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Data visualization



Data visualization

e Prior to choosing a particular ML model, it can sometimes
be helpful to visualize your dataset.

e One of the most commonly used visualization techniques
is called principal component analysis (PCA).



Data visualization

e Consider the MNIST dataset of hand-written digits.

* Visualizing each individual example is easy, e.g.:

e But this doesn’t tell us a whole lot about the dataset as a
whole, or how separable the classes are.




Data visualization

e Each MNIST image is 28x28 pixels => 784 dimensions.

e Jo show all examples in the original input space, we
would need a 784-dimensional visualization.

e But humans struggle with perception beyond 3-D.

e How can we represent a collection of many high-
dimensional images in just 2-D or 3-D?



Data visualization

We somehow have to condense the interesting
information of a 784-dim vector into just 2-3 dimensions!

Core question:

e How do we pick the dimensions — or more generally,
directions — of data to present?



Data visualization

e | et’s give a naive try...

* For each image x¥ (where i=1, ..., n):



Data visualization

e | et’s give a naive try...
* For each image x¥ (where i=1, ..., n):

e Retrieve the values of just the first two pixels, i.e.,
(X(’)~|, X2(’))_
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Data visualization

e | et’s give a naive try...
* For each image x¥ (where i=1, ..., n):

e Retrieve the values of just the first two pixels, i.e.,
(X(’)~|, X2(’))_

* Plot the point (x4, x20) in 2-D space.



MNIST 2-D visualization:
first two pixel values

e | et’s apply this procedure to 2500 images from the

MNIST test set...



MNIST 2-D visualization:
first two pixel values

e | et’s apply this procedure to 2500 images from the
MNIST test set...




MNIST 2-D visualization:
first two pixel values

* The problem is that, for all n images in our dataset, the
value of the first two pixels is 0!

* There was very little (actually, O) variance across each of
these two dimensions.



Variance

* |ntuitively, the variance of a vector of n numbers is how
“spread out” they are:
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Variance

 Note that the variance is independent of the mean!
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Variance

e From basic statistics:

* Mean of an n-dimensional vector: sum and divide by n:

E(p) = %sz
i=1



Variance

e From basic statistics:

* Mean of an n-dimensional vector: sum and divide by n:

1 mn
E(p) = n Z Pi
1=1
e Variance of an n-dimensional vector: the mean
squared distance from the mean:

V(p) = %Z(Pi_E(P))Q



Variance

e Alternatively, we can compute the variance in two steps:

* First subtract the mean from each element of p:
e

p=p—E(p)
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e
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1
e Since the mean of p is 0, we can compute its variance
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Variance

e Alternatively, we can compute the variance in two steps:

* First subtract the mean from each element of p:
e

p=p—E(p)

1
e Since the mean of p is 0, we can compute its variance
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Variance

e Alternatively, we can compute the variance in two steps:

* First subtract the mean from each element of p:
e

p=p—E(p)

1
e Since the mean of p is 0, we can compute its variance
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Variance

e Alternatively, we can compute the variance in two steps:

* First subtract the mean from each element of p:
e

~

p=p—E(p)

1
e Since the mean of p is 0, we can compute its variance

as; V) = -3 (i E()’
— > -0y
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MNIST 2-D visualization: two
most highly-varying dimensions

Let’s search for the two pixel dimensions along which the
images vary the most.

Selecting a particular pixel from each image x is
equivalent to projecting each x onto a unit vector.

x'd
where d is a vector of n-1 zeros and 1 one (whose
location corresponds to the particular pixel location):

C 0




Projection

* Recall that a projection of a vector v onto a direction (unit
vector) d is given by p = v'd:

Z



Projection

Recall that a (scalar) projection of a vector v onto a
direction (unit vector) d is given by p = v'd:

The scalar projection p measures the distance of v along
d.



MNIST 2-D visualization: two
most highly-varying dimensions

* For each possible pixel dimension d, we can obtain the n-
vector of all scalar projections (over all n images) as:

p=X'd

e \We can then calculate the variance of the scalar
projections by calculating Var(p).

e By searching over all 784 possible dimensions, we can
find the two dimensions along which variance is
maximized.



MNIST 2-D visualization: two
most highly-varying dimensions

e \When we apply this to MNIST, we get:

* Pixel dimension of 1st-highest variance: (r,c) = (13,14)

e Pixel dimension of 2nd-highest variance: (r,c) =(14,14)
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MNIST 2-D visualization: two
most highly-varying dimensions

Certainly much better!

However, many of the values overlap each other due to
saturation — in many images, these pixels’ values are
maximized/minimized.
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Beyond axis-aligned
directions

 But why constrain ourselves to only axis-aligned unit
vectors, i.e., vectors with m-1 zeros and 1 one”?

e (Consider the following dataset in which each image
contains just 2 pixels.

* Along which direction d is variance maximized?




Beyond axis-aligned
directions

 But why constrain ourselves to only axis-aligned unit
vectors, i.e., vectors with m-1 zeros and 1 one”?

e (Consider the following dataset in which each image
contains just 2 pixels.

* Along which direction d is variance maximized?




Maximizing variance along
any direction d

* In general, given a dataset X of training examples, we
want to find the direction d that maximizes Var(XTd).

 For simplicity, let’s assume that the mean of X, along
each pixel dimension J, is 0O, I.e.:

1 ~—
5;:5(5.):0

e (If this is not the case, then just subtract off the mean
vector from each example x(.)



Maximizing variance along
any direction d

* Since X has zero mean (for each pixel dimension j), then
XTd also has zero mean (for any d):

E(XTd> — lZx@')Td
n
1=1
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Maximizing variance along
any direction d

* Since X has zero mean (for each pixel dimension j), then
XTd also has zero mean (for any d):
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n
1=1
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Maximizing variance along
any direction d

* Since X has zero mean (for each pixel dimension j), then
XTd also has zero mean (for any d):

E(XTd> _ %ix(i)Td
=1
= EZZXE-%

1=1 5=1

ZZX()d
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Maximizing variance along
any direction d

 Therefore, the variance of X'd (for any d) is just:

l(XTd)T(XTd)

n

e We thus want to find the d that maximizes:
(X'd)"(X'd)
subject to the constraint that d is a unit vector, i.e.:

d'd=1



Maximizing variance along
any direction d

e Since this is a constrained optimization problem, we can
set up a Lagrangian function L(d, a):

Ld,a) = X'd)'X'd)—a(d'd-1)



Maximizing variance along
any direction d

e Since this is a constrained optimization problem, we can
set up a Lagrangian function L(d, a):

Ld,a) = (X'd)'(X'd)—a(d'd-1)
= d'XX'd—a(d'd-1)
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Maximizing variance along
any direction d

e Since this is a constrained optimization problem, we can
set up a Lagrangian function L(d, a):

Ld,a) = X'd)'X'd)—a(d'd-1)
= d'XX'd—a(d'd-1)
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Maximizing variance along
any direction d

e Since this is a constrained optimization problem, we can
set up a Lagrangian function L(d, a):

Ld,a) = X'd)'X'd)—a(d'd-1)
= d'XX'd—a(d'd-1)
OL
= 2XX'd=2ad =0
od “
— XX'd = ad

* In other words, d is an eigenvector of XXT.

e Since we want to maximize the variance of the projections,
we want the eigenvector with largest associated eigenvalue.



Eigenvector

* An eigenvector v of a (square) matrix A satisfies:

Av = av

for some scalar eigenvalue a.

e Forann x n matrix A, there are n eigenvectors v and
associated eigenvalues a.

* Eigenvectors/eigenvalues can be computed (in O(n3) time)
using many standard linear algebra libraries (e.g., numpy).



Positive semi-definite
matrices

* Recall that the eigenvalues of every PSD matrix A are
always non-negative.

e Since XXT is PSD (as shown previously in class), its
eigenvalues are non-negative.



PCA

* The direction d along which the dataset X varies the most

IS the principal eigenvector of XXT, i.e., the eigenvector
with largest associated eigenvalue.

* |t can be shown that the second-most highly varying

direction of X is the eigenvector with second-largest
associated value, etc.



PCA

e Algorithm:

1. From design matrix X, compute the mean vector X:

__ 1o

3. Subtract X from each example x%, and then form
matrix X (same size as X), which should have a mean
(over all n examples) of 0 along each dimension .

N N -
X=| xM-% ... x"-x)




PCA

e Algorithm:

1.

From design matrix X, compute the mean vector X:

__ 1o

Subtract X from each example x?, and then form
matrix X (same size as X), which should have a mean
(over all n examples) of 0 along each dimension .

Compute the eigenvectors & eigenvalues of XXT.

The ki principal component (PC) of X is the
eigenvector v of XXT with the kth-largest eigenvalue.



PCA on MNIST

For all classes




PCA on MNIST
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Unsupervised learning

e PCA is an example of an unsupervised machine learning
algorithm.

* Unsupervised — we never looked at the training labels!

e |n some settings, the data might not even be labeled.



Unsupervised learning

e PCA is an example of an unsupervised machine learning
algorithm.

* Unsupervised — we never looked at the training labels!
e |n some settings, the data might not even be labeled.

 Note that there are other visualization methods (e.g.,
Linear Discriminant Analysis (LDA)) that are supervised:

e Project data onto directions that best linearly separate
the data classes.



