
CS 453X: Class 15
Jacob Whitehill

Exercise

Exercise

• For a soft-margin SVM with cost C > 0, where the SVM is
trained on linearly separable data with a linear kernel:

• Minimize:

• Subject to:

• Can it ever occur that the optimal hyperplane will not
perfectly separate the data?

y(i)
⇣
x(i)>w + b

⌘
� 1� ⇠(i)

1

2
w>w + C

nX

i=1

⇠(i)

Gaussian RBF SVM

RBF SVM at test time
• An RBF-SVM’s output on some example x will be:

• where:
k(x(i),x(j)) = exp

✓
��

⇣
x(i) � x(j)

⌘2
◆

x - x(i)

g(x) = �(x)>w + b

=
nX

i=1

↵(i)y(i)�(x)>�(x(i)) + b

=
nX

i=1

↵(i)y(i)k(x,x(i)) + b

RBF SVM at test time
• An RBF-SVM’s output on some example x will be:

• Procedure:

• Compute the kernel response of the example x with
each of our support vectors x(i).

• Multiply the kernel response by i’s label y(i) and the dual
variable α(i).

• Add b.

g(x) = �(x)>w + b

=
nX

i=1

↵(i)y(i)�(x)>�(x(i)) + b

=
nX

i=1

↵(i)y(i)k(x,x(i)) + b

RBF SVM at test time
• An RBF-SVM’s output on some example x will be:

• Procedure:

• Compute the kernel response of the example x with
each of our support vectors x(i).

• Multiply the kernel response by i’s label y(i) and the dual
variable α(i).

• Add b.

g(x) = �(x)>w + b

=
nX

i=1

↵(i)y(i)�(x)>�(x(i)) + b

=
nX

i=1

↵(i)y(i)k(x,x(i)) + b

RBF SVM at test time
• An RBF-SVM’s output on some example x will be:

• Procedure:

• Compute the kernel response of the example x with
each of our support vectors x(i).

• Multiply the kernel response by i’s label y(i) and the dual
variable α(i).

• Sum across all support vectors.

g(x) = �(x)>w + b

=
nX

i=1

↵(i)y(i)�(x)>�(x(i)) + b

=
nX

i=1

↵(i)y(i)k(x,x(i)) + b

Example

x(1)

x

k(x, x(1))

↵(1)y(1)k(x,x(1))

The value of k can be thought of
as an inverse distance.

Example

x(1)

x

k(x, x(1))

k(x, x(2)) ↵(2)y(2)k(x,x(2))x(2)

Example

x(1)

x(2)

x(3)

x

k(x, x(1))

k(x, x(2))
k(x, x(3))

↵(3)y(3)k(x,x(3))

Example

…

x(1)

x(2)

x(3)

x

k(x, x(1))

k(x, x(2))
k(x, x(3))

nX

i=1

↵(i)y(i)k(x,x(i)) + b

Example

nX

i=1

↵(i)y(i)k(x,x(i)) + b

This graph shows, for each
possible x, the value of:

for 𝛾 = 101

Example

nX

i=1

↵(i)y(i)k(x,x(i)) + b

This graph shows, for each
possible x, the value of:

for 𝛾 = 101.25

Example

nX

i=1

↵(i)y(i)k(x,x(i)) + b

This graph shows, for each
possible x, the value of:

for 𝛾 = 101.5

As 𝛾 increases, the effect of
more distance support vectors

on g(x) decreases.

Example

nX

i=1

↵(i)y(i)k(x,x(i)) + b

This graph shows, for each
possible x, the value of:

for 𝛾 = 102

For very large 𝛾, only the
nearest neighbor to x will

impact g(x).

Nearest neighbors

Nearest neighbor
• Nearest neighbor is both a classification and a regression

method.

• It is one of the simplest ML models.

• Algorithm:

• To predict the label of a new data point x, find the data
point x(i*) in the training set closest to x:

• Return example i*’s associated label y(i*).

argmin
i

|x(i) � x|

k nearest neighbors

• Instead of examining just the single data point closest to
x, we can look at the k neighbors closest to x.

• To predict the label of x, we can either vote (for
classification) or compute the average (for regression) of
the k neighbors’ labels.

k nearest neighbors

• In sklearn, use either:

• sklearn.neighbors.KNeighborsClassifier(n_neighbors)

• sklearn.neighbors.KNeighborsRegressor(n_neighbors)

k nearest neighbors
• While very simple, k nearest neighbors (kNN) has three

significant drawbacks:

1. The machine must always store the entire training set
to make decisions (high storage costs).

2. The machine can be slow since the distance to every
training example must be computed.

3. For high-dimensional inputs, many training examples
are needed to “fill” the space.

argmin
i

|x(i) � x|

k nearest neighbors
• While very simple, k nearest neighbors (kNN) has three

significant drawbacks:

1. The machine must always store the entire training set
to make decisions (high storage costs).

2. The machine can be slow since the distance to every
training example must be computed.

3. For high-dimensional inputs, many training examples
are needed to “fill” the space.

argmin
i

|x(i) � x|

k nearest neighbors
• While very simple, k nearest neighbors (kNN) has three

significant drawbacks:

1. The machine must always store the entire training set
to make decisions (high storage costs).

2. The machine can be slow since the distance to every
training example must be computed.

3. For high-dimensional inputs, many training examples
are needed to “fill” the space.
• There is substantial research on approximate

nearest neighbors — with high probability, find a
neighbor very close to x.

k nearest neighbors
• While very simple, k nearest neighbors (kNN) has three

significant drawbacks:

1. The machine must always store the entire training set
to make decisions (high storage costs).

2. The machine can be slow since the distance to every
training example must be computed.

3. For high-dimensional inputs, many training examples
are needed to “fill” the space.
• Note that RBF-SVMs are generally faster since only

the support vectors need to be stored & compared.

k nearest neighbors
• While very simple, k nearest neighbors (kNN) has three

significant drawbacks:

1. The machine must always store the entire training set
to make decisions (high storage costs).

2. The machine can be slow since the distance to every
training example must be computed.

3. For high-dimensional inputs, many training examples
are needed to “fill” the space.

Curse of dimensionality

• Suppose we want to have at least 10 training examples
along each dimension of our input space.

• 1 dimensions ==> need 10 examples

• 2 dimensions ==> need 102 examples

• …

• d dimensions ==> need 10d examples

• Without good “coverage” of the input space, the kNN
machine’s predictions may be very inaccurate.

Curse of dimensionality

• Suppose we want to have at least 10 training examples
along each dimension of our input space.

• 1 dimensions ==> need 10 examples

• 2 dimensions ==> need 102 examples

• …

• d dimensions ==> need 10d examples

• Without good “coverage” of the input space, the kNN
machine’s predictions may be very inaccurate.

Curse of dimensionality

• Suppose we want to have at least 10 training examples
along each dimension of our input space.

• 1 dimensions ==> need 10 examples

• 2 dimensions ==> need 102 examples

• …

• d dimensions ==> need 10d examples

• Without good “coverage” of the input space, the kNN
machine’s predictions may be very inaccurate.

Categorical variables

Categorical variables

• In many data-mining and machine learning contexts, the
variables are categorical rather than numerical.

• Example: https://www.kaggle.com/c/house-prices-
advanced-regression-techniques/data

• A common strategy is to convert them to dummy
variables using a 1-hot encoding.

https://www.kaggle.com/c/house-prices-advanced-regression-techniques/data
https://www.kaggle.com/c/house-prices-advanced-regression-techniques/data

