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Data visualization



Data visualization

• Prior to choosing a particular ML model, it can sometimes 
be helpful to visualize your dataset.


• One of the most commonly used visualization techniques 
is called principal component analysis (PCA).



Data visualization

• Consider the MNIST dataset of hand-written digits.


• Visualizing each individual example is easy, e.g.:


• But this doesn’t tell us a whole lot about the dataset as a 
whole, or how separable the classes are.



Data visualization

• Each MNIST image is 28x28 pixels => 784 dimensions.


• To show all examples in the original input space, we 
would need a 784-dimensional visualization.


• But humans struggle with perception beyond 3-D.


• How can we represent a collection of many high-
dimensional images in just 2-D or 3-D?



Data visualization

• We somehow have to condense the interesting 
information of a 784-dim vector into just 2-3 dimensions!


• Core question:


• How do we pick the dimensions — or more generally, 
directions — of data to present?



Data visualization

• Let’s give a naive try…


• For each image x(i) (where i=1, …, n):


• Retrieve the values of just the first two pixels, i.e., 
(x(i)1, x2(i)).


• Plot the point (x(i)1, x2(i)) in 2-D space.
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MNIST 2-D visualization: 
first two pixel values

• Let’s apply this procedure to 2500 images from the 
MNIST test set…



MNIST 2-D visualization: 
first two pixel values

• Let’s apply this procedure to 2500 images from the 
MNIST test set…

What happened?



MNIST 2-D visualization: 
first two pixel values

• The problem is that, for all n images in our dataset, the 
value of the first two pixels is 0!


• There was very little (actually, 0) variance across each of 
these two dimensions.



Variance
• Intuitively, the variance of a vector of n numbers is how 

“spread out” they are:
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Variance

• Note that the variance is independent of the mean!
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Variance

• From basic statistics:


• Mean of an n-dimensional vector: sum and divide by n: 

• Variance of an n-dimensional vector: the mean 
squared distance from the mean:

E(p) =
1

n

nX

i=1

pi
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Variance
• Alternatively, we can compute the variance in two steps:


• First subtract the mean from each element of p:


• Since the mean of p is 0, we can compute its variance 
as:

p̃ = p� E(p)
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MNIST 2-D visualization: two 
most highly-varying dimensions
• Let’s search for the two pixel dimensions along which the 

images vary the most.


• Selecting a particular pixel from each image x is 
equivalent to projecting each x onto a unit vector. 
 
 
where d is a vector of n-1 zeros and 1 one (whose 
location corresponds to the particular pixel location):
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Projection
• Recall that a projection of a vector v onto a direction (unit 

vector) d is given by p = vTd:


• The projection p is a scalar that measures the distance of 
v along d.

d
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Projection
• Recall that a (scalar) projection of a vector v onto a 

direction (unit vector) d is given by p = vTd:


• The scalar projection p measures the distance of v along 
d.
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MNIST 2-D visualization: two 
most highly-varying dimensions
• For each possible pixel dimension d, we can obtain the n-

vector of all scalar projections (over all n images) as:


• We can then calculate the variance of the scalar 
projections by calculating Var(p).


• By searching over all 784 possible dimensions, we can 
find the two dimensions along which variance is 
maximized.

p = X>d



MNIST 2-D visualization: two 
most highly-varying dimensions
• When we apply this to MNIST, we get:


• Pixel dimension of 1st-highest variance: (r,c) = (13,14)


• Pixel dimension of 2nd-highest variance: (r,c) =(14,14)



MNIST 2-D visualization: two 
most highly-varying dimensions
• Certainly much better!


• However, many of the values overlap each other due to 
saturation — in many images, these pixels’ values are 
maximized/minimized.



Beyond axis-aligned 
directions

• But why constrain ourselves to only axis-aligned unit 
vectors, i.e., vectors with m-1 zeros and 1 one?


• Consider the following dataset in which each image 
contains just 2 pixels.


• Along which direction d is variance maximized?
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Maximizing variance along 
any direction d 

• In general, given a dataset X of training examples, we 
want to find the direction d that maximizes Var(XTd).


• For simplicity, let’s assume that the mean of X, along 
each pixel dimension j, is 0, i.e.:


• (If this is not the case, then just subtract off the mean 
vector from each example x(i).)
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Maximizing variance along 
any direction d 

• Since X has zero mean (for each pixel dimension j), then 
XTd also has zero mean (for any d):
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of mean.



Maximizing variance along 
any direction d 

• Since X has zero mean (for each pixel dimension j), then 
XTd also has zero mean (for any d):

E
⇣
X>d

⌘
=

1

n

nX

i=1

x(i)>d

=
1

n

nX

i=1

mX

j=1

x(i)
j dj

=
1

n

mX

j=1

nX

i=1

x(i)
j dj

=
1

n

mX

j=1

dj

nX

i=1

x(i)
j

=
1

n

mX

j=1

dj0

= 0

by applying the definition 
of inner product.



Maximizing variance along 
any direction d 
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Maximizing variance along 
any direction d 

• Since X has zero mean (for each pixel dimension j), then 
XTd also has zero mean (for any d):
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Maximizing variance along 
any direction d 
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Maximizing variance along 
any direction d 

• Therefore, the variance of XTd (for any d) is just:


• We thus want to find the d that maximizes: 
 
 
 
subject to the constraint that d is a unit vector, i.e.:

1

n
(X>d)>(X>d)

d>d = 1

(X>d)>(X>d)



Maximizing variance along 
any direction d

• Since this is a constrained optimization problem, we can 
set up a Lagrangian function L(d, α):

L(d,↵) = (X>d)>(X>d)� ↵(d>d� 1)

= d>XX>d� ↵(d>d� 1)

@L

@d
= 2XX>d� 2↵d = 0

=) XX>d = ↵d

Objective Constraint
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Maximizing variance along 
any direction d

• Since this is a constrained optimization problem, we can 
set up a Lagrangian function L(d, α):

L(d,↵) = (X>d)>(X>d)� ↵(d>d� 1)

= d>XX>d� ↵(d>d� 1)
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• In other words, d is an eigenvector of XXT.


• Since we want to maximize the variance of the projections, 
we want the eigenvector with largest associated eigenvalue.



Eigenvector

• An eigenvector v of a (square) matrix A satisfies: 
 
 
for some scalar eigenvalue α.


• For an n x n matrix A, there are n eigenvectors v and 
associated eigenvalues α.


• Eigenvectors/eigenvalues can be computed (in O(n3) time) 
using many standard linear algebra libraries (e.g., numpy).

Av = ↵v



Positive semi-definite 
matrices

• Recall that the eigenvalues of every PSD matrix A are 
always non-negative.


• Since XXT is PSD (as shown previously in class), its 
eigenvalues are non-negative.



PCA

• The direction d along which the dataset X varies the most 
is the principal eigenvector of XXT, i.e., the eigenvector 
with largest associated eigenvalue.


• It can be shown that the second-most highly varying 
direction of X is the eigenvector with second-largest 
associated value, etc.



PCA
• Algorithm:


1. From design matrix X, compute the mean vector x:


3. Subtract x from each example x(i), and then form 
matrix X (same size as X), which should have a mean 
(over all n examples) of 0 along each dimension j.

x =
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—
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PCA
• Algorithm:


1. From design matrix X, compute the mean vector x:


3. Subtract x from each example x(i), and then form 
matrix X (same size as X), which should have a mean 
(over all n examples) of 0 along each dimension j.


4. Compute the eigenvectors & eigenvalues of XXT.


5. The kth principal component (PC) of X is the 
eigenvector v of XXT with the kth-largest eigenvalue.
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PCA on MNIST

For all classes



PCA on MNIST

For each class 
with its own color



Unsupervised learning
• PCA is an example of an unsupervised machine learning 

algorithm.


• Unsupervised — we never looked at the training labels!


• In some settings, the data might not even be labeled.


• Note that there are other visualization methods (e.g., 
Linear Discriminant Analysis (LDA)) that are supervised:


• Project data onto directions that best linearly separate 
the data classes.
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