CS 453X: Class 13

Jacob Whitehill



Detour



Lo-regularized regression

* Recall the definition of Lo-regularized regression:

fuse(w) = — (X'w—y) (XTW ~y)+—w'w
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Lo-regularized regression

* Recall the definition of Lo-regularized regression:

fuse(w) = o (XTw—y) (XTw-y)+ o w'w
1
VwiMse = EX (XTW y) + W =0
XX'wH+aw = Xy
(XXT + ozI) w = Xy

w = (XXT+aI)_1Xy



Matrix inversion lemma
(special case)

e Forany a > 0 and m x n matrix X:
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Matrix inversion lemma
(special case)

e Forany a > 0 and m x n matrix X:

1. 1
(XX +al)t="1T- XX'X+aoI) X'
@7 @7

e The RHS method is much faster when n < m!



Kernel trick



Feature transformations

e The conceptually simplest approach to training a classifier
using transformed features is:

 Transform each example x into ¢(x).

* Train on the transformed data ¢(x(), ..., d(x)

e At test time:

* Transform the test point x to ¢(x); then classify ¢(x).

* This can be done for any ML model.

Input transformer /

feature extractor




Feature transformations

e Jo train a model in this way, we could easily construct the
design matrix of transformed examples:

X=|o¢(xD) ... ¢xm)

 \We can then pass X to the SVM solver:

svm = sklearn.svm.SVC (kernel='linear')
svm.fit (Xtilde, vy)



Feature transformations

 While this works fine in principle, for certain kinds of
models — those that can be kernelized — the process
can be made:

e More efficient.
e More powerful.

e SVMs are probably the most prominent kernelizable ML
model...



Kernelization

 Recall that, in an SVM, the optimal w will always be a linear
combination of the data points x0, weighted by the a®.

* Only the support vectors — those examples x¢ such that
a’) > 0 — will contribute to w:

_ LT Zn () (@ (@7
Liw,b,a) = oW W ._104 (y (X W—I—b—l))
OL D
_ _ (1) 5, (4) 5 (2)
G =V ;:1 a'y\tx

1=1



Dual form

e This also suggests a different way of optimizing an SVM:

e Instead of optimizing over w € R, where m is size of
the feature vector (e.g., number of image pixels),
we can optimize over o« € R", where n is the number
of training examples.

_ LT Zn ) (@ (x®7
Liw,b,a) = oW W ._104 (y (X W—I—b—l))
OL D
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1=1



Dual form

e Suppose we are training a smile detector, where the
number of features m = 10,000 and n=1000 (examples).

e Which would you rather optimize: w € R™ or a« € R"?

_ LT Zn ) (@ (x®7
Liw,b,a) = oW W ._104 (y (X W—I—b—l))
OL D
_ _ (1) 5, (4) 5 (2)
G =V ;:1 a'y\tx

1=1



Dual form

Optimizing over a instead of w is called the dual form of
the constraint optimization.

Optimizing w directly is called the primal form.
Both approaches give the same solution.

Training the SVM in dual form requires that we manipulate
the function L algebraically a bit first...



Kernelization

e By setting g—é to 0 and solving, we can deduce:

1
Liw,b,a) = §WTW Za”(”( ()TW—I-b—l))
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Kernelization

* \We can now substitute for w into L and simplify:

Liw,b,a) =

1 o . |
§WTW — ; a9 (y(’&) (X(Z)TW +h— 1))
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Kernelization

* \We can now substitute for w into L and simplify:

L(w,b,«a)

— L(«)
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Kernelization

o At test time, we compute the inner product between x
and w:

XTW +bH = XT <Z a(@)y(")x(@)) + b
1=1



Kernelization

o At test time, we compute the inner product between x
and w:

XTW +bH = XT <Z a(@)y(")x(@)) + b
1=1
1=1

 The result depends only on the inner products between
the test point x and each of the support vectors x0.



Kernelization

e Both during training and testing, we only use each
training point x0 as part of an inner product — we don’t

need the raw values themselves.

 Therefore, even if we want to transform each input using
¢, we only really need to know the inner products

between each ¢(x) and ¢(x?) (for training):
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Kernelization

e Both during training and testing, we only use each
training point x0 as part of an inner product — we don’t

need the raw values themselves.

 Therefore, even if we want to transform each input using
¢, we only really need to know the inner products

between each ¢(x) and ¢(x") (for testing):

x wt+b = ) ayPex)Te(x) +b
1=1



Kernelization

* For training, rather than compute @(x?) for every training
example x0...:

o o
X=1o¢xV) ... ¢(x")
| o




Kernelization

e ...instead compute the kernel matrix containing all pairs
of inner products:

o(x) (xM) L g(xM) p(x™)
K: .

) ) p(x™)

o) Hx) g



Kernelization

e Then we just need to pass K to the SVM solver:

svm = sklearn.svm.SVC (kernel='precomputed')
K = Xtilde.T.dot(Xtilde) #K=X'X

svm.fit (K, y)



Kernelization

K is an n x n matrix, where n is # training examples.
Suppose n=1000, m=10000 (e.g., 100x100 pixels).

Storing each ¢(x") explicitly would take O(10,000,000)
bytes.

Storing just K will take O(1,000,000) bytes — 10x less!

Training the SVM in dual form can also be much faster
(forn <« m).



