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Finding structure in 
scatter



Finding structure in scatter
• What do you see in this figure?


1.A candelabra.



Finding structure in scatter
• What do you see in this figure?


2.A young woman frowning.



Finding structure in scatter
• What do you see in this figure?


3.Three somewhat distinct clusters of data points.



Finding structure in scatter
• What do you see in this figure?


3.Three somewhat distinct clusters of data points.
Bingo.



Finding structure in scatter
• Intuitively, we can define clustering as putting data into 

groups such that: data within each group are more similar 
than data between groups.



Finding structure in scatter
• Wouldn’t it be nice to be able to cluster data automatically?


• Maybe the clusters align with certain natural structure in 
the data (e.g., digit classes in MNIST dataset)?

Show demo.



Clustering: 
background



Clustering: background
• Consider a set of n data points { x(i) }, and another point c:

c



• Let’s define a cost function fSSD as the sum of squared 
distances between each data point x(i) and c.

fSSD(c) =
1

2

nX

i=1

(c� x(i))2

c

Clustering: background



• Which point c minimizes fSSD for { x(i) }?

fSSD(c) =
1

2

nX

i=1

(c� x(i))2

?
?

?

?
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Center of n points
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Center of n points

• In other words, the point c that minimizes fSSD is the mean 
of the n points { x(i) }.


• Every other point c'≠ c must have a higher fSSD.



k-means clustering 
algorithm



k-means clustering 
algorithm

• Probably the simplest and most commonly used 
clustering algorithm is called k-means.


• It partitions a set of n data { x(i) } into k clusters.



k-means clustering 
algorithm

• Chicken-and-the-egg problem:


• If we knew the mean c(j) of each cluster 
j, we could assign each data point x to 
the closest cluster center.


• If we knew the assignment of data 
points to clusters, we could compute 
the mean of each cluster.

a(x) = argmin
j

⇣
x� c(j)

⌘2



k-means clustering 
algorithm

• Chicken-and-the-egg problem:


• If we knew the mean c(j) of each cluster 
j, we could assign each data point x to 
the closest cluster center.


• If we knew which data were in which 
cluster, we could compute the mean of 
each cluster.

cj =
1

nj

X

i:a(x(i))=j

x(i)

a(x) = argmin
j

⇣
x� c(j)

⌘2



k-means clustering 
algorithm

• Chicken-and-the-egg problem:


• If we knew the mean c(j) of each cluster 
j, we could assign each data point x to 
the closest cluster center.


• If we knew which data were in which 
cluster, we could compute the mean of 
each cluster.

cj =
1

nj

X

i:a(x(i))=j

x(i)

a(x) = argmin
j

⇣
x� c(j)

⌘2

The data in cluster j.# data in cluster j



• The k-means algorithm seeks to optimize the assignment of 
data points to clusters so as to minimize:


• Algorithm:

1.Randomly assign the data points to clusters.

2.Repeat until the cost does not change:


A.Compute c(j) of each cluster j as the mean of the points 
assigned to it.


B.Assign each point x(i) to the nearest cluster mean c(j).

kX

j=1

X

i:a(x(i))=j

⇣
x(i) � c(j)

⌘2

k-means clustering 
algorithm



k-means clustering: 
convergence

• Why is the “Repeat until the cost does not change” loop 
guaranteed to converge?


• The k-means cost function has a lower bound (0) since 
the sum can never be negative.


• Each step within the loop can only lower the cost:

A.Compute c(j) of each cluster j as the mean of the 

points assigned to it.


B.Assign each point x(i) to the nearest cluster mean c(j).



k-means clustering: 
convergence

• Why is the “Repeat until the cost does not change” loop 
guaranteed to converge?


• The k-means cost function has a lower bound (0) since 
the sum can never be negative.


• Each step within the loop can only lower the cost:

A.Compute c(j) of each cluster j as the mean of the 

points assigned to it.


B.Assign each point x(i) to the nearest cluster mean c(j).
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k-means clustering: 
convergence

• Why is the “Repeat until the cost does not change” loop 
guaranteed to converge?


• The k-means cost function has a lower bound (0) since 
the sum can never be negative.


• Each step within the loop can only lower the cost:

A.Compute c(j) of each cluster j as the mean of the 

points assigned to it.


B.Assign each point x(i) to the nearest cluster mean c(j).

As shown earlier, the mean of the data { x(i) } 
minimizes fSSD.

kX

j=1

X

i:a(x(i))=j

⇣
x(i) � c(j)

⌘2



k-means clustering: 
convergence

• Why is the “Repeat until the cost does not change” loop 
guaranteed to converge?


• The k-means cost function has a lower bound (0) since 
the sum can never be negative.


• Each step within the loop can only lower the cost:

A.Compute c(j) of each cluster j as the mean of the 

points assigned to it.


B.Assign each point x(i) to the nearest cluster mean c(j).

As shown earlier, the mean of the data { x(i) } 
minimizes fSSD.

Assigning x(i) to the closest cluster mean c(j) 
can only decrease the cost due to x(i).

kX

j=1

X

i:a(x(i))=j

⇣
x(i) � c(j)

⌘2
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Exercise: k-means on 1-D 
data

• Suppose the (1-D) data consist of { -3, -1, 0, 1, 2 }.


• Suppose we initialize the clusters as:


• What will k-means output (cluster assignments & means)?

• Repeat until the cost does not change: 

A.Compute c(j) of each cluster j as the 

mean of the points assigned to it.

B.Assign each point x(i) to the nearest 

cluster mean c(j).

kX

j=1

X

i:a(x(i))=j

⇣
x(i) � c(j)

⌘2



Exercise: k-means on 1-D 
data

• Suppose the (1-D) data consist of { -3, -1, 0, 1, 2 }.


• Suppose we initialize the clusters as:


• What will k-means output (cluster assignments & means)?

• Repeat until the cost does not change: 

A.Compute c(j) of each cluster j as the 

mean of the points assigned to it.

B.Assign each point x(i) to the nearest 

cluster mean c(j).

kX
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X
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μ1=-2, μ2=1, cost=4



Caveats

• The output of k-means can differ depending on how the 
algorithm was initialized.


• There is no guarantee that the algorithm will converge to a 
global minimum.


• Sometimes, clusters can become empty.


• In this case, we have to eliminate one (or more) of the 
clusters to avoid dividing by 0:
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Caveats

• The output of k-means can differ depending on how the 
algorithm was initialized.


• There is no guarantee that the algorithm will converge to a 
global minimum.


• Sometimes, clusters can become empty.


• In this case, we have to eliminate one (or more) of the 
clusters to avoid dividing by 0:
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