
CS 453X: Class 16
Jacob Whitehill

Data visualization

Data visualization

• Prior to choosing a particular ML model, it can sometimes
be helpful to visualize your dataset.

• One of the most commonly used visualization techniques
is called principal component analysis (PCA).

Data visualization

• Consider the MNIST dataset of hand-written digits.

• Visualizing each individual example is easy, e.g.:

• But this doesn’t tell us a whole lot about the dataset as a
whole, or how separable the classes are.

Data visualization

• Each MNIST image is 28x28 pixels => 784 dimensions.

• To show all examples in the original input space, we
would need a 784-dimensional visualization.

• But humans struggle with perception beyond 3-D.

• How can we represent a collection of many high-
dimensional images in just 2-D or 3-D?

Data visualization

• We somehow have to condense the interesting
information of a 784-dim vector into just 2-3 dimensions!

• Core question:

• How do we pick the dimensions — or more generally,
directions — of data to present?

Data visualization

• Let’s give a naive try…

• For each image x(i) (where i=1, …, n):

• Retrieve the values of just the first two pixels, i.e., 
(x(i)1, x2(i)).

• Plot the point (x(i)1, x2(i)) in 2-D space.

Data visualization

• Let’s give a naive try…

• For each image x(i) (where i=1, …, n):

• Retrieve the values of just the first two pixels, i.e., 
(x(i)1, x2(i)).

• Plot the point (x(i)1, x2(i)) in 2-D space.
(0,0) (1,0) (2,0) … (27,0)

(0,1) …

(0,2)

…

(0,27) (27,27)

Data visualization

• Let’s give a naive try…

• For each image x(i) (where i=1, …, n):

• Retrieve the values of just the first two pixels, i.e., 
(x(i)1, x2(i)).

• Plot the point (x(i)1, x2(i)) in 2-D space.

MNIST 2-D visualization:
first two pixel values

• Let’s apply this procedure to 2500 images from the
MNIST test set…

MNIST 2-D visualization:
first two pixel values

• Let’s apply this procedure to 2500 images from the
MNIST test set…

What happened?

MNIST 2-D visualization:
first two pixel values

• The problem is that, for all n images in our dataset, the
value of the first two pixels is 0!

• There was very little (actually, 0) variance across each of
these two dimensions.

Variance
• Intuitively, the variance of a vector of n numbers is how

“spread out” they are:
var=1

var=4

var=16

var=64

Variance

• Note that the variance is independent of the mean!

var=1

var=4

var=16

var=64

Variance

• From basic statistics:

• Mean of an n-dimensional vector: sum and divide by n: 

• Variance of an n-dimensional vector: the mean
squared distance from the mean:

E(p) =
1

n

nX

i=1

pi

Variance

• From basic statistics:

• Mean of an n-dimensional vector: sum and divide by n: 

• Variance of an n-dimensional vector: the mean
squared distance from the mean:

V(p) =
1

n

nX

i=1

(pi � E(p))2

E(p) =
1

n

nX

i=1

pi

Variance
• Alternatively, we can compute the variance in two steps:

• First subtract the mean from each element of p:

• Since the mean of p is 0, we can compute its variance
as:

p̃ = p� E(p)

2

64
1
...
1

3

75

Variance
• Alternatively, we can compute the variance in two steps:

• First subtract the mean from each element of p:

• Since the mean of p is 0, we can compute its variance
as:

p̃ = p� E(p)

2

64
1
...
1

3

75

V(p̃) =
1

n

nX

i=1

(p̃i � E(p̃))2

=
1

n

nX

i=1

(p̃i � 0)2

=
1

n

nX

i=1

(p̃i)
2

=
1

n
p̃>p̃

~

Variance
• Alternatively, we can compute the variance in two steps:

• First subtract the mean from each element of p:

• Since the mean of p is 0, we can compute its variance
as:

p̃ = p� E(p)

2

64
1
...
1

3

75

V(p̃) =
1

n

nX

i=1

(p̃i � E(p̃))2

=
1

n

nX

i=1

(p̃i � 0)2

=
1

n

nX

i=1

(p̃i)
2

=
1

n
p̃>p̃

~

Variance
• Alternatively, we can compute the variance in two steps:

• First subtract the mean from each element of p:

• Since the mean of p is 0, we can compute its variance
as:

p̃ = p� E(p)

2

64
1
...
1

3

75

V(p̃) =
1

n

nX

i=1

(p̃i � E(p̃))2

=
1

n

nX

i=1

(p̃i � 0)2

=
1

n

nX

i=1

(p̃i)
2

=
1

n
p̃>p̃

~

Variance
• Alternatively, we can compute the variance in two steps:

• First subtract the mean from each element of p:

• Since the mean of p is 0, we can compute its variance
as:

p̃ = p� E(p)

2

64
1
...
1

3

75

V(p̃) =
1

n

nX

i=1

(p̃i � E(p̃))2

=
1

n

nX

i=1

(p̃i � 0)2

=
1

n

nX

i=1

(p̃i)
2

=
1

n
p̃>p̃

~

MNIST 2-D visualization: two
most highly-varying dimensions
• Let’s search for the two pixel dimensions along which the

images vary the most.

• Selecting a particular pixel from each image x is
equivalent to projecting each x onto a unit vector. 
 
 
where d is a vector of n-1 zeros and 1 one (whose
location corresponds to the particular pixel location):

x>d

d =

2

6666664

0
...
1
...
0

3

7777775

Projection
• Recall that a projection of a vector v onto a direction (unit

vector) d is given by p = vTd:

• The projection p is a scalar that measures the distance of
v along d.

d

v

Projection
• Recall that a (scalar) projection of a vector v onto a

direction (unit vector) d is given by p = vTd:

• The scalar projection p measures the distance of v along
d.

d

v

p

MNIST 2-D visualization: two
most highly-varying dimensions
• For each possible pixel dimension d, we can obtain the n-

vector of all scalar projections (over all n images) as:

• We can then calculate the variance of the scalar
projections by calculating Var(p).

• By searching over all 784 possible dimensions, we can
find the two dimensions along which variance is
maximized.

p = X>d

MNIST 2-D visualization: two
most highly-varying dimensions
• When we apply this to MNIST, we get:

• Pixel dimension of 1st-highest variance: (r,c) = (13,14)

• Pixel dimension of 2nd-highest variance: (r,c) =(14,14)

MNIST 2-D visualization: two
most highly-varying dimensions
• Certainly much better!

• However, many of the values overlap each other due to
saturation — in many images, these pixels’ values are
maximized/minimized.

Beyond axis-aligned
directions

• But why constrain ourselves to only axis-aligned unit
vectors, i.e., vectors with m-1 zeros and 1 one?

• Consider the following dataset in which each image
contains just 2 pixels.

• Along which direction d is variance maximized?

Beyond axis-aligned
directions

• But why constrain ourselves to only axis-aligned unit
vectors, i.e., vectors with m-1 zeros and 1 one?

• Consider the following dataset in which each image
contains just 2 pixels.

• Along which direction d is variance maximized?

d =

"
1p
2
1p
2

#

Maximizing variance along
any direction d

• In general, given a dataset X of training examples, we
want to find the direction d that maximizes Var(XTd).

• For simplicity, let’s assume that the mean of X, along
each pixel dimension j, is 0, i.e.:

• (If this is not the case, then just subtract off the mean
vector from each example x(i).)

1

n

nX

i=1

x(i)
j = 0

Maximizing variance along
any direction d

• Since X has zero mean (for each pixel dimension j), then
XTd also has zero mean (for any d):

E
⇣
X>d

⌘
=

1

n

nX

i=1

x(i)>d

=
1

n

nX

i=1

mX

j=1

x(i)
j dj

=
1

n

mX

j=1

nX

i=1

x(i)
j dj

=
1

n

mX

j=1

dj

nX

i=1

x(i)
j

=
1

n

mX

j=1

dj0

= 0

by applying the definition
of mean.

Maximizing variance along
any direction d

• Since X has zero mean (for each pixel dimension j), then
XTd also has zero mean (for any d):

E
⇣
X>d

⌘
=

1

n

nX

i=1

x(i)>d

=
1

n

nX

i=1

mX

j=1

x(i)
j dj

=
1

n

mX

j=1

nX

i=1

x(i)
j dj

=
1

n

mX

j=1

dj

nX

i=1

x(i)
j

=
1

n

mX

j=1

dj0

= 0

by applying the definition
of inner product.

Maximizing variance along
any direction d

• Since X has zero mean (for each pixel dimension j), then
XTd also has zero mean (for any d):

E
⇣
X>d

⌘
=

1

n

nX

i=1

x(i)>d

=
1

n

nX

i=1

mX

j=1

x(i)
j dj

=
1

n

mX

j=1

nX

i=1

x(i)
j dj

=
1

n

mX

j=1

dj

nX

i=1

x(i)
j

=
1

n

mX

j=1

dj0

= 0

since we can swap the
order of the summations.

Maximizing variance along
any direction d

• Since X has zero mean (for each pixel dimension j), then
XTd also has zero mean (for any d):

E
⇣
X>d

⌘
=

1

n

nX

i=1

x(i)>d

=
1

n

nX

i=1

mX

j=1

x(i)
j dj

=
1

n

mX

j=1

nX

i=1

x(i)
j dj

=
1

n

mX

j=1

dj

nX

i=1

x(i)
j

=
1

n

mX

j=1

dj0

= 0

Maximizing variance along
any direction d

• Since X has zero mean (for each pixel dimension j), then
XTd also has zero mean (for any d):

since X has zero mean

E
⇣
X>d

⌘
=

1

n

nX

i=1

x(i)>d

=
1

n

nX

i=1

mX

j=1

x(i)
j dj

=
1

n

mX

j=1

nX

i=1

x(i)
j dj

=
1

n

mX

j=1

dj

nX

i=1

x(i)
j

=
1

n

mX

j=1

dj0

= 0

Maximizing variance along
any direction d

• Since X has zero mean (for each pixel dimension j), then
XTd also has zero mean (for any d):

E
⇣
X>d

⌘
=

1

n

nX

i=1

x(i)>d

=
1

n

nX

i=1

mX

j=1

x(i)
j dj

=
1

n

mX

j=1

nX

i=1

x(i)
j dj

=
1

n

mX

j=1

dj

nX

i=1

x(i)
j

=
1

n

mX

j=1

dj0

= 0

Maximizing variance along
any direction d

• Therefore, the variance of XTd (for any d) is just:

• We thus want to find the d that maximizes: 
 
 
 
subject to the constraint that d is a unit vector, i.e.:

1

n
(X>d)>(X>d)

d>d = 1

(X>d)>(X>d)

Maximizing variance along
any direction d

• Since this is a constrained optimization problem, we can
set up a Lagrangian function L(d, α):

L(d,↵) = (X>d)>(X>d)� ↵(d>d� 1)

= d>XX>d� ↵(d>d� 1)

@L

@d
= 2XX>d� 2↵d = 0

=) XX>d = ↵d

Objective Constraint

Maximizing variance along
any direction d

• Since this is a constrained optimization problem, we can
set up a Lagrangian function L(d, α):

L(d,↵) = (X>d)>(X>d)� ↵(d>d� 1)

= d>XX>d� ↵(d>d� 1)

@L

@d
= 2XX>d� 2↵d = 0

=) XX>d = ↵d

Maximizing variance along
any direction d

• Since this is a constrained optimization problem, we can
set up a Lagrangian function L(d, α):

L(d,↵) = (X>d)>(X>d)� ↵(d>d� 1)

= d>XX>d� ↵(d>d� 1)

@L

@d
= 2XX>d� 2↵d = 0

=) XX>d = ↵d

Maximizing variance along
any direction d

• Since this is a constrained optimization problem, we can
set up a Lagrangian function L(d, α):

L(d,↵) = (X>d)>(X>d)� ↵(d>d� 1)

= d>XX>d� ↵(d>d� 1)

@L

@d
= 2XX>d� 2↵d = 0

=) XX>d = ↵d

Maximizing variance along
any direction d

• Since this is a constrained optimization problem, we can
set up a Lagrangian function L(d, α):

L(d,↵) = (X>d)>(X>d)� ↵(d>d� 1)

= d>XX>d� ↵(d>d� 1)

@L

@d
= 2XX>d� 2↵d = 0

=) XX>d = ↵d

• In other words, d is an eigenvector of XXT.

• Since we want to maximize the variance of the projections,
we want the eigenvector with largest associated eigenvalue.

Eigenvector

• An eigenvector v of a (square) matrix A satisfies: 
 
 
for some scalar eigenvalue α.

• For an n x n matrix A, there are n eigenvectors v and
associated eigenvalues α.

• Eigenvectors/eigenvalues can be computed (in O(n3) time)
using many standard linear algebra libraries (e.g., numpy).

Av = ↵v

Positive semi-definite
matrices

• Recall that the eigenvalues of every PSD matrix A are
always non-negative.

• Since XXT is PSD (as shown previously in class), its
eigenvalues are non-negative.

PCA

• The direction d along which the dataset X varies the most
is the principal eigenvector of XXT, i.e., the eigenvector
with largest associated eigenvalue.

• It can be shown that the second-most highly varying
direction of X is the eigenvector with second-largest
associated value, etc.

PCA
• Algorithm:

1. From design matrix X, compute the mean vector x:

3. Subtract x from each example x(i), and then form
matrix X (same size as X), which should have a mean
(over all n examples) of 0 along each dimension j.

x =
1

n

nX

i=1

x(i)

—

—
~

eX =

2

4 (x(1) � x) . . . (x(n) � x)

3

5

PCA
• Algorithm:

1. From design matrix X, compute the mean vector x:

3. Subtract x from each example x(i), and then form
matrix X (same size as X), which should have a mean
(over all n examples) of 0 along each dimension j.

4. Compute the eigenvectors & eigenvalues of XXT.

5. The kth principal component (PC) of X is the
eigenvector v of XXT with the kth-largest eigenvalue.

x =
1

n

nX

i=1

x(i)

—

—
~

~ ~

~ ~

PCA on MNIST

For all classes

PCA on MNIST

For each class
with its own color

Unsupervised learning
• PCA is an example of an unsupervised machine learning

algorithm.

• Unsupervised — we never looked at the training labels!

• In some settings, the data might not even be labeled.

• Note that there are other visualization methods (e.g.,
Linear Discriminant Analysis (LDA)) that are supervised:

• Project data onto directions that best linearly separate
the data classes.

Unsupervised learning
• PCA is an example of an unsupervised machine learning

algorithm.

• Unsupervised — we never looked at the training labels!

• In some settings, the data might not even be labeled.

• Note that there are other visualization methods (e.g.,
Linear Discriminant Analysis (LDA)) that are supervised:

• Project data onto directions that best linearly separate
the data classes.

