CS 453X: Class 15

Jacob Whitehill

Exercise

Exercise

- For a soft-margin SVM with cost C > 0, where the SVM is trained on *linearly separable* data with a linear kernel:

 - $\begin{array}{ll} \bullet & \text{Minimize:} & \frac{1}{2}\mathbf{w}^{\top}\mathbf{w} + C\sum_{i=1}^{n}\xi^{(i)} \\ \bullet & \text{Subject to:} & y^{(i)}\left(\mathbf{x}^{(i)}^{\top}\mathbf{w} + b\right) \geq 1 \xi^{(i)} \end{array}$
 - Can it ever occur that the optimal hyperplane will not perfectly separate the data?

Gaussian RBF SVM

An RBF-SVM's output on some example x will be:

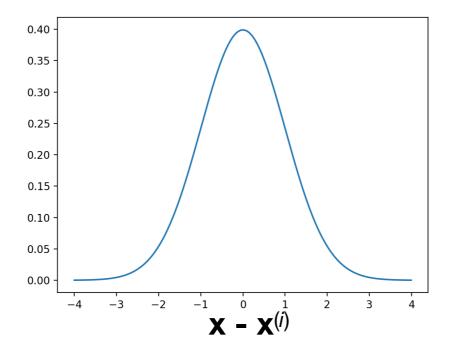
$$g(\mathbf{x}) = \phi(\mathbf{x})^{\top} \mathbf{w} + b$$

$$= \sum_{i=1}^{n} \alpha^{(i)} y^{(i)} \phi(\mathbf{x})^{\top} \phi(\mathbf{x}^{(i)}) + b$$

$$= \sum_{i=1}^{n} \alpha^{(i)} y^{(i)} k(\mathbf{x}, \mathbf{x}^{(i)}) + b$$

where:

$$k(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \exp\left(-\gamma \left(\mathbf{x}^{(i)} - \mathbf{x}^{(j)}\right)^2\right)$$



An RBF-SVM's output on some example x will be:

$$g(\mathbf{x}) = \phi(\mathbf{x})^{\top} \mathbf{w} + b$$

$$= \sum_{i=1}^{n} \alpha^{(i)} y^{(i)} \phi(\mathbf{x})^{\top} \phi(\mathbf{x}^{(i)}) + b$$

$$= \sum_{i=1}^{n} \alpha^{(i)} y^{(i)} k(\mathbf{x}, \mathbf{x}^{(i)}) + b$$

- Procedure:
 - Compute the kernel response of the example x with each of our support vectors x⁽ⁱ⁾.

An RBF-SVM's output on some example x will be:

$$g(\mathbf{x}) = \phi(\mathbf{x})^{\top} \mathbf{w} + b$$

$$= \sum_{i=1}^{n} \alpha^{(i)} y^{(i)} \phi(\mathbf{x})^{\top} \phi(\mathbf{x}^{(i)}) + b$$

$$= \sum_{i=1}^{n} \alpha^{(i)} y^{(i)} k(\mathbf{x}, \mathbf{x}^{(i)}) + b$$

- Procedure:
 - Compute the kernel response of the example x with each of our support vectors x⁽ⁱ⁾.
 - Multiply the kernel response by i's label $y^{(i)}$ and the dual variable $a^{(i)}$.

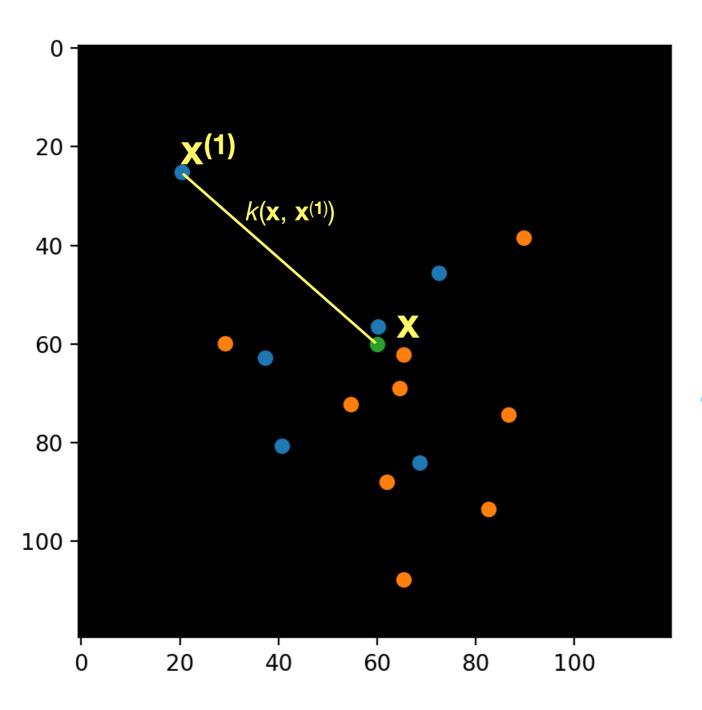
An RBF-SVM's output on some example x will be:

$$g(\mathbf{x}) = \phi(\mathbf{x})^{\top} \mathbf{w} + b$$

$$= \sum_{i=1}^{n} \alpha^{(i)} y^{(i)} \phi(\mathbf{x})^{\top} \phi(\mathbf{x}^{(i)}) + b$$

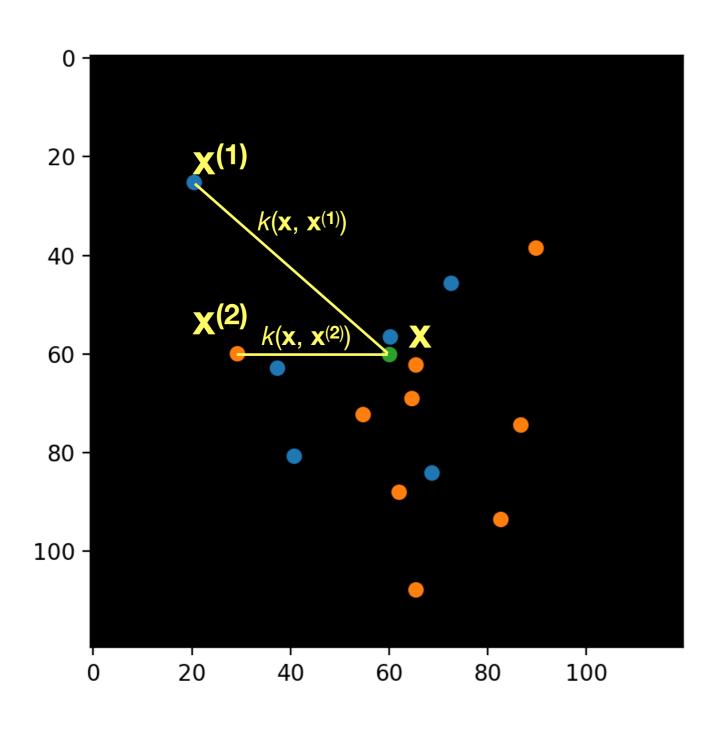
$$= \sum_{i=1}^{n} \alpha^{(i)} y^{(i)} k(\mathbf{x}, \mathbf{x}^{(i)}) + b$$

- Procedure:
 - Compute the kernel response of the example x with each of our support vectors x⁽ⁱ⁾.
 - Multiply the kernel response by *i*'s label $y^{(i)}$ and the dual variable $a^{(i)}$.
 - Sum across all support vectors.

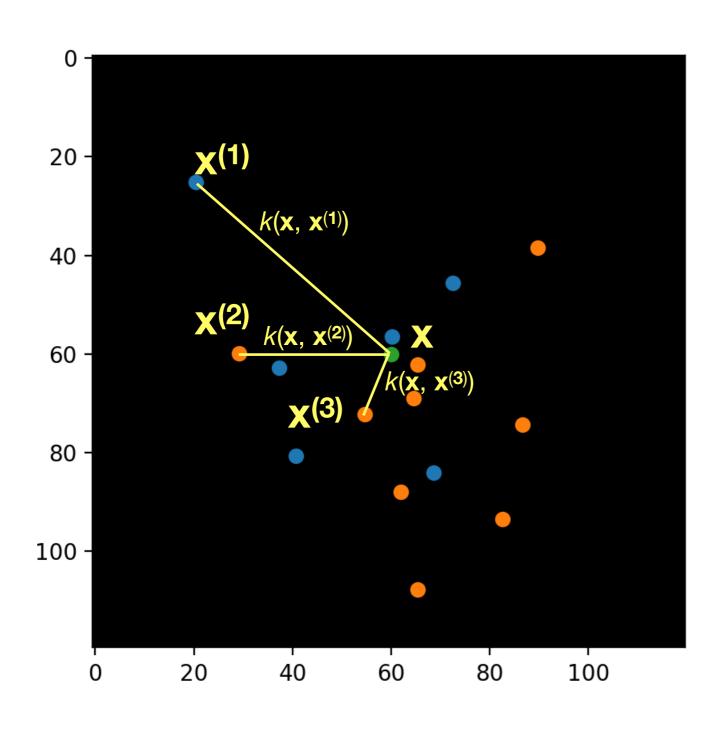


$$\alpha^{(1)}y^{(1)}k(\mathbf{x},\mathbf{x}^{(1)})$$

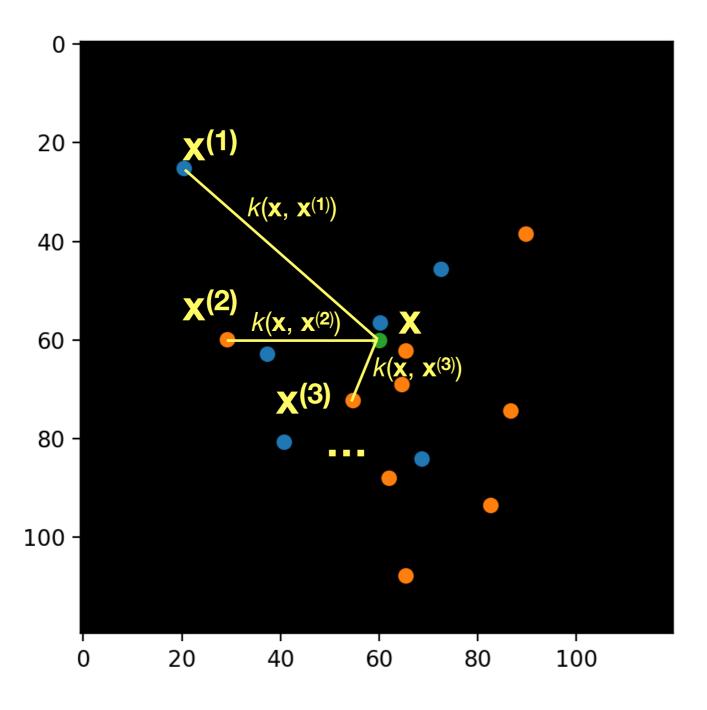
The value of *k* can be thought of as an inverse distance.



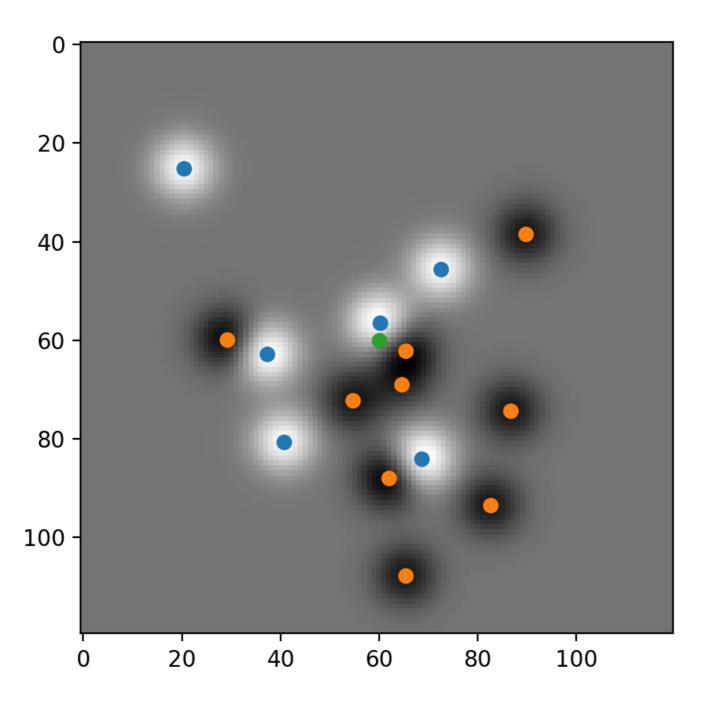
$$\alpha^{(2)}y^{(2)}k(\mathbf{x},\mathbf{x}^{(2)})$$



$$\alpha^{(3)}y^{(3)}k(\mathbf{x},\mathbf{x}^{(3)})$$



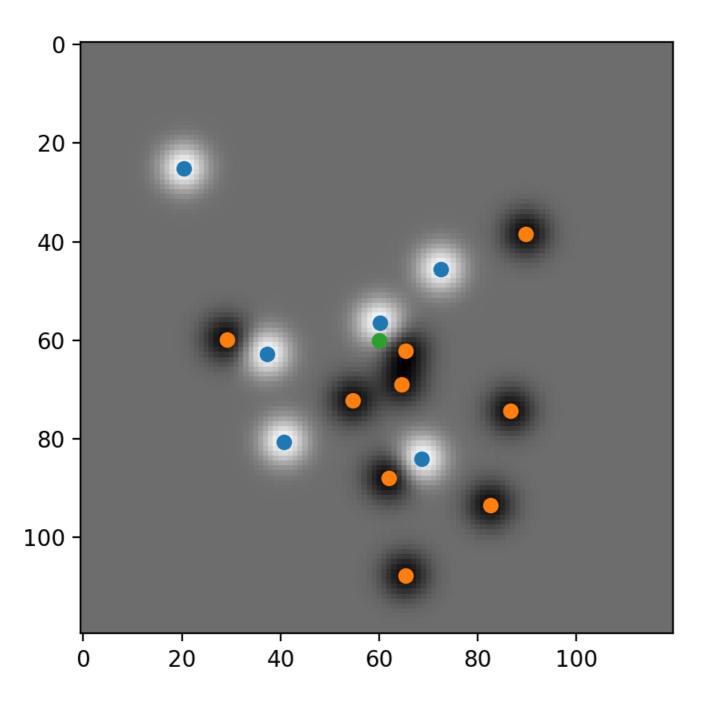
$$\sum_{i=1}^{n} \alpha^{(i)} y^{(i)} k(\mathbf{x}, \mathbf{x}^{(i)}) + b$$



This graph shows, for each possible x, the value of:

$$\sum_{i=1}^{n} \alpha^{(i)} y^{(i)} k(\mathbf{x}, \mathbf{x}^{(i)}) + b$$

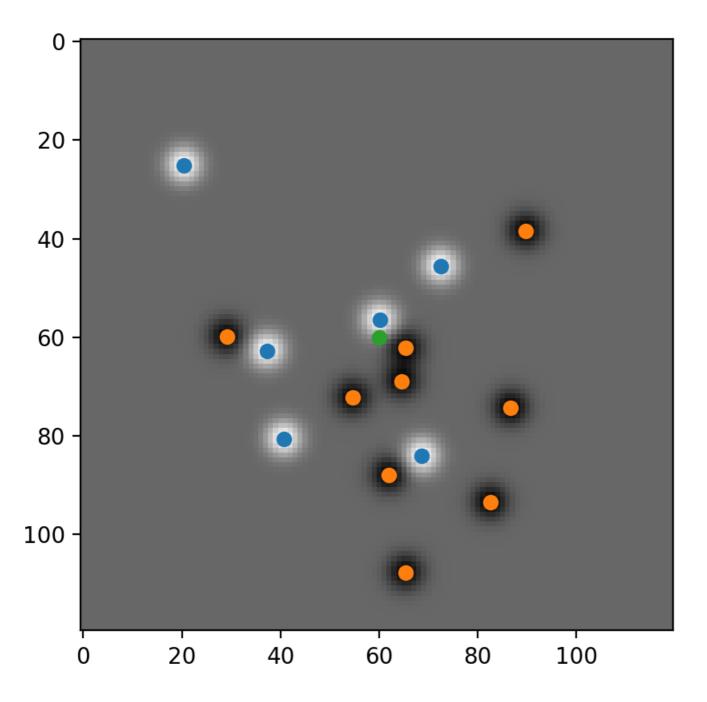
for
$$\gamma = 10^{1}$$



This graph shows, for each possible x, the value of:

$$\sum_{i=1}^{n} \alpha^{(i)} y^{(i)} k(\mathbf{x}, \mathbf{x}^{(i)}) + b$$

for
$$\gamma = 10^{1.25}$$

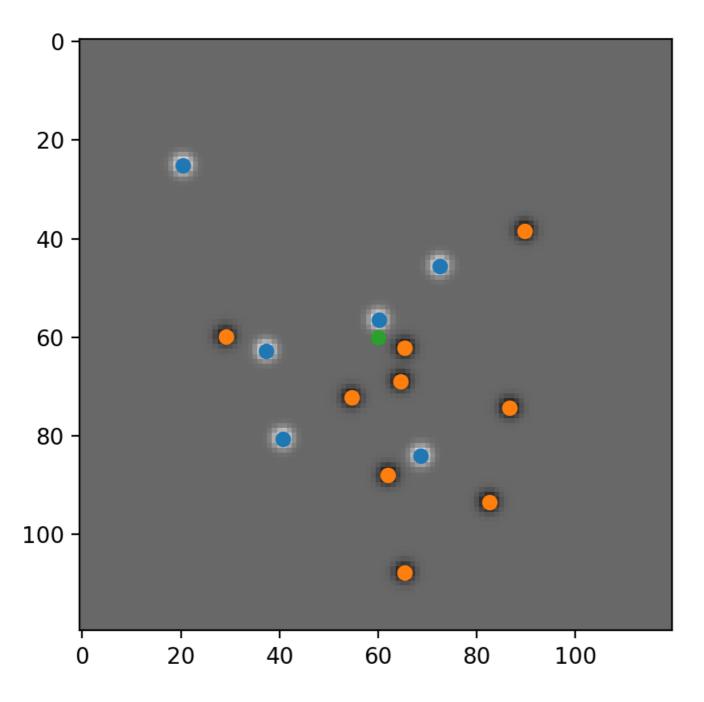


This graph shows, for each possible x, the value of:

$$\sum_{i=1}^{n} \alpha^{(i)} y^{(i)} k(\mathbf{x}, \mathbf{x}^{(i)}) + b$$

for
$$\gamma = 10^{1.5}$$

As γ increases, the effect of more distance support vectors on $g(\mathbf{x})$ decreases.



This graph shows, for each possible x, the value of:

$$\sum_{i=1}^{n} \alpha^{(i)} y^{(i)} k(\mathbf{x}, \mathbf{x}^{(i)}) + b$$

for
$$\gamma = 10^2$$

For very large γ , only the nearest neighbor to x will impact $g(\mathbf{x})$.

Nearest neighbors

Nearest neighbor

- Nearest neighbor is both a classification and a regression method.
- It is one of the simplest ML models.
- Algorithm:
 - To predict the label of a new data point x, find the data point x^(i*) in the training set closest to x:

$$\operatorname{arg\,min}_{i} |\mathbf{x}^{(i)} - \mathbf{x}|$$

Return example i*'s associated label y^(i*).

- Instead of examining just the single data point closest to x, we can look at the k neighbors closest to x.
- To predict the label of x, we can either vote (for classification) or compute the average (for regression) of the k neighbors' labels.

- In sklearn, use either:
 - sklearn.neighbors.KNeighborsClassifier(n_neighbors)
 - sklearn.neighbors.KNeighborsRegressor(n neighbors)

- While very simple, *k* nearest neighbors (kNN) has three significant drawbacks:
 - 1. The machine must always store the entire training set to make decisions (high storage costs).

$$\operatorname{arg\,min}_{i} |\mathbf{x}^{(i)} - \mathbf{x}|$$

- While very simple, *k* nearest neighbors (kNN) has three significant drawbacks:
 - 1. The machine must always store the entire training set to make decisions (high storage costs).
 - 2. The machine can be slow since the distance to *every* training example must be computed.

$$\operatorname{arg\,min}_{i} |\mathbf{x}^{(i)} - \mathbf{x}|$$

- While very simple, *k* nearest neighbors (kNN) has three significant drawbacks:
 - 1. The machine must always store the entire training set to make decisions (high storage costs).
 - 2. The machine can be slow since the distance to *every* training example must be computed.
 - There is substantial research on approximate nearest neighbors — with high probability, find a neighbor very close to x.

- While very simple, *k* nearest neighbors (kNN) has three significant drawbacks:
 - 1. The machine must always store the entire training set to make decisions (high storage costs).
 - 2. The machine can be slow since the distance to *every* training example must be computed.
 - Note that RBF-SVMs are generally faster since only the support vectors need to be stored & compared.

- While very simple, *k* nearest neighbors (kNN) has three significant drawbacks:
 - 1. The machine must always store the entire training set to make decisions (high storage costs).
 - 2. The machine can be slow since the distance to *every* training example must be computed.
 - 3. For high-dimensional inputs, many training examples are needed to "fill" the space.

Curse of dimensionality

- Suppose we want to have at least 10 training examples along each dimension of our input space.
 - 1 dimension ==> need 10 examples
 - 2 dimensions ==> need 10² examples

Curse of dimensionality

- Suppose we want to have at least 10 training examples along each dimension of our input space.
 - 1 dimension ==> need 10 examples
 - 2 dimensions ==> need 10² examples
 - ...
 - *d* dimensions ==> need 10^d examples

Curse of dimensionality

- Suppose we want to have at least 10 training examples along each dimension of our input space.
 - 1 dimension ==> need 10 examples
 - 2 dimensions ==> need 10² examples
 - •
 - *d* dimensions ==> need 10^d examples
- Without good "coverage" of the input space, the kNN machine's predictions may be very inaccurate.

Categorical variables

Categorical variables

- In many data-mining and machine learning contexts, the variables are categorical rather than numerical.
 - Example: https://www.kaggle.com/c/house-prices-advanced-regression-techniques/data
- A common strategy is to convert them to dummy variables using a 1-hot encoding.