
CS 453X: Class 14
Jacob Whitehill

Kernel trick

Kernelization
• Both during training and testing, we only use each

training point x(i) as part of an inner product — we don’t
need the raw values themselves.

• Therefore, even if we want to transform each input using
ɸ, we only really need to know the inner products
between each ɸ(x) and ɸ(x(i)) (for training):

L(↵) =
nX

i=1

↵(i) � 1

2

nX

i=1

nX

i0=1

↵(i)↵(i0)y(i)y(i
0)�(x(i))>�(x(i0))

Kernelization
• Both during training and testing, we only use each

training point x(i) as part of an inner product — we don’t
need the raw values themselves.

• Therefore, even if we want to transform each input using
ɸ, we only really need to know the inner products
between each ɸ(x) and ɸ(x(i)) (for testing):

x>w + b =
nX

i=1

↵(i)y(i)�(x)>�(x(i)) + b

Kernelization

• For training, rather than compute ɸ(x(i)) for every training
example x(i)…:

X̃ =

2

4 �
�
x(1)

�
. . . �

�
x(n)

�
3

5

m x n

Kernelization

• …instead compute the kernel matrix containing all pairs
of inner products:

K =

2

664

�(x(1))
>
�(x(1)) . . . �(x(1))

>
�(x(n))

. . .

�(x(n))
>
�(x(1)) . . . �(x(n))

>
�(x(n))

3

775

n x n

Kernelization

• Then we just need to pass K to the SVM solver: 
 
svm = sklearn.svm.SVC(kernel='precomputed')  
K = Xtilde.T.dot(Xtilde) #  
svm.fit(K, y)

K = X̃>X̃

Kernelization
• Let’s define a function k — called a kernel — that computes

the inner product between any two training examples:

• Now can we can express K as:

k(x(i),x(j)) = �
⇣
x(i)

⌘>
�
⇣
x(j)

⌘

K =

2

64
k(x(1),x(1)) . . . k(x(1),x(n))

. . .

k(x(n),x(1)) . . . k(x(n),x(n))

3

75

Kernelization

• Using kernel functions, we can sometimes express the
inner product of two transformed training examples more
compactly and more computationally efficiently.

Kernel example
• Example — suppose you want ɸ to compute polynomial

features of x of degree 2, i.e.,

• The transformed feature space has 6 dimensions.

• Computing directly therefore requires 6
multiplications, plus the cost of transforming each vector.

�
⇣
x(i)

⌘>
�
⇣
x(j)

⌘

�

✓
x
y

�◆
=

2

6666664

1p
2xp
2yp
2xy
x2

y2

3

7777775

k(x(i),x(j)) = �
⇣
x(i)
⌘>

�
⇣
x(j)

⌘

= �

✓
x(i)

y(i)

�◆>

�

✓
x(j)

y(j)

�◆

=

2

66666664

1p
2x(i)

p
2y(i)p

2x(i)y(i)

x(i)2

y(i)
2

3

77777775

> 2

66666664

1p
2x(j)

p
2y(j)p

2x(j)y(j)

x(j)2

y(j)
2

3

77777775

= 1 + 2x(i)x(j) + 2y(i)y(j) + 2x(i)y(i)x(j)y(j) + (x(i)x(j))2 + (y(i)y(j))2

= (1 + x(i)x(j) + y(i)y(j))2

=

1 +


x(i)

y(i)

�> 
x(j)

y(j)

�!2

=
⇣
1 + x(i)>x(j)

⌘2

Kernel example
• On the other hand, we can derive that:

k(x(i),x(j)) = �
⇣
x(i)
⌘>

�
⇣
x(j)

⌘

= �

✓
x(i)

y(i)

�◆>

�

✓
x(j)

y(j)

�◆

=

2

66666664

1p
2x(i)

p
2y(i)p

2x(i)y(i)

x(i)2

y(i)
2

3

77777775

> 2

66666664

1p
2x(j)

p
2y(j)p

2x(j)y(j)

x(j)2

y(j)
2

3

77777775

= 1 + 2x(i)x(j) + 2y(i)y(j) + 2x(i)y(i)x(j)y(j) + (x(i)x(j))2 + (y(i)y(j))2

= (1 + x(i)x(j) + y(i)y(j))2

=

1 +


x(i)

y(i)

�> 
x(j)

y(j)

�!2

=
⇣
1 + x(i)>x(j)

⌘2

Kernel example
• On the other hand, we can derive that:

k(x(i),x(j)) = �
⇣
x(i)
⌘>

�
⇣
x(j)

⌘

= �

✓
x(i)

y(i)

�◆>

�

✓
x(j)

y(j)

�◆

=

2

66666664

1p
2x(i)

p
2y(i)p

2x(i)y(i)

x(i)2

y(i)
2

3

77777775

> 2

66666664

1p
2x(j)

p
2y(j)p

2x(j)y(j)

x(j)2

y(j)
2

3

77777775

= 1 + 2x(i)x(j) + 2y(i)y(j) + 2x(i)y(i)x(j)y(j) + (x(i)x(j))2 + (y(i)y(j))2

= (1 + x(i)x(j) + y(i)y(j))2

=

1 +


x(i)

y(i)

�> 
x(j)

y(j)

�!2

=
⇣
1 + x(i)>x(j)

⌘2

Kernel example
• On the other hand, we can derive that:

k(x(i),x(j)) = �
⇣
x(i)
⌘>

�
⇣
x(j)

⌘

= �

✓
x(i)

y(i)

�◆>

�

✓
x(j)

y(j)

�◆

=

2

66666664

1p
2x(i)

p
2y(i)p

2x(i)y(i)

x(i)2

y(i)
2

3

77777775

> 2

66666664

1p
2x(j)

p
2y(j)p

2x(j)y(j)

x(j)2

y(j)
2

3

77777775

= 1 + 2x(i)x(j) + 2y(i)y(j) + 2x(i)y(i)x(j)y(j) + (x(i)x(j))2 + (y(i)y(j))2

= (1 + x(i)x(j) + y(i)y(j))2

=

1 +


x(i)

y(i)

�> 
x(j)

y(j)

�!2

=
⇣
1 + x(i)>x(j)

⌘2

Kernel example
• On the other hand, we can derive that:

k(x(i),x(j)) = �
⇣
x(i)
⌘>

�
⇣
x(j)

⌘

= �

✓
x(i)

y(i)

�◆>

�

✓
x(j)

y(j)

�◆

=

2

66666664

1p
2x(i)

p
2y(i)p

2x(i)y(i)

x(i)2

y(i)
2

3

77777775

> 2

66666664

1p
2x(j)

p
2y(j)p

2x(j)y(j)

x(j)2

y(j)
2

3

77777775

= 1 + 2x(i)x(j) + 2y(i)y(j) + 2x(i)y(i)x(j)y(j) + (x(i)x(j))2 + (y(i)y(j))2

= (1 + x(i)x(j) + y(i)y(j))2

=

1 +


x(i)

y(i)

�> 
x(j)

y(j)

�!2

=
⇣
1 + x(i)>x(j)

⌘2

Kernel example
• On the other hand, we can derive that:

k(x(i),x(j)) = �
⇣
x(i)
⌘>

�
⇣
x(j)

⌘

= �

✓
x(i)

y(i)

�◆>

�

✓
x(j)

y(j)

�◆

=

2

66666664

1p
2x(i)

p
2y(i)p

2x(i)y(i)

x(i)2

y(i)
2

3

77777775

> 2

66666664

1p
2x(j)

p
2y(j)p

2x(j)y(j)

x(j)2

y(j)
2

3

77777775

= 1 + 2x(i)x(j) + 2y(i)y(j) + 2x(i)y(i)x(j)y(j) + (x(i)x(j))2 + (y(i)y(j))2

= (1 + x(i)x(j) + y(i)y(j))2

=

1 +


x(i)

y(i)

�> 
x(j)

y(j)

�!2

=
⇣
1 + x(i)>x(j)

⌘2

Kernel example
• On the other hand, we can derive that:

We can compute the inner
product of the transformed

vectors more efficiently (just 2
multiplies and a power).

Kernel functions
• This was a polynomial kernel of degree 2.

• In general, we can devise many kernels of the form: 
 
 
where 𝛾, λ, d can be tuned for the particular application.

k(x(i),x(j)) =
⇣
�+ �x(i)>x(j)

⌘d

Kernel functions

• sklearn supports polynomial (and several other) kernels
off-the-shelf: 
 
svm = sklearn.svm.SVC(kernel='poly', degree=2, 
 gamma=1, coef0=1)

• When using a “pre-built” kernel function, we don’t need to
manually compute K — just pass the raw (untransformed)
X to fit: 
 
svm.fit(X, y)

k(x(i),x(j)) =
⇣
�+ �x(i)>x(j)

⌘d

Kernel functions

• Not only can kernel functions be more efficient than
transforming each input — they can also offer more
representational power.

• For the kernel k, we can use any function that computes
the inner product between x(i), x(j) after applying some
transformation to each vector.

• But the transformation can be anything — we may not
even care what it is.

Kernel functions
• One of the most popular SVM kernels is the Gaussian

radial basis function (RBF) kernel:

• The RBF kernel expresses that two vectors close together
should have a higher kernel value than two vectors far
apart:

𝛾=1

k(x(i),x(j)) = exp

✓
��

⇣
x(i) � x(j)

⌘2
◆

Kernel functions
• One of the most popular SVM kernels is the Gaussian

radial basis function (RBF) kernel:

• The bandwidth 𝛾 controls how quickly the kernel value
decreases as a function of the distance between the two
input vectors:

𝛾=16

k(x(i),x(j)) = exp

✓
��

⇣
x(i) � x(j)

⌘2
◆

Kernel functions
• One of the most popular SVM kernels is the Gaussian

radial basis function (RBF) kernel:

• The “transformation” ɸ is completely hidden —
mathematically it can be proven to exist, but we don’t
have to care what it is.

• In fact, for RBF, the implicit transformation has infinitely
many dimensions.

k(x(i),x(j)) = exp

✓
��

⇣
x(i) � x(j)

⌘2
◆

Kernel functions
• One of the most popular SVM kernels is the Gaussian

radial basis function (RBF) kernel:

• We can use RBF in sklearn with: 
 
svm = sklearn.svm.SVC(kernel='rbf', gamma=1)

k(x(i),x(j)) = exp

✓
��

⇣
x(i) � x(j)

⌘2
◆

Kernelization

• SVMs always try to separate the positive from the
negative examples using a hyperplane — a linear decision
boundary.

• But the hyperplane might exist in a very different
(transformed) space than the raw input data.

• In the original input space, the decision boundary can be
non-linear.

Non-linear decision boundaries

https://people.cs.umass.edu/~domke/courses/sml2010/06kernels.pdf

Kernel Methods and SVMs 12

Dataset B, c = 105, k(x,v) = 1 + x · v.

−0.5 0 0.5−0.5

0

0.5

x1

x 2

predictions

−0.5 0 0.5−0.5

0

0.5

x1

x 2

support vectors

0 100 200 300 400 50010−5

100

105
α

sorted indices

Dataset B, c = 105, k(x,v) = (1 + x · v)5.

−0.5 0 0.5−0.5

0

0.5

x1

x 2
predictions

−0.5 0 0.5−0.5

0

0.5

x1

x 2

support vectors

0 100 200 300 400 50010−5

100

105
α

sorted indices

Dataset B, c = 105, k(x,v) = (1 + x · v)10.

−0.5 0 0.5−0.5

0

0.5

x1

x 2

predictions

−0.5 0 0.5−0.5

0

0.5

x1

x 2

support vectors

0 100 200 300 400 50010−10

10−5

100

105
α

sorted indices

Non-linear decision boundaries

https://people.cs.umass.edu/~domke/courses/sml2010/06kernels.pdf

Kernel Methods and SVMs 13

Dataset C (dataset B with noise), c = 105, k(x,v) = 1 + x · v.

−0.5 0 0.5−0.5

0

0.5

x1

x 2

predictions

−0.5 0 0.5−0.5

0

0.5

x1

x 2

support vectors

0 100 200 300 400 50010−5

100

105
α

sorted indices

Dataset C, c = 105, k(x,v) = (1 + x · v)5.

−0.5 0 0.5−0.5

0

0.5

x1

x 2
predictions

−0.5 0 0.5−0.5

0

0.5

x1

x 2

support vectors

0 100 200 300 400 50010−5

100

105
α

sorted indices

Dataset C, c = 105, k(x,v) = (1 + x · v)10.

−0.5 0 0.5−0.5

0

0.5

x1

x 2

predictions

−0.5 0 0.5−0.5

0

0.5

x1

x 2

support vectors

0 100 200 300 400 50010−10

10−5

100

105
α

sorted indices

Non-linear decision boundaries

https://people.cs.umass.edu/~domke/courses/sml2010/06kernels.pdf

Kernel Methods and SVMs 14

Dataset C (dataset B with noise), c = 105, k(x,v) = exp
(

−2||x − v||2
)

.

−0.5 0 0.5−0.5

0

0.5

x1

x 2

predictions

−0.5 0 0.5−0.5

0

0.5

x1

x 2

support vectors

0 100 200 300 400 50010−10

10−5

100

105
α

sorted indices

Dataset C, c = 105, k(x,v) = exp
(

−20||x − v||2
)

.

−0.5 0 0.5−0.5

0

0.5

x1

x 2
predictions

−0.5 0 0.5−0.5

0

0.5

x1
x 2

support vectors

0 100 200 300 400 50010−10

10−5

100

105
α

sorted indices

Dataset C, c = 105, k(x,v) = exp
(

−200||x − v||2
)

.

−0.5 0 0.5−0.5

0

0.5

x1

x 2

predictions

−0.5 0 0.5−0.5

0

0.5

x1

x 2

support vectors

0 100 200 300 400 50010−10

10−5

100

105
α

sorted indices

Kernelization
• Note that, when using non-linear kernel functions, we

typically never compute w explicitly because we don’t
need it.

• When predicting class of a new point x, we just need to
know k(x, x(i)) for each support vector i in our training set.

g(x) =
nX

i=1

↵(i)y(i)�(x)>�(x(i)) + b

=
nX

i=1

↵(i)y(i)k(x,x(i)) + b

Kernelization
• In fact, for some kernel functions, it may not even be

possible to compute w explicitly.

• Hence, when training an SVM with non-linear kernel, we
must solve in dual form, where we just need to find the
optimal α.

L(↵) =
nX

i=1

↵(i) � 1

2

nX

i=1

nX

i0=1

↵(i)↵(i0)y(i)y(i
0)k(x(i),x(i0))

Hyperparameter
tuning

Hyperparameters

• How do we pick the right kernel for our ML problem?

• For a particular kernel, how do we decide the associated
hyperparameters (e.g., ɣ)?

• Hyperparameters: parameters that are not directly
optimized during training but that can still impact
training & testing performance.

Hyperparameter tuning

• Two main strategies:

1.Domain knowledge: based on your knowledge of the
application domain, you can decide which kernel is more
sensible.

2.Automatic optimization: systematically search for the
best kernel to maximize performance.

Hyperparameter tuning

• Two main strategies:

1.Domain knowledge: based on your knowledge of the
application domain, you can decide which kernel is more
sensible.

2.Automatic tuning: systematically search for the best
kernel to maximize performance.

Automatic hyperparameter
tuning

• The choice of the kernel and its associated hyper
parameters can make a big impact on performance.

• However: directly optimizing on the test set is dangerous:

• Any “increase” you observe might be spurious — you
just got “lucky” in a way that would not generalize to
unseen data.

Automatic hyperparameter
tuning

• To avoid overly optimistic accuracy estimates, you should
select a subset of the training data on which to optimize.

• This is sometimes called a validation set.

Exercise

Exercise

• For a soft-margin SVM with cost C > 0, where the SVM is
trained on linearly separable data with a linear kernel:

• Minimize:

• Subject to:

• Will the optimal hyperplane ever not perfectly separate
the data? Describe why not, or show an example of
when it would.

y(i)
⇣
x(i)>w + b

⌘
� 1� ⇠(i)

1

2
w>w + C

nX

i=1

⇠(i)

