CS 453X: Class 16

Jacob Whitehill

Data visualization

Data visualization

e Prior to choosing a particular ML model, it can sometimes
be helpful to visualize your dataset.

e One of the most commonly used visualization techniques
is called principal component analysis (PCA).

Data visualization

e Consider the MNIST dataset of hand-written digits.

* Visualizing each individual example is easy, e.g.:

e But this doesn’t tell us a whole lot about the dataset as a
whole, or how separable the classes are.

Data visualization

e Each MNIST image is 28x28 pixels => 784 dimensions.

e Jo show all examples in the original input space, we
would need a 784-dimensional visualization.

e But humans struggle with perception beyond 3-D.

e How can we represent a collection of many high-
dimensional images in just 2-D or 3-D?

Data visualization

We somehow have to condense the interesting
information of a 784-dim vector into just 2-3 dimensions!

Core question:

e How do we pick the dimensions — or more generally,
directions — of data to present?

Data visualization

e | et’s give a naive try...

* For each image x¥ (where i=1, ..., n):

Data visualization

e | et’s give a naive try...
* For each image x¥ (where i=1, ..., n):

e Retrieve the values of just the first two pixels, i.e.,
(X(’)~|, X2(’))_

00 (1,00 (@0 .. (27,0
0,1 ..

0,2)

(0,27) (27,27)

Data visualization

e | et’s give a naive try...
* For each image x¥ (where i=1, ..., n):

e Retrieve the values of just the first two pixels, i.e.,
(X(’)~|, X2(’))_

* Plot the point (x4, x20) in 2-D space.

MNIST 2-D visualization:
first two pixel values

e | et’s apply this procedure to 2500 images from the

MNIST test set...

MNIST 2-D visualization:
first two pixel values

e | et’s apply this procedure to 2500 images from the
MNIST test set...

MNIST 2-D visualization:
first two pixel values

* The problem is that, for all n images in our dataset, the
value of the first two pixels is 0!

* There was very little (actually, O) variance across each of
these two dimensions.

Variance

* |ntuitively, the variance of a vector of n numbers is how
“spread out” they are:

-30 —20 —10 0 10 20 30

Variance

 Note that the variance is independent of the mean!

-30 —20 —10 0 10 20 30

Variance

e From basic statistics:

* Mean of an n-dimensional vector: sum and divide by n:

E(p) = %sz
i=1

Variance

e From basic statistics:

* Mean of an n-dimensional vector: sum and divide by n:

1 mn
E(p) = n Z Pi
1=1
e Variance of an n-dimensional vector: the mean
squared distance from the mean:

V(p) = %Z(Pi_E(P))Q

Variance

e Alternatively, we can compute the variance in two steps:

* First subtract the mean from each element of p:
e

p=p—E(p)

Variance

e Alternatively, we can compute the variance in two steps:

* First subtract the mean from each element of p:
e

p=p—E(p)

1
e Since the mean of p is 0, we can compute its variance

as; V) = -3 (i E()’

Variance

e Alternatively, we can compute the variance in two steps:

* First subtract the mean from each element of p:
e

p=p—E(p)

1
e Since the mean of p is 0, we can compute its variance
. 3 1 —))
as. Vip) = > (P — E(p))°
1=1

- 1 - —~ . 2
— E;(pz O)

Variance

e Alternatively, we can compute the variance in two steps:

* First subtract the mean from each element of p:
e

p=p—E(p)

1
e Since the mean of p is 0, we can compute its variance
. 3 1 —))
as. Vip) = > (P — E(p))°
1=1

- 1 - —~ . 2
— E;(pz O)

_ 1 - ”’_2
— E;(pz)

Variance

e Alternatively, we can compute the variance in two steps:

* First subtract the mean from each element of p:
e

~

p=p—E(p)

1
e Since the mean of p is 0, we can compute its variance

as; V) = -3 (i E()’
— > -0y
I = o 22
= EZ(Pz‘)

MNIST 2-D visualization: two
most highly-varying dimensions

Let’s search for the two pixel dimensions along which the
images vary the most.

Selecting a particular pixel from each image x is
equivalent to projecting each x onto a unit vector.

x'd
where d is a vector of n-1 zeros and 1 one (whose
location corresponds to the particular pixel location):

C 0

Projection

* Recall that a projection of a vector v onto a direction (unit
vector) d is given by p = v'd:

Z

Projection

Recall that a (scalar) projection of a vector v onto a
direction (unit vector) d is given by p = v'd:

The scalar projection p measures the distance of v along
d.

MNIST 2-D visualization: two
most highly-varying dimensions

* For each possible pixel dimension d, we can obtain the n-
vector of all scalar projections (over all n images) as:

p=X'd

e \We can then calculate the variance of the scalar
projections by calculating Var(p).

e By searching over all 784 possible dimensions, we can
find the two dimensions along which variance is
maximized.

MNIST 2-D visualization: two
most highly-varying dimensions

e \When we apply this to MNIST, we get:

* Pixel dimension of 1st-highest variance: (r,c) = (13,14)

e Pixel dimension of 2nd-highest variance: (r,c) =(14,14)

044 *-.

0.2 1

0.0 A '

—024 |

_0_4 -

-0.4 —0.2 0.0 0.2 0.4

MNIST 2-D visualization: two
most highly-varying dimensions

Certainly much better!

However, many of the values overlap each other due to
saturation — in many images, these pixels’ values are
maximized/minimized.

044 *-.

0.2 1

0.0 A '

—024 |

_0_4 -

-0.4 —0.2 0.0 0.2 0.4

Beyond axis-aligned
directions

 But why constrain ourselves to only axis-aligned unit
vectors, i.e., vectors with m-1 zeros and 1 one”?

e (Consider the following dataset in which each image
contains just 2 pixels.

* Along which direction d is variance maximized?

Beyond axis-aligned
directions

 But why constrain ourselves to only axis-aligned unit
vectors, i.e., vectors with m-1 zeros and 1 one”?

e (Consider the following dataset in which each image
contains just 2 pixels.

* Along which direction d is variance maximized?

Maximizing variance along
any direction d

* In general, given a dataset X of training examples, we
want to find the direction d that maximizes Var(XTd).

 For simplicity, let’s assume that the mean of X, along
each pixel dimension J, is 0O, I.e.:

1 ~—
5;:5(5.):0

e (If this is not the case, then just subtract off the mean
vector from each example x(.)

Maximizing variance along
any direction d

* Since X has zero mean (for each pixel dimension j), then
XTd also has zero mean (for any d):

E(XTd> — lZx@')Td
n
1=1

Maximizing variance along
any direction d

* Since X has zero mean (for each pixel dimension j), then
XTd also has zero mean (for any d):

E(XTd> — lZx@')Td
n
1=1

= gzzx§)dj

i=1 j=1

Maximizing variance along
any direction d

* Since X has zero mean (for each pixel dimension j), then
XTd also has zero mean (for any d):

E(XTd> _ %ix(i)Td
=1
= liixy)da‘
(L

- > x4,
j=1 i=1

Maximizing variance along
any direction d

* Since X has zero mean (for each pixel dimension j), then
XTd also has zero mean (for any d):

E(XTd> — lZx@')Td
n
1=1

= gzzx§)dj

i=1 j=1

- > x4,

j=1i=1

=~ d;jy x)
j=1 =1

Maximizing variance along
any direction d

* Since X has zero mean (for each pixel dimension j), then
XTd also has zero mean (for any d):

E(XTd> — lZx@')Td
n
1=1

= gzzx§)dj

i=1 j=1

- > x4,
j=1 i=1

=~ d;j) x)
j=1 =1

1 m
= ﬁgdjo

Maximizing variance along
any direction d

* Since X has zero mean (for each pixel dimension j), then
XTd also has zero mean (for any d):

E(XTd> _ %ix(i)Td
=1
= EZZXE-%

1=1 5=1

ZZX()d

31—1

Maximizing variance along
any direction d

 Therefore, the variance of X'd (for any d) is just:

l(XTd)T(XTd)

n

e We thus want to find the d that maximizes:
(X'd)"(X'd)
subject to the constraint that d is a unit vector, i.e.:

d'd=1

Maximizing variance along
any direction d

e Since this is a constrained optimization problem, we can
set up a Lagrangian function L(d, a):

Ld,a) = X'd)'X'd)—a(d'd-1)

Maximizing variance along
any direction d

e Since this is a constrained optimization problem, we can
set up a Lagrangian function L(d, a):

Ld,a) = (X'd)'(X'd)—a(d'd-1)
= d'XX'd—a(d'd-1)

Maximizing variance along
any direction d

e Since this is a constrained optimization problem, we can
set up a Lagrangian function L(d, a):

Ld,a) = (X'd)'(X'd)—a(d'd-1)
= d'XX'd—a(d'd-1)
OL

—— = 92XX'd -2ad =
7d o 0

Maximizing variance along
any direction d

e Since this is a constrained optimization problem, we can
set up a Lagrangian function L(d, a):

Ld,a) = X'd)'X'd)—a(d'd-1)
= d'XX'd—a(d'd-1)
OL
— = 2XX'd-2ad =
7d o 0

— XX'd = aod

Maximizing variance along
any direction d

e Since this is a constrained optimization problem, we can
set up a Lagrangian function L(d, a):

Ld,a) = X'd)'X'd)—a(d'd-1)
= d'XX'd—a(d'd-1)
OL
= 2XX'd=2ad =0
od “
— XX'd = ad

* In other words, d is an eigenvector of XXT.

e Since we want to maximize the variance of the projections,
we want the eigenvector with largest associated eigenvalue.

Eigenvector

* An eigenvector v of a (square) matrix A satisfies:

Av = av

for some scalar eigenvalue a.

e Forann x n matrix A, there are n eigenvectors v and
associated eigenvalues a.

* Eigenvectors/eigenvalues can be computed (in O(n3) time)
using many standard linear algebra libraries (e.g., numpy).

Positive semi-definite
matrices

* Recall that the eigenvalues of every PSD matrix A are
always non-negative.

e Since XXT is PSD (as shown previously in class), its
eigenvalues are non-negative.

PCA

* The direction d along which the dataset X varies the most

IS the principal eigenvector of XXT, i.e., the eigenvector
with largest associated eigenvalue.

* |t can be shown that the second-most highly varying

direction of X is the eigenvector with second-largest
associated value, etc.

PCA

e Algorithm:

1. From design matrix X, compute the mean vector X:

__ 1o

3. Subtract X from each example x%, and then form
matrix X (same size as X), which should have a mean
(over all n examples) of 0 along each dimension .

N N -
X=| xM-% ... x"-x)

PCA

e Algorithm:

1.

From design matrix X, compute the mean vector X:

__ 1o

Subtract X from each example x?, and then form
matrix X (same size as X), which should have a mean
(over all n examples) of 0 along each dimension .

Compute the eigenvectors & eigenvalues of XXT.

The ki principal component (PC) of X is the
eigenvector v of XXT with the kth-largest eigenvalue.

PCA on MNIST

For all classes

PCA on MNIST

- '.
s wuf S o ¢ .
o Sep
.“ So o® .'l %‘ -J
-’ > ovoo‘ °® c'.. -ﬂ
‘e £2° 8 0% e sp20
(] L] ° °e o -'~“9¢u‘o. -OJ% .‘oo
[4 »
. ”o ooo ”o . O'onooaooooo QMQM oo" o’-m W#fc“o“c*-\ h
° H < K * o @ ”
o °* QOOMQOMQ oﬁ’uo \0»01 fou O»-Mﬁnaef-; ’ ¢
® . e o *, 3 ey 7 .f“ o&. ‘e * e -...“” . S
a . $ o, .ok L) ? o® o %0 e, -NJQO s -o-w ¢
. L4 o “30 °,0¢ f- $ s X O \ov)
o o °p oo A o o VIES Lo s R0 Q% Oclﬁro
° 0 2°% 3 LA o %
y ORI - D ORE R X L A ¢ ..lw.m s
g o ‘ a 2, a .. L
¢ oo\'.buooo.‘h QV w.m & Qo Unc ’, on-c-o -ninﬁcnfnno---o- o
. o g°° 8 Se. el o-\ ou‘o ¥ v-cc.
ﬁoo . 0000\‘00 F »0)0 S o i, . TR @0 o Oc-oio R
. OOQJ ’QVOQO 'l L Wa') o-o-«ono-l
.) ° QIQM Scoo’VQ *oo] * % %% co-o
¢ “0" oooo Vo © 0o” o ooo o -nuo-u £l -n-o-
. e e gte ® an ') h %%, oy . % O °
o.o oocoooo oom ~ &, oscou oﬁw“oo!..w -0 o oo . oc Oﬂ-u-
a . L]
* q o0 o oo.ooo »ouoa . 4 83 o
® ° e, .° ooo ‘ﬂro e® L4 ¢ .
LIPS L f . ¢00000.0 1 o a
%o a o w‘ * o o . @
. . . Plge . L3
] QQQ * . .lo'. s o %% o o ®
. A L 20 LAa) S e ° .
¢ e o 8 8o0,0 ,° .
o 0 °, @ . 0o’ s %
° . ocoooﬁoo o ¢ . .
L]) Ce El
ﬁoo ot “oo‘ " o.ov
° o o * N, °
° o o0 o ®° . B
8 ee® o * 0 o .
. ® uo 1 ® 4 ¢
. . o
L J oooooo
o o* %0 " .
L] L] .. o® .C
¢ efe®ee § .
L]) e o °
® 0
ic - o
LY » L
RO
., ®Y .
¢ °
. °, *
°
°
.
I I I 1 1
< N o oN <

Unsupervised learning

e PCA is an example of an unsupervised machine learning
algorithm.

* Unsupervised — we never looked at the training labels!

e |n some settings, the data might not even be labeled.

Unsupervised learning

e PCA is an example of an unsupervised machine learning
algorithm.

* Unsupervised — we never looked at the training labels!
e |n some settings, the data might not even be labeled.

 Note that there are other visualization methods (e.g.,
Linear Discriminant Analysis (LDA)) that are supervised:

e Project data onto directions that best linearly separate
the data classes.

