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Finding structure in scatter

e \What do you see in this figure?

1.A candelabra.




Finding structure in scatter

e \What do you see in this figure?

2.A young woman frowning.
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Finding structure in scatter

e \What do you see in this figure?

3.Three somewhat distinct clusters of data points.




Finding structure in scatter

e \What do you see in this figure?

3.Three somewhat distinct clusters of data points.




Finding structure in scatter

* Intuitively, we can define clustering as putting data into
groups such that: data within each group are more similar
than data between groups.




Finding structure in scatter

 Wouldn't it be nice to be able to cluster data automatically?

* Maybe the clusters align with certain natural structure in
the data (e.g., digit classes in MNIST dataset)?
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Clustering: background

 Consider a set of n data points { x? }, and another point c:
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Clustering: background

e |et’s define a cost function fssp as the sum of squared

distances between each data point x() and c.

fssp(c) = % Y (c—x1)?

1=1

1.0 -

0.5 A

0.0 -

_0.5 -

_1.0 -

_1.5 -

—2.0 - T T T T T T T T
—-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5




Clustering: background

e Which point ¢ minimizes fssp for { x@ }?

fssp(c) = % Y (c—x1)?
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Center of n pomts
fssplc) = —z



Center of n points
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Center of n points
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Center of n points
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Center of n points
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Center of n points

* |n other words, the point ¢ that minimizes fssp is the mean
of the n points { x0 }.

* Every other point ¢'# ¢ must have a higher fssp.
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k-means clustering
algorithm

e Probably the simplest and most commonly used
clustering algorithm is called k-means.

e |t partitions a set of n data { x } into k clusters.



k-means clustering
algorithm

e Chicken-and-the-egg problem:

e |[f we knew the mean cl) of each cluster

J, we could assign each data point x to
the closest cluster center.

N\ 2
a(x) = arg min (X — c(j))
J




k-means clustering
algorithm

e Chicken-and-the-egg problem:

e |[f we knew the mean cl) of each cluster

J, we could assign each data point x to
the closest cluster center.

A\ 2
a(x) = arg min (X — C(]))
J

e |[f we knew which data were in which

cluster, we could compute the mean of
each cluster.

Cj — ni Z X(Z)

J i:a(x(1))=j



k-means clustering
algorithm

e Chicken-and-the-egg problem:

e |[f we knew the mean cl) of each cluster

J, we could assign each data point x to
the closest cluster center.

A\ 2
a(x) = arg min (X — C(]))
J

e |[f we knew which data were in which

cluster, we could compute the mean of
each cluster.

Cj — ni Z X(Z)

. i:a(x(1))=j



k-means clustering
algorithm

The k-means algorithm seeks to optimize the assignment of
data points to clusters so as to minimize:

Z S ( (i) _C<j>>2

= i:a(x(?))=j

Algorithm:
1.Randomly assign the data points to clusters.
2.Repeat until the cost does not change:

A.Compute c!) of each cluster j as the mean of the points
assigned to it.

B.Assign each point x() to the nearest cluster mean c0.



k-means clustering:
convergence

e Why is the “Repeat until the cost does not change” loop
guaranteed to converge?



k-means clustering:
convergence

e Why is the “Repeat until the cost does not change” loop
guaranteed to converge? Z 3 ( (i) _ <>)2

:a x(z) =

* The k-means cost function has a /ower bound (0) since
the sum can never be negative.

 Each step within the loop can only lower the cost:



k-means clustering:
convergence

e Why is the “Repeat until the cost does not change” loop
guaranteed to converge? Z > (x0- <>)2

ira(x(M))=j

* The k-means cost function has a /ower bound (0) since
the sum can never be negative.

 Each step within the loop can only lower the cost:

A.Compute cl) of each clusterj as the mean of the
points assigned to it.



k-means clustering:
convergence

e Why is the “Repeat until the cost does not change” loop
guaranteed to converge? Z 3 ( (i) _ <>)2

:a x(z) =

* The k-means cost function has a /ower bound (0) since
the sum can never be negative.

 Each step within the loop can only lower the cost:

A.Compute cl) of each clusterj as the mean of the
points assigned to it.

B.Assign each point x) to the nearest cluster mean cV).





















Exercise: k-means on 1-D
data

e Suppose the (1-D) data consist of { -3, -1, 0, 1, 2 }.

e Suppose we initialize the clusters as:

zk: S (Xu‘) _ C<j>)2

J=1  q:a(x(®))=j

* Repeat until the cost does not change:

21 A.Compute cl) of each clusterj as the
mean of the points assigned to it.

B.Assign each point x0 to the nearest
] cluster mean cV).

-4 -2 0 2 4

 What will k-means output (cluster assignments & means)?
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e There is no guarantee that the algorithm will converge to a
global minimum.



Caveats

* The output of k-means can differ depending on how the
algorithm was initialized.

e There is no guarantee that the algorithm will converge to a
global minimum.

e Sometimes, clusters can become empty.

e |In this case, we have to eliminate one (or more) of the
clusters to avoid dividing by O:

c; — ni S xO

J i:a(x(9))=j



