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Kernel trick



Kernelization
• Both during training and testing, we only use each 

training point x(i) as part of an inner product — we don’t 
need the raw values themselves.


• Therefore, even if we want to transform each input using 
ɸ, we only really need to know the inner products 
between each ɸ(x) and ɸ(x(i)) (for training):
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Kernelization
• Both during training and testing, we only use each 

training point x(i) as part of an inner product — we don’t 
need the raw values themselves.


• Therefore, even if we want to transform each input using 
ɸ, we only really need to know the inner products 
between each ɸ(x) and ɸ(x(i)) (for testing):
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Kernelization

• For training, rather than compute ɸ(x(i)) for every training 
example x(i)…:
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Kernelization

• …instead compute the kernel matrix containing all pairs 
of inner products:
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Kernelization

• Then we just need to pass K to the SVM solver: 
 
svm = sklearn.svm.SVC(kernel='precomputed')  
K = Xtilde.T.dot(Xtilde)   #  
svm.fit(K, y)

K = X̃>X̃



Kernelization
• Let’s define a function k — called a kernel — that computes 

the inner product between any two training examples:


• Now can we can express K as:
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Kernelization

• Using kernel functions, we can sometimes express the 
inner product of two transformed training examples more 
compactly and more computationally efficiently.



Kernel example
• Example — suppose you want ɸ to compute polynomial 

features of x of degree 2, i.e.,


• The transformed feature space has 6 dimensions.


• Computing                          directly therefore requires 6 
multiplications, plus the cost of transforming each vector.
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Kernel example
• On the other hand, we can derive that:
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• On the other hand, we can derive that:
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• On the other hand, we can derive that:



k(x(i),x(j)) = �
⇣
x(i)
⌘>

�
⇣
x(j)

⌘

= �

✓
x(i)

y(i)

�◆>

�

✓
x(j)

y(j)

�◆

=

2

66666664

1p
2x(i)

p
2y(i)p

2x(i)y(i)

x(i)2

y(i)
2

3

77777775

> 2

66666664

1p
2x(j)

p
2y(j)p

2x(j)y(j)

x(j)2

y(j)
2

3

77777775

= 1 + 2x(i)x(j) + 2y(i)y(j) + 2x(i)y(i)x(j)y(j) + (x(i)x(j))2 + (y(i)y(j))2

= (1 + x(i)x(j) + y(i)y(j))2

=

 
1 +


x(i)

y(i)

�> 
x(j)

y(j)

�!2

=
⇣
1 + x(i)>x(j)

⌘2

Kernel example
• On the other hand, we can derive that:
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Kernel example
• On the other hand, we can derive that:

We can compute the inner 
product of the transformed 

vectors more efficiently (just 2 
multiplies and a power).



Kernel functions
• This was a polynomial kernel of degree 2.


• In general, we can devise many kernels of the form: 
 
 
where 𝛾, λ, d can be tuned for the particular application.

k(x(i),x(j)) =
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Kernel functions

• sklearn supports polynomial (and several other) kernels 
off-the-shelf: 
 
svm = sklearn.svm.SVC(kernel='poly', degree=2, 
                      gamma=1, coef0=1) 

• When using a “pre-built” kernel function, we don’t need to 
manually compute K — just pass the raw (untransformed) 
X to fit: 
 
svm.fit(X, y)

k(x(i),x(j)) =
⇣
�+ �x(i)>x(j)
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Kernel functions

• Not only can kernel functions be more efficient than 
transforming each input — they can also offer more 
representational power.


• For the kernel k, we can use any function that computes 
the inner product between x(i), x(j) after applying some 
transformation to each vector.


• But the transformation can be anything — we may not 
even care what it is.



Kernel functions
• One of the most popular SVM kernels is the Gaussian 

radial basis function (RBF) kernel:


• The RBF kernel expresses that two vectors close together 
should have a higher kernel value than two vectors far 
apart:
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Kernel functions
• One of the most popular SVM kernels is the Gaussian 

radial basis function (RBF) kernel:


• The bandwidth 𝛾 controls how quickly the kernel value 
decreases as a function of the distance between the two 
input vectors:

𝛾=16
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Kernel functions
• One of the most popular SVM kernels is the Gaussian 

radial basis function (RBF) kernel:


• The “transformation” ɸ is completely hidden — 
mathematically it can be proven to exist, but we don’t 
have to care what it is.


• In fact, for RBF, the implicit transformation has infinitely 
many dimensions.
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Kernel functions
• One of the most popular SVM kernels is the Gaussian 

radial basis function (RBF) kernel:


• We can use RBF in sklearn with: 
 
svm = sklearn.svm.SVC(kernel='rbf', gamma=1)

k(x(i),x(j)) = exp
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Kernelization

• SVMs always try to separate the positive from the 
negative examples using a hyperplane — a linear decision 
boundary.


• But the hyperplane might exist in a very different 
(transformed) space than the raw input data.


• In the original input space, the decision boundary can be 
non-linear.



Non-linear decision boundaries

https://people.cs.umass.edu/~domke/courses/sml2010/06kernels.pdf
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Dataset B, c = 105, k(x,v) = 1 + x · v.
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Non-linear decision boundaries

https://people.cs.umass.edu/~domke/courses/sml2010/06kernels.pdf

Kernel Methods and SVMs 13

Dataset C (dataset B with noise), c = 105, k(x,v) = 1 + x · v.
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Non-linear decision boundaries

https://people.cs.umass.edu/~domke/courses/sml2010/06kernels.pdf
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Dataset C (dataset B with noise), c = 105, k(x,v) = exp
(

−2||x − v||2
)

.
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Kernelization
• Note that, when using non-linear kernel functions, we 

typically never compute w explicitly because we don’t 
need it.


• When predicting class of a new point x, we just need to 
know k(x, x(i)) for each support vector i in our training set.
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Kernelization
• In fact, for some kernel functions, it may not even be 

possible to compute w explicitly.


• Hence, when training an SVM with non-linear kernel, we 
must solve in dual form, where we just need to find the 
optimal α.
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Hyperparameter 
tuning



Hyperparameters

• How do we pick the right kernel for our ML problem?


• For a particular kernel, how do we decide the associated 
hyperparameters (e.g., ɣ)?


• Hyperparameters: parameters that are not directly 
optimized during training but that can still impact 
training & testing performance.



Hyperparameter tuning

• Two main strategies:


1.Domain knowledge: based on your knowledge of the 
application domain, you can decide which kernel is more 
sensible.


2.Automatic optimization: systematically search for the 
best kernel to maximize performance.



Hyperparameter tuning

• Two main strategies:


1.Domain knowledge: based on your knowledge of the 
application domain, you can decide which kernel is more 
sensible.


2.Automatic tuning: systematically search for the best 
kernel to maximize performance.



Automatic hyperparameter 
tuning

• The choice of the kernel and its associated hyper 
parameters can make a big impact on performance.


• However: directly optimizing on the test set is dangerous:


• Any “increase” you observe might be spurious — you 
just got “lucky” in a way that would not generalize to 
unseen data.



Automatic hyperparameter 
tuning

• To avoid overly optimistic accuracy estimates, you should 
select a subset of the training data on which to optimize.


• This is sometimes called a validation set.



Exercise



Exercise

• For a soft-margin SVM with cost C > 0, where the SVM is 
trained on linearly separable data with a linear kernel:


• Minimize:


• Subject to:


• Will the optimal hyperplane ever not perfectly separate 
the data? Describe why not, or show an example of 
when it would.
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