CS 453X: Class 2

Jacob Whitehill

Automatic smile detection

- Suppose we want to build an automatic smile detector that analyzes a grayscale face image (24x24 pixels) and reports whether the face is smiling.
- We can represent the detector as a function g that takes an image \mathbf{x} as an input and produces a guess \hat{y} as output, where $\mathbf{x} \in \mathbb{R}^{24 \times 24}, \hat{y} \in \{0, 1\}$.
- Abstractly, g can be considered a "machine":

Automatic smile detection

- Suppose we want to build an automatic smile detector that analyzes a grayscale face image (24x24 pixels) and reports whether the face is smiling.
- We can represent the detector as a function g that takes an image \mathbf{x} as an input and produces a guess \hat{y} as output, where $\mathbf{x} \in \mathbb{R}^{24 \times 24}, \hat{y} \in \{0, 1\}$.
- Abstractly, g can be considered a "machine":

Automatic smile detection

 Suppose we build g so that its output depends on only a single pair of pixels within the input face:

$$g(\mathbf{x}) = \mathbb{I}[\mathbf{x}_{r_1,c_1} > \mathbf{x}_{r_2,c_2}]$$

- Which pairs (r_1, c_1) , (r_2, c_2) would you choose?
- How good is it?

Accuracy measurement

- To evaluate the simple "smile detector" g, we need a **test** set $\mathcal{D}^{\text{test}} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$ consisting of:
 - Images { x_i } of both classes (smile/1, non-smile/0)
 - Corresponding labels { y_i }.
- The exact composition (ratio of positive/negative examples) is flexible but may impact the way we interpret the machine's accuracy.

Accuracy measurement

- Let's try a few examples by hand in smile_demo.py
- What accuracy did we achieve with a single predictor?
- Is this "good"?

Selecting a baseline

- What fraction of faces in $\mathcal{D}^{\text{test}}$ are smiling faces? 54.6%
- How accurate (f_{PC}) would a predictor be that just always output 1 no matter what the image looked like?
 - 54.6%
- Note that there are other accuracy functions (e.g., f_{AUC}) that are invariant to the proportion of each class aka the **prior probabilities** of each class in the test set.

Combining multiple predictors

- Determining smile/non-smile based on a single comparison is very weak.
- What if we combined multiple pairs and took the majorityvote (choose non-smile if tied) across all m comparisons?

$$g^{(j)}(\mathbf{x}) = \mathbb{I}[\mathbf{x}_{r_1,c_1} > \mathbf{x}_{r_2,c_2}]$$

$$\hat{y} = g(\mathbf{x}) = \mathbb{I}\left[\left(\frac{1}{m}\sum_{j=1}^{m}g^{(j)}(\mathbf{x})\right) > 0.5\right]$$

Combining multiple predictors

- The accuracy of the "ensemble" can vary hugely depending on how the m "weak" predictors were selected.
- If the m weak predictors tend to give the same answer for the same inputs — i.e., they are correlated — then the ensemble predictor may not be much better than any of the weak predictors.
- It is important to choose the *m* weak predictors to work well in *cooperation*.

Combining multiple predictors

Let's change notation slightly:

$$g^{(j)}(\mathbf{x}) = \mathbb{I}[\phi^{(j)}(\mathbf{x}) > 0]$$

 $\phi^{(j)}(\mathbf{x}) = \mathbf{x}_{r_1,c_1} - \mathbf{x}_{r_2,c_2}$

- Each $\phi^{(j)}$ is called a **feature** of the input **x**.
- In machine learning*, the features serve as the basis of the machine's predictions.

^{*} With more recent "deep learning" algorithms, the distinction between "feature extraction" and "prediction" is blurred.

- Since each $g^{(j)}$ examines only a single feature, choosing a predictor $g^{(j)}$ is equivalent to choosing a feature $\phi^{(j)}$.
- Let the set of all possible features be called \mathcal{F} .
- Note that each prediction \hat{y} implicitly depends on $\phi^{(1)}$, ..., $\phi^{(m)}$.

$$\hat{y} = g(\mathbf{x}) = \mathbb{I}\left[\left(\frac{1}{m}\sum_{j=1}^{m}g^{(j)}(\mathbf{x})\right) > 0.5\right]$$

 Our goal is to find the **best** combination of *m* features, i.e., the one whose accuracy is:

$$\max_{(\phi^{(1)},\dots,\phi^{(m)})\in\mathcal{F}^m} f_{\mathrm{PC}}(\mathbf{y},\hat{\mathbf{y}})$$

$$\mathcal{F} = \{(r_1, c_1, r_2, c_2) \in \{0, \dots, 23\}^4 : (r_1, c_1) \neq (r_2, c_2)\}$$

- 1. 317952
- 2. 331200
- 3. 304704
- 4. 255024

$$\mathcal{F} = \{(r_1, c_1, r_2, c_2) \in \{0, \dots, 23\}^4 : (r_1, c_1) \neq (r_2, c_2)\}$$

- 1. 317952
- 2. 331200
- 3. 304704
- 4. 255024 = 24*23*22*21

$$\mathcal{F} = \{(r_1, c_1, r_2, c_2) \in \{0, \dots, 23\}^4 : (r_1, c_1) \neq (r_2, c_2)\}$$

- 1. 317952
- 2. 331200
- 3. 304704 = (24*23)*(24*23)
- 4. 255024 = 24*23*22*21

$$\mathcal{F} = \{(r_1, c_1, r_2, c_2) \in \{0, \dots, 23\}^4 : (r_1, c_1) \neq (r_2, c_2)\}$$

- 1. 317952 = (24*23)*(24*24)
- 2. 331200
- 3. 304704 = (24*23)*(24*23)
- 4. 255024 = 24*23*22*21

$$\mathcal{F} = \{(r_1, c_1, r_2, c_2) \in \{0, \dots, 23\}^4 : (r_1, c_1) \neq (r_2, c_2)\}$$

- 1. 317952 = (24*23)*(24*24)
- 2. 331200 = (24*24)*(24*24-1)
- 3. 304704 = (24*23)*(24*23)
- 4. 255024 = 24*23*22*21

- If $|\mathcal{F}| = 331200$, then even for m=5, we have
 - $|\mathcal{F}^5| = 3985213938015928320000000000$
- It is computationally intractable to enumerate over all of these combinations of features!
- Overcoming the exponential computational costs of brute-force ("try everything") optimization is one fo the chief goals of ML research.

- Step-wise regression/classification is a greedy algorithm for selecting features/predictors myopically, i.e., based on "what looks best right now".
- Instead of optimizing jointly to find:

$$\max_{(\phi^{(1)},\dots,\phi^{(m)})\in\mathcal{F}^m} f_{\mathrm{PC}}(\mathbf{y},\hat{\mathbf{y}};\phi^{(1)},\dots,\phi^{(m)})$$
 We sometimes write the parameters that a function depends on after the ;

- Step-wise regression/classification is a greedy algorithm for selecting features/predictors myopically, i.e., based on "what looks best right now".
- Instead of optimizing jointly to find:

$$\max_{(\phi^{(1)},\dots,\phi^{(m)})\in\mathcal{F}^m} f_{\mathrm{PC}}(\mathbf{y},\hat{\mathbf{y}};\phi^{(1)},\dots,\phi^{(m)})$$

...we optimize iteratively:

$$\max_{\phi^{(1)} \in \mathcal{F}} f_{\mathrm{PC}}(\mathbf{y}, \hat{\mathbf{y}}; \phi^{(1)})$$
 Find the single best feature.

- Step-wise regression/classification is a greedy algorithm for selecting features/predictors myopically, i.e., based on "what looks best right now".
- Instead of optimizing jointly to find:

$$\max_{(\phi^{(1)},\dots,\phi^{(m)})\in\mathcal{F}^m} f_{\mathrm{PC}}(\mathbf{y},\hat{\mathbf{y}};\phi^{(1)},\dots,\phi^{(m)})$$

...we optimize iteratively:

$$\max_{\phi^{(1)} \in \mathcal{F}} f_{\text{PC}}(\mathbf{y}, \hat{\mathbf{y}}; \phi^{(1)})$$

$$\max_{\phi^{(2)} \in \mathcal{F}} f_{\text{PC}}(\mathbf{y}, \hat{\mathbf{y}}; \phi^{(1)}, \phi^{(2)})$$
Given we have already committed to the first feature, which single next feature is best in combination?

- Step-wise regression/classification is a greedy algorithm for selecting features/predictors myopically, i.e., based on "what looks best right now".
- Instead of optimizing jointly to find:

$$\max_{(\phi^{(1)},\dots,\phi^{(m)})\in\mathcal{F}^m} f_{\mathrm{PC}}(\mathbf{y},\hat{\mathbf{y}};\phi^{(1)},\dots,\phi^{(m)})$$

...we optimize iteratively:

$$\max_{\phi^{(1)} \in \mathcal{F}} f_{\text{PC}}(\mathbf{y}, \hat{\mathbf{y}}; \phi^{(1)})$$

$$\max_{\phi^{(2)} \in \mathcal{F}} f_{\text{PC}}(\mathbf{y}, \hat{\mathbf{y}}; \phi^{(1)}, \phi^{(2)})$$

$$\max_{\phi^{(3)} \in \mathcal{F}} f_{\text{PC}}(\mathbf{y}, \hat{\mathbf{y}}; \phi^{(1)}, \phi^{(2)}, \phi^{(3)})$$
Repeat.

...

- Instead of $|\mathcal{F}|^m$ possible choices, we only have $m \times |\mathcal{F}|$.
- This is doable!
- We have reduced the exponential growth into linear growth big difference!
- Note, however, that there is no guarantee that the solution is optimal. Step-wise classification is an approximate solution to selecting the m best features/predictors.

$$\max_{\phi^{(1)} \in \mathcal{F}} f_{\text{PC}}(\mathbf{y}, \hat{\mathbf{y}}; \phi^{(1)})$$

$$\max_{\phi^{(2)} \in \mathcal{F}} f_{\text{PC}}(\mathbf{y}, \hat{\mathbf{y}}; \phi^{(1)}, \phi^{(2)})$$

$$\max_{\phi^{(3)} \in \mathcal{F}} f_{\text{PC}}(\mathbf{y}, \hat{\mathbf{y}}; \phi^{(1)}, \phi^{(2)}, \phi^{(3)})$$

...

Pseudocode:

```
predictors = [] # Empty list
For j = 1, ..., m:
   1. Find next best predictor given what's already in predictors
   2. Add it to predictors
```

Run smile_demo.py and optimize on 10 images.

- Accuracy (on 10 images): 100%.
- Learned feature (somewhat counterintuitive):

What happened?

Overfitting

- When we optimized the m=1 features on a set of just 10 images, we discovered a spurious relationship between the image x and the target label y.
 - Spurious: the relationship would not generalize to a much larger set of images.
- Problem: we have many features (331200) but very few images (10) we need to classify.
 - Out of 331200, it's not hard to find a few features that happen to discriminate smiles/non-smiles just by chance.
- This is called overfitting to the dataset.

- In machine learning, we always optimize the parameters/ features of our classifier/regressor on a training set \mathcal{D}^{train} .
- We then measure accuracy on a **testing set** \mathcal{D}^{test} that is disjoint from (contains no common elements with) the training set.
- The training and testing sets should be collected in the same manner.
 - What does this mean?

- When we collect a dataset (for training or testing), we are sampling from some universe of data.
 - Face images from Google Image Search.
 - DNA sequences from patients with a certain disease.
 - Prices of stocks from NYSE.
 - Pages of text from recently published books.

• ...

- Each input x is sampled from a probability distribution p(x).
- Each label y is sampled from a conditional probability distribution $p(y \mid \mathbf{x})$.
- Both probability distributions depend on the universe of data under consideration.
- How we characterize the accuracy of our trained "machine" will depend crucially on $p(\mathbf{x})$, $p(y \mid \mathbf{x})$.

- Example:
 - Our "universe" is the 2018 population of undergraduate WPI students.
 - We randomly sample a profile picture \mathbf{x} from the universe according to $p(\mathbf{x})$. This means that:

X

is less likely than

 X^{I}

i.e.,
$$p(x) < p(x')$$
.

Example:

- Suppose we're trying to predict each person's favorite weekend activity y from their profile picture.
- WPI students may do different things compared to students at University of Florida (different climate, etc.).
- The conditional distribution p(y | x) what is the favorite activity y does it look like the person has, given what their profile picture x looks like can depend highly on the universe under consideration.

- The distributions $p(\mathbf{x})$, $p(y \mid \mathbf{x})$ used to sample training data should be the same as the distributions used to sample testing data.
- In practice, we typically sample a large dataset $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$ and then partition it into training and testing sets.
 - 50%/50% and 80%/20% are common choices.

- During training, we can do whatever we want to $\mathcal{D}^{\mathrm{train}}$.
- During training, we should **never** look at $\mathcal{D}^{\mathrm{test}}$.
- After training, we compute accuracy on \mathcal{D}^{test} and report it.
- If we want to change the classifier design, we should retrain and report accuracy on a different test set!

- This ideal is hard to achieve in practice because labeled data are often difficult to collect.
 - There are some exceptions: computer games.
- In practice:
 - The computer should never examine the test set.
 - We humans should try to minimize how often we examine performance on the test set.

- Machine learning uses a different approach (training+testing) compared to classical statistics.
- Approach in statistics:
 - Hypothesis tests take into account the degrees of freedom (dof), which depends on:
 - Number of tunable parameters
 - Number of examples in the dataset
 - Advantage: just one dataset is required.
 - Disadvantage: requires strong assumptions on distribution of data and prediction errors.

- In homework 1 (part II), the training and testing sets are given to you.
- Run smile_demo.py

Weakness of our feature set

- So far, the feature we have considered are very weak:
 - Is pixel (r_1,c_1) brighter than pixel (r_2,c_2) ?
- We can't even express simple relationships such as:
 - " (r_1,c_1) is at least 5 bigger than (r_2,c_2) "
 - "2 times (r_1,c_1) is bigger than (r_2,c_2) "
 - "2 times (r_1,c_1) plus 4 times (r_2,c_2) is larger than (r_3,c_3) ".

Linear regression

- We can harness these more complex relationships using linear regression.
- Let's switch back to the age estimation problem...

Linear algebra

- A column vector is a (n x 1) matrix.
- A row vector is a (1 x n) matrix.
- The **transpose** of $(n \times k)$ matrix **A**, denoted **A**^T, is $(k \times n)$.
- Multiplication of matrices A and B:
 - Only possible when: **A** is $(n \times k)$ and **B** is $(k \times m)$
 - Result: (*n* x *m*)
- The inner product between two column vectors (same length) x, y
 can be written as: x^Ty