CS 453X: Class 13

Jacob Whitehill

Detour

Lo-regularized regression

* Recall the definition of Lo-regularized regression:

fuse(w) = — (X'w—y) (XTW ~y)+—w'w

||
|
s
s
_|
2
‘5/
|
5
|
-

vaMSE

Lo-regularized regression

* Recall the definition of Lo-regularized regression:

1
fumse(w) = o (XTW — y)T (XTW — y) + %WTW
VwiMse = %X (XTW y) + W =0
XX'wH+aw = Xy

Lo-regularized regression

* Recall the definition of Lo-regularized regression:

1
fumse(w) = o (XTW — y)T (XTW — y) + %WTW
VwiMse = %X (XTW y) + W =0
XX'wH+aw = Xy

(XXT + ozI) w = Xy

Lo-regularized regression

* Recall the definition of Lo-regularized regression:

fuse(w) = o (XTw—y) (XTw-y)+ o w'w
1
VwiMse = EX (XTW y) + W =0
XX'wH+aw = Xy
(XXT + ozI) w = Xy

w = (XXT+aI)_1Xy

Matrix inversion lemma
(special case)

e Forany a > 0 and m x n matrix X:

1. 1
(XX +al)t="1T- X(X'X+aoI) X'
@7 @7

Matrix inversion lemma
(special case)

e Forany a > 0 and m x n matrix X:

1. 1
(XX +al)t="1T- XX'X+aoI) X'
@7 @7

e The RHS method is much faster when n < m!

Kernel trick

Feature transformations

e The conceptually simplest approach to training a classifier
using transformed features is:

 Transform each example x into ¢(x).

* Train on the transformed data ¢(x(), ..., d(x)

e At test time:

* Transform the test point x to ¢(x); then classify ¢(x).

* This can be done for any ML model.

Input transformer /

feature extractor

Feature transformations

e Jo train a model in this way, we could easily construct the
design matrix of transformed examples:

X=|o¢(xD) ... ¢xm)

 \We can then pass X to the SVM solver:

svm = sklearn.svm.SVC (kernel='linear')
svm.fit (Xtilde, vy)

Feature transformations

 While this works fine in principle, for certain kinds of
models — those that can be kernelized — the process
can be made:

e More efficient.
e More powerful.

e SVMs are probably the most prominent kernelizable ML
model...

Kernelization

 Recall that, in an SVM, the optimal w will always be a linear
combination of the data points x0, weighted by the a®.

* Only the support vectors — those examples x¢ such that
a’) > 0 — will contribute to w:

_ LT Zn () (@ (@7
Liw,b,a) = oW W ._104 (y (X W—I—b—l))
OL D
_ _ (1) 5, (4) 5 (2)
G =V ;:1 a'y\tx

1=1

Dual form

e This also suggests a different way of optimizing an SVM:

e Instead of optimizing over w € R, where m is size of
the feature vector (e.g., number of image pixels),
we can optimize over o« € R", where n is the number
of training examples.

_ LT Zn) (@ (x®7
Liw,b,a) = oW W ._104 (y (X W—I—b—l))
OL D
_ _ (1) 5, (4) 5 (2)
G =V ;:1 a'y\tx

1=1

Dual form

e Suppose we are training a smile detector, where the
number of features m = 10,000 and n=1000 (examples).

e Which would you rather optimize: w € R™ or a« € R"?

_ LT Zn) (@ (x®7
Liw,b,a) = oW W ._104 (y (X W—I—b—l))
OL D
_ _ (1) 5, (4) 5 (2)
G =V ;:1 a'y\tx

1=1

Dual form

Optimizing over a instead of w is called the dual form of
the constraint optimization.

Optimizing w directly is called the primal form.
Both approaches give the same solution.

Training the SVM in dual form requires that we manipulate
the function L algebraically a bit first...

Kernelization

e By setting g—é to 0 and solving, we can deduce:

1
Liw,b,a) = §WTW Za”(”(()TW—I-b—l))

oL
= —ZO‘() (i)

N f:a“)y(i) _)

Kernelization

* \We can now substitute for w into L and simplify:

Liw,b,a) =

1 o . |
§WTW — ; a9 (y(’&) (X(Z)TW +h— 1))

1

S alyx
2
1=1

2 n n |
-3 o <y<i> (Xu)T (Z a(z">y<z”>x<i’>> p_ 1)
1=1 =1 |

Kernelization

* \We can now substitute for w into L and simplify:

L(w,b,«a)

— L(«)

L Tw — 5™ o (4 (x0)7

oW W—;a (y (X W+b—1))
1 n 2 n n |
- (4) 5, (8) 5 ()| _ (@) [@ [@ " (4 5, (3") 5 (") _

En: a® — % Sn‘ f‘ NOINCGONOMCMORNCD
1=1

1=11'=1

Kernelization

o At test time, we compute the inner product between x
and w:

XTW +bH = XT <Z a(@)y(")x(@)) + b
1=1

Kernelization

o At test time, we compute the inner product between x
and w:

XTW +bH = XT <Z a(@)y(")x(@)) + b
1=1
1=1

 The result depends only on the inner products between
the test point x and each of the support vectors x0.

Kernelization

e Both during training and testing, we only use each
training point x0 as part of an inner product — we don’t

need the raw values themselves.

 Therefore, even if we want to transform each input using
¢, we only really need to know the inner products

between each ¢(x) and ¢(x?) (for training):

’I’L n

ZO‘ _ o)y (04 () T (5 ()

4
212’1

Kernelization

e Both during training and testing, we only use each
training point x0 as part of an inner product — we don’t

need the raw values themselves.

 Therefore, even if we want to transform each input using
¢, we only really need to know the inner products

between each ¢(x) and ¢(x") (for testing):

x wt+b =) ayPex)Te(x) +b
1=1

Kernelization

* For training, rather than compute @(x?) for every training
example x0...:

o o
X=1o¢xV) ... ¢(x")
| o

Kernelization

e ...instead compute the kernel matrix containing all pairs
of inner products:

o(x) (xM) L g(xM) p(x™)
K: .

)) p(x™)

o) Hx) g

Kernelization

e Then we just need to pass K to the SVM solver:

svm = sklearn.svm.SVC (kernel='precomputed')
K = Xtilde.T.dot(Xtilde) #K=X'X

svm.fit (K, y)

Kernelization

K is an n x n matrix, where n is # training examples.
Suppose n=1000, m=10000 (e.g., 100x100 pixels).

Storing each ¢(x") explicitly would take O(10,000,000)
bytes.

Storing just K will take O(1,000,000) bytes — 10x less!

Training the SVM in dual form can also be much faster
(forn <« m).

