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Exercise

* For a soft-margin SVM with cost C > 0, where the SVM is
trained on linearly separable data with a linear kernel:

.1 no
e Minimize: §WTW—|—C;€()
* Subject to: ,(¥) (X@Tw + b) >1—¢W

 Can it ever occur that the optimal hyperplane will not
perfectly separate the data?



Gaussian RBF SVM



RBF SVM at test time

e An RBF-SVM'’s output on some example x will be:
g(x) = o(x)'w+b

= > ay6(x) To(x™) + b
1=1

= 3 a®DyOk(x,x?) +b
1=1

e where:
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RBF SVM at test time

e An RBF-SVM'’s output on some example x will be:
g(x) = o(x)'w+b

= > ay6(x) To(x™) + b
1=1

= 3 aDyOk(x,x?) 4+ b
1=1

e Procedure:

e Compute the kernel response of the example x with
each of our support vectors x0.



RBF SVM at test time

e An RBF-SVM'’s output on some example x will be:
g(x) = o(x)'w+b

= > ay6(x) To(x™) + b
1=1

= 3 0y Dk(x, xO) + b
1=1

e Procedure:

e Compute the kernel response of the example x with
each of our support vectors x0.

 Multiply the kernel response by /’s label y© and the dual
variable a?.



RBF SVM at test time

e An RBF-SVM'’s output on some example x will be:
g(x) = o(x)'w+b

= > ay6(x) To(x™) + b
1=1

= 3 aDyDk(x,x?) +b
1=1

e Procedure:

e Compute the kernel response of the example x with
each of our support vectors x0.

 Multiply the kernel response by /’s label y© and the dual
variable a?.

e Sum across all support vectors.
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This graph shows, for each
40 possible x, the value of:
n
60 a()y()k(x,x())—l—b
1=1

80 for y =1015

100 As y Increases, the effect of

more distance support vectors
on g(x) decreases.

0 20 40 60 80 100



20
This graph shows, for each
40 possible x, the value of:
n
60 a()y()k(x,x())—l—b
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80 for y =102
For very large y, only the

100

nearest neighbor to x will
impact g(x).
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Nearest neighbors



Nearest neighbor

* Nearest neighbor is both a classification and a regression
method.

e |t is one of the simplest ML models.
e Algorithm:

* To predict the label of a new data point x, find the data
point x) in the training set closest to x:

arg min |x\%) — x|
1

e Return example /*’s associated label y.



K nearest neighbors

e |nstead of examining just the single data point closest to
X, we can look at the k neighbors closest to x.

* To predict the label of x, we can either vote (for
classification) or compute the average (for regression) of
the k neighbors’ labels.



K nearest neighbors

e |n sklearn, use either:

® sklearn.neighbors.KNeighborsClassifier (n _neighbors)

® sklearn.neighbors.KNeighborsRegressor (n_neighbors)



K nearest neighbors

 While very simple, k nearest neighbors (KNN) has three
significant drawbacks:

1. The machine must always store the entire training set
to make decisions (high storage costs).
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 While very simple, k nearest neighbors (KNN) has three
significant drawbacks:

1. The machine must always store the entire training set
to make decisions (high storage costs).
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* There is substantial research on approximate
nearest neighbors — with high probabillity, find a
neighbor very close to x.



K nearest neighbors

 While very simple, k nearest neighbors (KNN) has three
significant drawbacks:

1. The machine must always store the entire training set
to make decisions (high storage costs).

2. The machine can be slow since the distance to every
training example must be computed.

* Note that RBF-SVMs are generally faster since only
the support vectors need to be stored & compared.



K nearest neighbors

 While very simple, k nearest neighbors (KNN) has three
significant drawbacks:

1.

The machine must always store the entire training set
to make decisions (high storage costs).

The machine can be slow since the distance to every
training example must be computed.

For high-dimensional inputs, many training examples
are needed to “fill” the space.
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along each dimension of our input space.

e 1 dimension ==> need 10 examples
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Curse of dimensionality

e Suppose we want to have at least 10 training examples
along each dimension of our input space.

e 1 dimension ==> need 10 examples
e 2 dimensions ==> need 102 examples
e d dimensions ==> need 109 examples

e Without good “coverage” of the input space, the kNN
machine’s predictions may be very inaccurate.
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Categorical variables

e |n many data-mining and machine learning contexts, the
variables are categorical rather than numerical.

e Example: https://www.kaggle.com/c/house-prices-
advanced-regression-technigues/data

A common strategy Is to convert them to dummy
variables using a 1-hot encoding.


https://www.kaggle.com/c/house-prices-advanced-regression-techniques/data
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