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Exercise



Exercise

• For a soft-margin SVM with cost C > 0, where the SVM is 
trained on linearly separable data with a linear kernel:


• Minimize:


• Subject to:


• Can it ever occur that the optimal hyperplane will not 
perfectly separate the data?
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Gaussian RBF SVM



RBF SVM at test time
• An RBF-SVM’s output on some example x will be:


• where:
k(x(i),x(j)) = exp

✓
��

⇣
x(i) � x(j)

⌘2
◆

x - x(i)

g(x) = �(x)>w + b

=
nX

i=1

↵(i)y(i)�(x)>�(x(i)) + b

=
nX

i=1

↵(i)y(i)k(x,x(i)) + b



RBF SVM at test time
• An RBF-SVM’s output on some example x will be:


• Procedure:


• Compute the kernel response of the example x with 
each of our support vectors x(i).


• Multiply the kernel response by i’s label y(i) and the dual 
variable α(i).


• Add b.
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RBF SVM at test time
• An RBF-SVM’s output on some example x will be:


• Procedure:


• Compute the kernel response of the example x with 
each of our support vectors x(i).


• Multiply the kernel response by i’s label y(i) and the dual 
variable α(i).


• Sum across all support vectors.
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Example
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The value of k can be thought of 
as an inverse distance.
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Example
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This graph shows, for each 
possible x, the value of:

for 𝛾 = 101
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Example
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↵(i)y(i)k(x,x(i)) + b

This graph shows, for each 
possible x, the value of:

for 𝛾 = 101.5

As 𝛾 increases, the effect of 
more distance support vectors 

on g(x) decreases.



Example

nX

i=1

↵(i)y(i)k(x,x(i)) + b

This graph shows, for each 
possible x, the value of:

for 𝛾 = 102

For very large 𝛾, only the 
nearest neighbor to x will 

impact g(x).



Nearest neighbors



Nearest neighbor
• Nearest neighbor is both a classification and a regression 

method.


• It is one of the simplest ML models.


• Algorithm:


• To predict the label of a new data point x, find the data 
point x(i*) in the training set closest to x:


• Return example i*’s associated label y(i*).

argmin
i

|x(i) � x|



k nearest neighbors

• Instead of examining just the single data point closest to 
x, we can look at the k neighbors closest to x.


• To predict the label of x, we can either vote (for 
classification) or compute the average (for regression) of 
the k neighbors’ labels.



k nearest neighbors

• In sklearn, use either:


• sklearn.neighbors.KNeighborsClassifier(n_neighbors) 

• sklearn.neighbors.KNeighborsRegressor(n_neighbors)



k nearest neighbors
• While very simple, k nearest neighbors (kNN) has three 

significant drawbacks:


1. The machine must always store the entire training set 
to make decisions (high storage costs).


2. The machine can be slow since the distance to every 
training example must be computed.


3. For high-dimensional inputs, many training examples 
are needed to “fill” the space.
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k nearest neighbors
• While very simple, k nearest neighbors (kNN) has three 

significant drawbacks:


1. The machine must always store the entire training set 
to make decisions (high storage costs).


2. The machine can be slow since the distance to every 
training example must be computed.


3. For high-dimensional inputs, many training examples 
are needed to “fill” the space.
• There is substantial research on approximate 

nearest neighbors — with high probability, find a 
neighbor very close to x.



k nearest neighbors
• While very simple, k nearest neighbors (kNN) has three 

significant drawbacks:


1. The machine must always store the entire training set 
to make decisions (high storage costs).


2. The machine can be slow since the distance to every 
training example must be computed.


3. For high-dimensional inputs, many training examples 
are needed to “fill” the space.
• Note that RBF-SVMs are generally faster since only 

the support vectors need to be stored & compared.
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Curse of dimensionality

• Suppose we want to have at least 10 training examples 
along each dimension of our input space.


• 1 dimensions ==> need 10 examples


• 2 dimensions ==> need 102 examples


• …


• d dimensions ==> need 10d examples


• Without good “coverage” of the input space, the kNN 
machine’s predictions may be very inaccurate.
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Categorical variables



Categorical variables

• In many data-mining and machine learning contexts, the 
variables are categorical rather than numerical.


• Example: https://www.kaggle.com/c/house-prices-
advanced-regression-techniques/data


• A common strategy is to convert them to dummy 
variables using a 1-hot encoding.

https://www.kaggle.com/c/house-prices-advanced-regression-techniques/data
https://www.kaggle.com/c/house-prices-advanced-regression-techniques/data

