Data visualization
Data visualization

• Prior to choosing a particular ML model, it can sometimes be helpful to visualize your dataset.

• One of the most commonly used visualization techniques is called principal component analysis (PCA).
Data visualization

• Consider the MNIST dataset of hand-written digits.

• Visualizing each *individual* example is easy, e.g.:

• But this doesn’t tell us a whole lot about the dataset as a *whole*, or how *separable* the classes are.
Data visualization

• Each MNIST image is 28x28 pixels ⇒ 784 dimensions.

• To show all examples in the original input space, we would need a 784-dimensional visualization.

 • But humans struggle with perception beyond 3-D.

• How can we represent a collection of many high-dimensional images in just 2-D or 3-D?
Data visualization

• We somehow have to condense the interesting information of a 784-dim vector into just 2-3 dimensions!

• Core question:

 • How do we pick the dimensions — or more generally, *directions* — of data to present?
Data visualization

• Let’s give a naive try…

• For each image $\mathbf{x}^{(i)}$ (where $i=1, \ldots, n$):
• Let’s give a naive try…

• For each image $\mathbf{x}^{(i)}$ (where $i=1, \ldots, n$):

 • Retrieve the values of just the first two pixels, i.e., $(\mathbf{x}^{(i)}_1, \mathbf{x}^{(i)}_2)$.
Data visualization

- Let’s give a naive try…

- For each image \(\mathbf{x}^{(i)} \) (where \(i=1, \ldots, n \)):

 - Retrieve the values of just the first two pixels, i.e., \((\mathbf{x}^{(i)}_1, \mathbf{x}^{(i)}_2) \).

 - Plot the point \((\mathbf{x}^{(i)}_1, \mathbf{x}^{(i)}_2) \) in 2-D space.
MNIST 2-D visualization: first two pixel values

• Let’s apply this procedure to 2500 images from the MNIST test set…
MNIST 2-D visualization: first two pixel values

- Let’s apply this procedure to 2500 images from the MNIST test set…

What happened?
The problem is that, for all \(n \) images in our dataset, the value of the first two pixels is 0!

There was very little (actually, 0) \textit{variance} across each of these two dimensions.
Variance

- Intuitively, the **variance** of a vector of n numbers is how “spread out” they are:
Variance

- Note that the variance is independent of the mean!
Variance

- From basic statistics:
 - **Mean** of an n-dimensional vector: sum and divide by n:

 $$
 \mathbb{E}(p) = \frac{1}{n} \sum_{i=1}^{n} p_i
 $$

Variance

- From basic statistics:
 - **Mean** of an \(n \)-dimensional vector: sum and divide by \(n \):
 \[
 \mathbb{E}(p) = \frac{1}{n} \sum_{i=1}^{n} p_i
 \]
 - **Variance** of an \(n \)-dimensional vector: the mean squared distance from the mean:
 \[
 \mathbb{V}(p) = \frac{1}{n} \sum_{i=1}^{n} (p_i - \mathbb{E}(p))^2
 \]
Variance

• Alternatively, we can compute the variance in two steps:

 • First subtract the mean from each element of \(p \):

\[
\tilde{p} = p - \mathbb{E}(p) \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}
\]
Variance

- Alternatively, we can compute the variance in two steps:

 - First subtract the mean from each element of p:

 $$ \tilde{p} = p - \mathbb{E}(p) \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} $$

 - Since the mean of \tilde{p} is 0, we can compute its variance as:

 $$ \mathbb{V}(\tilde{p}) = \frac{1}{n} \sum_{i=1}^{n} (\tilde{p}_i - \mathbb{E}(\tilde{p}))^2 $$
Variance

• Alternatively, we can compute the variance in two steps:

 • First subtract the mean from each element of \mathbf{p}:

 $$
 \tilde{\mathbf{p}} = \mathbf{p} - \mathbb{E}(\mathbf{p}) \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}
 $$

 • Since the mean of $\tilde{\mathbf{p}}$ is 0, we can compute its variance as:

 $$
 \mathbb{V}(\tilde{\mathbf{p}}) = \frac{1}{n} \sum_{i=1}^{n} (\tilde{p}_i - \mathbb{E}(\tilde{\mathbf{p}}))^2
 = \frac{1}{n} \sum_{i=1}^{n} (\tilde{p}_i - 0)^2
 $$
Variance

• Alternatively, we can compute the variance in two steps:

 • First subtract the mean from each element of \(\mathbf{p} \):

 \[
 \tilde{\mathbf{p}} = \mathbf{p} - \mathbb{E}(\mathbf{p}) \begin{bmatrix} 1 \\ \\ \vdots \\ 1 \end{bmatrix}
 \]

 • Since the mean of \(\tilde{\mathbf{p}} \) is 0, we can compute its variance as:

 \[
 \mathbb{V}(\tilde{\mathbf{p}}) = \frac{1}{n} \sum_{i=1}^{n} (\tilde{p}_i - \mathbb{E}(\tilde{\mathbf{p}}))^2
 \]

 \[
 = \frac{1}{n} \sum_{i=1}^{n} (\tilde{p}_i - 0)^2
 \]

 \[
 = \frac{1}{n} \sum_{i=1}^{n} (\tilde{p}_i)^2
 \]
Variance

• Alternatively, we can compute the variance in two steps:

 • First subtract the mean from each element of \mathbf{p}:

 $$\tilde{\mathbf{p}} = \mathbf{p} - \mathbb{E}(\mathbf{p}) \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$$

 • Since the mean of $\tilde{\mathbf{p}}$ is 0, we can compute its variance as:

 $$\nabla(\tilde{\mathbf{p}}) = \frac{1}{n} \sum_{i=1}^{n} (\tilde{p}_i - \mathbb{E}(\tilde{\mathbf{p}}))^2$$

 $$= \frac{1}{n} \sum_{i=1}^{n} (\tilde{p}_i - 0)^2$$

 $$= \frac{1}{n} \sum_{i=1}^{n} (\tilde{p}_i)^2$$

 $$= \frac{1}{n} \tilde{\mathbf{p}}^\top \tilde{\mathbf{p}}$$
MNIST 2-D visualization: two most highly-varying dimensions

• Let’s search for the two pixel dimensions along which the images vary the most.

• Selecting a particular pixel from each image \mathbf{x} is equivalent to projecting each \mathbf{x} onto a unit vector.

$$\mathbf{x}^T \mathbf{d}$$

where \mathbf{d} is a vector of $n-1$ zeros and 1 one (whose location corresponds to the particular pixel location):

$$\mathbf{d} = \begin{bmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix}$$
Projection

- Recall that a projection of a vector \mathbf{v} onto a direction (unit vector) \mathbf{d} is given by $p = \mathbf{v}^T \mathbf{d}$:
Projection

• Recall that a (scalar) projection of a vector \(\mathbf{v} \) onto a direction (unit vector) \(\mathbf{d} \) is given by \(p = \mathbf{v}^T \mathbf{d} \):

\[
\begin{align*}
\mathbf{v} \\
\downarrow \quad \downarrow \\
\mathbf{d} \quad \quad p
\end{align*}
\]

• The scalar projection \(p \) measures the distance of \(\mathbf{v} \) along \(\mathbf{d} \).
MNIST 2-D visualization: two most highly-varying dimensions

- For each possible pixel dimension d, we can obtain the n-vector of all scalar projections (over all n images) as:

 $$ p = X^\top d $$

- We can then calculate the variance of the scalar projections by calculating $\text{Var}(p)$.

- By searching over all 784 possible dimensions, we can find the two dimensions along which variance is maximized.
When we apply this to MNIST, we get:

- Pixel dimension of 1st-highest variance: \((r,c) = (13,14)\)
- Pixel dimension of 2nd-highest variance: \((r,c) = (14,14)\)
MNIST 2-D visualization: two most highly-varying dimensions

- Certainly much better!
- However, many of the values overlap each other due to saturation — in many images, these pixels’ values are maximized/minimized.
Beyond axis-aligned directions

- But why constrain ourselves to only axis-aligned unit vectors, i.e., vectors with $m-1$ zeros and 1 one?
- Consider the following dataset in which each image contains just 2 pixels.
- Along which direction d is variance maximized?
Beyond axis-aligned directions

• But why constrain ourselves to only axis-aligned unit vectors, i.e., vectors with \(m-1\) zeros and 1 one?

• Consider the following dataset in which each image contains just 2 pixels.

• Along which direction \(\mathbf{d}\) is variance maximized?

\[
\mathbf{d} = \left[\frac{1}{\sqrt{2}} \right] \left[\frac{1}{\sqrt{2}} \right]
\]
Maximizing variance along any direction d

- In general, given a dataset X of training examples, we want to find the direction d that maximizes $\text{Var}(X^Td)$.

- For simplicity, let’s assume that the mean of X, along each pixel dimension j, is 0, i.e.:

 $$\frac{1}{n} \sum_{i=1}^{n} x_j^{(i)} = 0$$

- (If this is not the case, then just subtract off the mean vector from each example $x^{(i)}$.)
Maximizing variance along any direction \(d \)

- Since \(X \) has zero mean (for each pixel dimension \(j \)), then \(X^T d \) also has zero mean (for any \(d \)):

\[
\mathbb{E} \left(X^T d \right) = \frac{1}{n} \sum_{i=1}^{n} x^{(i)}^T d
\]

by applying the definition of mean.
Maximizing variance along any direction d

- Since X has zero mean (for each pixel dimension j), then $X^T d$ also has zero mean (for any d):

$$
\mathbb{E}(X^T d) = \frac{1}{n} \sum_{i=1}^{n} x^{(i)^T} d
$$

$$
= \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{m} x_j^{(i)} d_j \quad \text{by applying the definition of inner product.}
$$
Maximizing variance along any direction d

- Since X has zero mean (for each pixel dimension j), then $X^T d$ also has zero mean (for any d):

$$\mathbb{E}(X^T d) = \frac{1}{n} \sum_{i=1}^{n} x^{(i)^T} d$$

$$= \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{m} x^{(i)} d_j$$

$$= \frac{1}{n} \sum_{j=1}^{m} \sum_{i=1}^{n} x^{(i)} d_j$$

since we can swap the order of the summations.
Maximizing variance along any direction \(\mathbf{d} \)

- Since \(\mathbf{X} \) has zero mean (for each pixel dimension \(j \)), then \(\mathbf{X}^T \mathbf{d} \) also has zero mean (for any \(\mathbf{d} \)):

\[
\mathbb{E}\left(\mathbf{X}^T \mathbf{d} \right) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}^{(i)}^T \mathbf{d} \\
= \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{m} x_{j}^{(i)} d_{j} \\
= \frac{1}{n} \sum_{j=1}^{m} \sum_{i=1}^{n} x_{j}^{(i)} d_{j} \\
= \frac{1}{n} \sum_{j=1}^{m} d_{j} \sum_{i=1}^{n} x_{j}^{(i)}
\]
Maximizing variance along any direction d

- Since X has zero mean (for each pixel dimension j), then $X^T d$ also has zero mean (for any d):

$$
\mathbb{E} \left(X^T d \right) = \frac{1}{n} \sum_{i=1}^{n} x^{(i)}^T d
$$

$$
= \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{m} x^{(i)}_j d_j
$$

$$
= \frac{1}{n} \sum_{j=1}^{m} \sum_{i=1}^{n} x^{(i)}_j d_j
$$

$$
= \frac{1}{n} \sum_{j=1}^{m} d_j \sum_{i=1}^{n} x^{(i)}_j
$$

$$
= \frac{1}{n} \sum_{j=1}^{m} d_j \cdot 0
$$

since X has zero mean
Maximizing variance along any direction d

- Since X has zero mean (for each pixel dimension j), then $X^T d$ also has zero mean (for any d):

$$
\mathbb{E}(X^T d) = \frac{1}{n} \sum_{i=1}^{n} x^{(i)}^T d
$$

$$
= \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{m} x^{(i)}_j d_j
$$

$$
= \frac{1}{n} \sum_{j=1}^{m} \sum_{i=1}^{n} x^{(i)}_j d_j
$$

$$
= \frac{1}{n} \sum_{j=1}^{m} d_j \sum_{i=1}^{n} x^{(i)}_j
$$

$$
= \frac{1}{n} \sum_{j=1}^{m} d_j \sum_{i=1}^{n} x^{(i)}
$$

$$
= \frac{1}{n} \sum_{j=1}^{m} d_j 0
$$

$$
= 0
$$
Maximizing variance along any direction \(\mathbf{d} \)

- Therefore, the variance of \(\mathbf{X}^\top \mathbf{d} \) (for any \(\mathbf{d} \)) is just:

\[
\frac{1}{n} (\mathbf{X}^\top \mathbf{d})^\top (\mathbf{X}^\top \mathbf{d})
\]

- We thus want to find the \(\mathbf{d} \) that maximizes:

\[
(\mathbf{X}^\top \mathbf{d})^\top (\mathbf{X}^\top \mathbf{d})
\]

subject to the constraint that \(\mathbf{d} \) is a unit vector, i.e.:

\[
\mathbf{d}^\top \mathbf{d} = 1
\]
Maximizing variance along any direction d

- Since this is a constrained optimization problem, we can set up a Lagrangian function $L(d, \alpha)$:

$$
L(d, \alpha) = (X^\top d)^\top (X^\top d) - \alpha(d^\top d - 1)
$$

Objective Constraint
Maximizing variance along any direction d

- Since this is a constrained optimization problem, we can set up a Lagrangian function $L(d, \alpha)$:

$$L(d, \alpha) = (X^\top d)^\top (X^\top d) - \alpha(d^\top d - 1)$$

$$= d^\top XX^\top d - \alpha(d^\top d - 1)$$
Maximizing variance along any direction d

- Since this is a constrained optimization problem, we can set up a Lagrangian function $L(d, \alpha)$:

$$L(d, \alpha) = (X^\top d)^\top (X^\top d) - \alpha(d^\top d - 1)$$

$$= d^\top XX^\top d - \alpha(d^\top d - 1)$$

$$\frac{\partial L}{\partial d} = 2XX^\top d - 2\alpha d = 0$$
Maximizing variance along any direction d

- Since this is a constrained optimization problem, we can set up a Lagrangian function $L(d, \alpha)$:

$$L(d, \alpha) = (X^\top d)^\top (X^\top d) - \alpha(d^\top d - 1)$$

$$= d^\top XX^\top d - \alpha(d^\top d - 1)$$

$$\frac{\partial L}{\partial d} = 2XX^\top d - 2\alpha d = 0$$

$$\implies XX^\top d = \alpha d$$
Maximizing variance along any direction d

- Since this is a constrained optimization problem, we can set up a Lagrangian function $L(d, \alpha)$:

$$L(d, \alpha) = (X^\top d)^\top (X^\top d) - \alpha(d^\top d - 1)$$

$$= d^\top XX^\top d - \alpha(d^\top d - 1)$$

$$\frac{\partial L}{\partial d} = 2XX^\top d - 2\alpha d = 0$$

$$\implies XX^\top d = \alpha d$$

- In other words, d is an eigenvector of XX^\top.

- Since we want to maximize the variance of the projections, we want the eigenvector with largest associated eigenvalue.
An eigenvector \(\mathbf{v} \) of a (square) matrix \(\mathbf{A} \) satisfies:

\[
\mathbf{A} \mathbf{v} = \alpha \mathbf{v}
\]

for some scalar eigenvalue \(\alpha \).

For an \(n \times n \) matrix \(\mathbf{A} \), there are \(n \) eigenvectors \(\mathbf{v} \) and associated eigenvalues \(\alpha \).

Eigenvectors/eigenvalues can be computed (in \(O(n^3) \) time) using many standard linear algebra libraries (e.g., \texttt{numpy}).
Positive semi-definite matrices

• Recall that the eigenvalues of every PSD matrix A are always non-negative.

• Since XX^T is PSD (as shown previously in class), its eigenvalues are non-negative.
PCA

• The direction \(\mathbf{d} \) along which the dataset \(\mathbf{X} \) varies the most is the **principal eigenvector** of \(\mathbf{XX}^T \), i.e., the eigenvector with largest associated eigenvalue.

• It can be shown that the second-most highly varying direction of \(\mathbf{X} \) is the eigenvector with second-largest associated value, etc.
PCA

• Algorithm:

1. From design matrix X, compute the mean vector \bar{x}:

$$
\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x^{(i)}
$$

3. Subtract \bar{x} from each example $x^{(i)}$, and then form matrix \tilde{X} (same size as X), which should have a mean (over all n examples) of 0 along each dimension j.

$$
\tilde{X} = \begin{bmatrix}
(x^{(1)} - \bar{x}) & \ldots & (x^{(n)} - \bar{x})
\end{bmatrix}
$$
PCA

• Algorithm:

1. From design matrix X, compute the mean vector \bar{x}:

 $$ \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x^{(i)} $$

3. Subtract \bar{x} from each example $x^{(i)}$, and then form matrix \tilde{X} (same size as X), which should have a mean (over all n examples) of 0 along each dimension j.

4. Compute the eigenvectors & eigenvalues of $\tilde{X}\tilde{X}^T$.

5. The k^{th} principal component (PC) of X is the eigenvector v of $\tilde{X}\tilde{X}^T$ with the k^{th}-largest eigenvalue.
PCA on MNIST

For all classes
PCA on MNIST

For each class with its own color
Unsupervised learning

• PCA is an example of an unsupervised machine learning algorithm.

• **Unsupervised** — we never looked at the training labels!
 - In some settings, the data might not even be labeled.
Unsupervised learning

- PCA is an example of an unsupervised machine learning algorithm.

- **Unsupervised** — we never looked at the training labels!
 - In some settings, the data might not even be labeled.

- Note that there are other visualization methods (e.g., Linear Discriminant Analysis (LDA)) that are supervised:
 - Project data onto directions that best linearly separate the data classes.