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More on neural
networks



Feed-forward NN

 Neural networks can have multiple neurons per layer.

e Between each adjacent pair of layers (input-hidden and
hidden-output), there is a matrix of (synaptic) weights:
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Feed-forward NN

* We can compute the pre-activation values z of the hidden
layer as:

z = WWx

W)

%)




Feed-forward NN
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Feed-forward NN

* We can then pass z to the activation function o and
compute the hidden neuron values element-wise, i.e.:

h; = o(z;)
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Feed-forward NN

* Next, we pass h to the next layer...




Feed-forward NN

e ...and compute the product:

y =W Zh




Feed-forward NN

e ...and compute the product:

y =W Zh




Feed-forward NN

e Note that the final layer could also have an activation
function (if we wanted one), e.g.:

=0 (W<2>h)
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Multiple output neurons

e We can also have a NN with multiple output neurons, e.qg.:
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Bias terms

* We typically include a bias term for every neuron, so that
the layers’ values are computed as:

z=WWx + bl  and § = W®h 4+ b®
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Exercise: bias terms

cy A W(l):_l 0 1] b(l):{
e What will y be for x = [1 0 -2]T, -1 23
1 -1
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XOR problem

 Recall that no linear decision boundary (e.g., linear SVM,
linear regression) can solve the XOR problem.

®(0,1) ®(1,1)

The red points are -.
The blue points are +.

(0,0) (1,0)
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XOR problem

 Recall that no linear decision boundary (e.g., linear SVM,
linear regression) can solve the XOR problem.
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The blue points are +.
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e |et’s see how using a hidden layer can help us solve it...



XOR problem

e \We want to use a NN to define a function f such that:




XOR problem

e Here’s how a 3-layer NN with a non-linear (ReLU)
activation function can solve it:
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XOR problem

e Here’s how a 3-layer NN with a non-linear (ReLU)
activation function can solve it:

e WO, b will “collapse” the two - data points onto one
point in the “hidden” 2-D space.
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XOR problem

e Here’s how a 3-layer NN with a non-linear (ReLU)
activation function can solve it:

e WO, b will “collapse” the two - data points onto one
point in the “hidden” 2-D space.

e Since the + and - data are now linearly separated, W),
b can easily distinguish the two classes.

e O [ + [ )
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XOR problem

e Here’s how a 3-layer NN with a non-linear (ReLU)
activation function can solve it:

e WO, b will “collapse” the two - data points onto one
point in the “hidden” 2-D space.

e Since the + and - data are now linearly separated, W),
b can easily distinguish the two classes.
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XOR problem

 Note that the ability of the 3-layer NN to solve the XOR
problem relies crucially on the non-linear RelLU activation

function.

e Note that other non-linear functions would also work.

e Without non-linearity, a multi-layer NN is no more
powerful than a 2-layer network!



Crucial role of non-linearity

e Suppose we define a 3-layer NN without non-linearity:

g(x) = WO (Wu)x n b<1>) INE)
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Crucial role of non-linearity

* Then we can simplify g to be:

g(x) = W® (Wu)x n b<1>) INE)
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Crucial role of non-linearity

* Then we can simplify g to be:
g(x) = W& (W(l)X 4 b(l)) + b2
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Crucial role of non-linearity

* Then we can simplify g to be:
g(x) = W& (W(l)X 4 b(l)) + b2

= Wx+b

= 7



Training neural
networks



Training neural networks

e While training neural networks by hand is (arguably) fun, it
Is completely impractical except for toy examples.

e How can we find good values for the weights and bias
terms automatically?



Training neural networks

e While training neural networks by hand is (arguably) fun, it
Is completely impractical except for toy examples.

e How can we find good values for the weights and bias
terms automatically?

e (Gradient descent.



Gradient descent:
XOR problem

e Here is how we can conduct gradient descent for the
XOR problem...

o | et’s first define:



Gradient descent:
XOR problem

e Here is how we can conduct gradient descent for the
XOR problem...

o | et’s first define:

j = ([ L1 D — W@, (W<1>X+b<1>) L p®
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Gradient descent:
XOR problem

e Here is how we can conduct gradient descent for the
XOR problem...

o | et’s first define:

W<1>:[w1 wQ],W(2):[w5],b(1):[b1 ],b@):[bg}

w3 W4

* Then we can define g so that:

y = ([ » ]) = W®g (W(l)x+b(1)) + b
T
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Gradient descent:
XOR problem

e From y, we can compute the cost (fvsk):
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Gradient descent:
XOR problem

e From y, we can compute the cost (fvsk):

n
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SMsE (5 w1, wa, w3, wa, ws, we, b, b2, b3) = 5 Z(?J( ) — gy
i=1

e \We then then calculate the derivative of fuse w.r.t. each
parameter p using the chain rule as:
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Gradient descent:
XOR problem

* Now we just have to differentiate y = g(x) w.r.t each
parameter p:, e.qg.:
0y 0
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Gradient descent:
XOR problem

* Now we just have to differentiate y = g(x) w.r.t each
parameter p:, e.qg.:
0y 0
—— = —— [wso(wiz1 + wars + b1) + weo(wsry + wars + by) + ba]
(911)1 8”&1]1
p— w5



Gradient descent:
XOR problem
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where:

, 0 if z2<0
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Gradient descent:
XOR problem

e Hence:

83} o 0 if W11 + Woko + bl S 0
Ow1 o wsxr, 1 wixy + woexe + b1 >0

since:

{ 0 if z2<0

for RelLU
1 if z2z>0



Gradient descent:
XOR problem

e We also need to derive the other partial derivatives:
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