Let’s change notation slightly:

 \[g^{(j)}(x) = \mathbb{I}[\phi^{(j)}(x) > 0] \]

 \[\phi^{(j)}(x) = x_{r_1,c_1} - x_{r_2,c_2} \]

- Each \(\phi^{(j)} \) is called a **feature** of the input \(x \).

- In machine learning*, the features serve as the basis of the machine’s predictions.

* With more recent “deep learning” algorithms, the distinction between “feature extraction” and “prediction” is blurred.
Feature set

- Since each $g^{(i)}$ examines only a single feature, choosing a predictor $g^{(i)}$ is equivalent to choosing a feature $\phi^{(i)}$.

- Let the set of all possible features be called \mathcal{F}.

- Note that each prediction \hat{y} implicitly depends on $\phi^{(1)}, \ldots, \phi^{(m)}$.

\[
\hat{y} = g(x) = \mathbb{I} \left[\left(\frac{1}{m} \sum_{j=1}^{m} g^{(j)}(x) \right) > 0.5 \right]
\]

- Our goal is to find the \textbf{best} combination of m features, i.e., the one whose accuracy is:

\[
\max_{(\phi^{(1)}, \ldots, \phi^{(m)}) \in \mathcal{F}^m} f_{\text{PC}}(y, \hat{y})
\]
Feature set

• What is the size of the feature set:

\[\mathcal{F} = \{(r_1, c_1, r_2, c_2) \in \{0, \ldots, 23\}^4 : (r_1, c_1) \neq (r_2, c_2)\} \]

1. 317952
2. 331200
3. 304704
4. 255024
Feature set

• What is the size of the feature set:

\[\mathcal{F} = \{(r_1, c_1, r_2, c_2) \in \{0, \ldots, 23\}^4 : (r_1, c_1) \neq (r_2, c_2)\} \]

1. 317952
2. 331200
3. 304704
4. 255024 = 24*23*22*21
Feature set

- What is the size of the feature set:

\[\mathcal{F} = \{(r_1, c_1, r_2, c_2) \in \{0, \ldots, 23\}^4 : (r_1, c_1) \neq (r_2, c_2)\} \]

1. 317952
2. 331200
3. 304704 = (24*23)*(24*23)
4. 255024 = 24*23*22*21
Feature set

- What is the size of the feature set:

\[\mathcal{F} = \{(r_1, c_1, r_2, c_2) \in \{0, \ldots, 23\}^4 : (r_1, c_1) \neq (r_2, c_2)\} \]

1. \(317952 = (24*23)*(24*24)\)
2. \(331200\)
3. \(304704 = (24*23)*(24*23)\)
4. \(255024 = 24*23*22*21\)
Feature set

- What is the size of the feature set:

\[
\mathcal{F} = \{(r_1, c_1, r_2, c_2) \in \{0, \ldots, 23\}^4 : (r_1, c_1) \neq (r_2, c_2)\}
\]

1. 317952 = \((24*23)*(24*24)\)
2. 331200 = \((24*24)*(24*24-1)\)
3. 304704 = \((24*23)*(24*23)\)
4. 255024 = \(24*23*22*21\)
Feature set

• If $|\mathcal{F}| = 331200$, then even for $m=5$, we have

$$|\mathcal{F}^5| = 3985213938015928320000000000$$

• It is computationally intractable to enumerate over all of these combinations of features!

• Overcoming the exponential computational costs of **brute-force** (“try everything”) optimization is one of the chief goals of ML research.
Step-wise classification

- Step-wise regression/classification is a greedy algorithm for selecting features/predictors myopically, i.e., based on “what looks best right now”.

- Instead of optimizing jointly to find:

\[
\max_{(\phi^{(1)}, \ldots, \phi^{(m)}) \in \mathcal{F}^m} f_{\text{PC}}(y, \hat{y}; \phi^{(1)}, \ldots, \phi^{(m)})
\]

We sometimes write the parameters that a function depends on after the ;
Step-wise classification

• Step-wise regression/classification is a **greedy** algorithm for selecting features/predictors **myopically**, i.e., based on “what looks best right now”.

• Instead of optimizing *jointly* to find:

\[
\max_{(\phi^{(1)}, \ldots, \phi^{(m)}) \in \mathcal{F}^m} f_{PC}(y, \hat{y}; \phi^{(1)}, \ldots, \phi^{(m)})
\]

…we optimize *iteratively*:

\[
\max_{\phi^{(1)} \in \mathcal{F}} f_{PC}(y, \hat{y}; \phi^{(1)})
\]

Find the single best feature.
Step-wise classification

- Step-wise regression/classification is a **greedy** algorithm for selecting features/predictors **myopically**, i.e., based on “what looks best right now”.

- Instead of optimizing *jointly* to find:

\[
\max_{(\phi^{(1)}, \ldots, \phi^{(m)}) \in \mathcal{F}^m} f_{PC}(y, \hat{y}; \phi^{(1)}, \ldots, \phi^{(m)})
\]

...we optimize *iteratively*:

\[
\max_{\phi^{(1)} \in \mathcal{F}} f_{PC}(y, \hat{y}; \phi^{(1)})
\]
\[
\max_{\phi^{(2)} \in \mathcal{F}} f_{PC}(y, \hat{y}; \phi^{(1)}, \phi^{(2)})
\]

Given we have already committed to the first feature, which single next feature is best in combination?
Step-wise classification

- Step-wise regression/classification is a **greedy** algorithm for selecting features/predictors **myopically**, i.e., based on “what looks best right now”.

- Instead of optimizing *jointly* to find:
 \[
 \max_{(\phi^{(1)},\ldots,\phi^{(m)}) \in \mathcal{F}^m} f_{PC}(y, \hat{y}; \phi^{(1)},\ldots,\phi^{(m)})
 \]

 ...we optimize *iteratively*:

 \[
 \max_{\phi^{(1)} \in \mathcal{F}} f_{PC}(y, \hat{y}; \phi^{(1)})
 \]

 \[
 \max_{\phi^{(2)} \in \mathcal{F}} f_{PC}(y, \hat{y}; \phi^{(1)}, \phi^{(2)})
 \]

 \[
 \max_{\phi^{(3)} \in \mathcal{F}} f_{PC}(y, \hat{y}; \phi^{(1)}, \phi^{(2)}, \phi^{(3)})
 \]

 ... **Repeat.**
Step-wise classification

• Instead of $|\mathcal{F}|^m$ possible choices, we only have $m \times |\mathcal{F}|$.

• This is doable!

• We have reduced the exponential growth into linear growth — big difference!

• Note, however, that there is no guarantee that the solution is optimal. Step-wise classification is an approximate solution to selecting the m best features/predictors.

\[
\max_{\phi^{(1)} \in \mathcal{F}} f_{PC}(y, \hat{y}; \phi^{(1)}) \\
\max_{\phi^{(2)} \in \mathcal{F}} f_{PC}(y, \hat{y}; \phi^{(1)}, \phi^{(2)}) \\
\max_{\phi^{(3)} \in \mathcal{F}} f_{PC}(y, \hat{y}; \phi^{(1)}, \phi^{(2)}, \phi^{(3)}) \\
\ldots
\]
Step-wise classification

• Pseudocode:

predictors = [] # Empty list
For j = 1, ..., m:
 1. Find next best predictor given what's already in predictors
 2. Add it to predictors

• Run smile_demo.py and optimize on 10 images.
Step-wise classification

- Accuracy (on 10 images): 100%.
- Learned feature (somewhat counterintuitive):
- What happened?
Overfitting

• When we optimized the $m=1$ features on a set of just 10 images, we discovered a spurious relationship between the image x and the target label y.

 • Spurious: the relationship would not generalize to a much larger set of images.

• Problem: we have many features (331200) but very few images (10) we need to classify.

 • Out of 331200, it’s not hard to find a few features that happen to discriminate smiles/non-smiles just by chance.

• This is called overfitting to the dataset.
Training versus testing

• In machine learning, we always optimize the parameters/features of our classifier/regressor on a **training set** D_{train}.

• We then measure accuracy on a **testing set** D_{test} that is disjoint from (contains no common elements with) the training set.

• The training and testing sets should be collected in the same manner.

• What does this mean?
Data distribution

- When we collect a dataset (for training or testing), we are **sampling** from some universe of data.

- Face images from Google Image Search.

- DNA sequences from patients with a certain disease.

- Prices of stocks from NYSE.

- Pages of text from recently published books.

- ...
Data distribution

• Each input x is sampled from a probability distribution $p(x)$.

• Each label y is sampled from a conditional probability distribution $p(y \mid x)$.

• Both probability distributions depend on the universe of data under consideration.

• How we characterize the accuracy of our trained “machine” will depend crucially on $p(x)$, $p(y \mid x)$.
Data distribution

• Example:

 • Our “universe” is the 2018 population of undergraduate WPI students.

 • We randomly sample a profile picture x from the universe according to $p(x)$. This means that:

 is less likely than

 i.e., $p(x) < p(x')$.

Data distribution

• Example:

• Suppose we’re trying to predict each person’s favorite weekend activity y from their profile picture.

• WPI students may do different things compared to students at University of Florida (different climate, etc.).

• The conditional distribution $p(y \mid x)$ — what is the favorite activity y does it look like the person has, given what their profile picture x looks like — can depend highly on the universe under consideration.
Training versus testing

- The distributions $p(x)$, $p(y | x)$ used to sample training data should be the same as the distributions used to sample testing data.

- In practice, we typically sample a large dataset $\{(x_i, y_i)\}_{i=1}^{n}$ and then partition it into training and testing sets.

 - 50%/50% and 80%/20% are common choices.
Training versus testing

• During training, we can do whatever we want to D_{train}.

• During training, we should never look at D_{test}.

• After training, we compute accuracy on D_{test} and report it.

• If we want to change the classifier design, we should re-train and report accuracy on a different test set!
Training versus testing

- This ideal is hard to achieve in practice because labeled data are often difficult to collect.
 - There are some exceptions: computer games.

- In practice:
 - The computer should never examine the test set.
 - We humans should try to minimize how often we examine performance on the test set.
Training versus testing

• Machine learning uses a different approach (training+testing) compared to classical statistics.

• Approach in statistics:
 • Hypothesis tests take into account the **degrees of freedom** (dof), which depends on:
 • Number of tunable parameters
 • Number of examples in the dataset
 • Advantage: just one dataset is required.
 • Disadvantage: requires strong assumptions on distribution of data and prediction errors.
Training versus testing

• In homework 1 (part II), the training and testing sets are given to you.

• Run smile_demo.py
Weakness of our feature set

- So far, the feature we have considered are very weak:
 - Is pixel \((r_1,c_1)\) brighter than pixel \((r_2,c_2)\)?
 - We can’t even express simple relationships such as:
 - “\((r_1,c_1)\) is at least 5 bigger than \((r_2,c_2)\)”
 - “2 times \((r_1,c_1)\) is bigger than \((r_2,c_2)\)”
 - “2 times \((r_1,c_1)\) plus 4 times \((r_2,c_2)\) is larger than \((r_3,c_3)\)”.
Linear regression

- We can harness these more complex relationships using linear regression.

- Let’s switch back to the age estimation problem…
Linear algebra

- A **column vector** is a \((n \times 1)\) matrix.
- A **row vector** is a \((1 \times n)\) matrix.
- The **transpose** of \((n \times k)\) matrix \(A\), denoted \(A^T\), is \((k \times n)\).
- Multiplication of matrices \(A\) and \(B\):
 - Only possible when: \(A\) is \((n \times k)\) and \(B\) is \((k \times m)\)
 - Result: \((n \times m)\)
- The **inner product** between two column vectors (same length) \(x, y\) can be written as: \(x^T y\)