
CS 453X: Class 13
Jacob Whitehill

Detour

L2-regularized regression

• Recall the definition of L2-regularized regression:

fMSE(w) =
1

2n

�
X>w � y

�> �
X>w � y

�
+

↵

2n
w>w

rwfMSE =
1

n
X

�
X>w � y

�
+

↵

n
w = 0

XX>w + ↵w = Xy
�
XX> + ↵I

�
w = Xy

w =
�
XX> + ↵I

��1
Xy

L2-regularized regression

• Recall the definition of L2-regularized regression:

fMSE(w) =
1

2n

�
X>w � y

�> �
X>w � y

�
+

↵

2n
w>w

rwfMSE =
1

n
X

�
X>w � y

�
+

↵

n
w = 0

XX>w + ↵w = Xy
�
XX> + ↵I

�
w = Xy

w =
�
XX> + ↵I

��1
Xy

L2-regularized regression

• Recall the definition of L2-regularized regression:

fMSE(w) =
1

2n

�
X>w � y

�> �
X>w � y

�
+

↵

2n
w>w

rwfMSE =
1

n
X

�
X>w � y

�
+

↵

n
w = 0

XX>w + ↵w = Xy
�
XX> + ↵I

�
w = Xy

w =
�
XX> + ↵I

��1
Xy

L2-regularized regression

• Recall the definition of L2-regularized regression:

fMSE(w) =
1

2n

�
X>w � y

�> �
X>w � y

�
+

↵

2n
w>w

rwfMSE =
1

n
X

�
X>w � y

�
+

↵

n
w = 0

XX>w + ↵w = Xy
�
XX> + ↵I

�
w = Xy

w =
�
XX> + ↵I

��1
Xy

m x m

Matrix inversion lemma
(special case)

• For any α > 0 and m x n matrix X:

• The RHS method is much faster!

(XX> + ↵I)�1 =
1

↵
I� 1

↵
X(X>X+ ↵I)�1X>

Matrix inversion lemma
(special case)

• For any α > 0 and m x n matrix X:

• The RHS method is much faster when n < m!

(XX> + ↵I)�1 =
1

↵
I� 1

↵
X(X>X+ ↵I)�1X>

m x m n x n

Kernel trick

Feature transformations
• The conceptually simplest approach to training a classifier

using transformed features is:

• Transform each example x into ɸ(x).

• Train on the transformed data ɸ(x(1)), …, ɸ(x(n))

• At test time:

• Transform the test point x to ɸ(x); then classify ɸ(x).

• This can be done for any ML model.

ML modelx Input transformer /
feature extractor

ɸ(x)
g(�(x))

Feature transformations

• To train a model in this way, we could easily construct the
design matrix of transformed examples:

• We can then pass X to the SVM solver: 
 
svm = sklearn.svm.SVC(kernel='linear')  
svm.fit(Xtilde, y)

X̃ =

2

4 �
�
x(1)

�
. . . �

�
x(n)

�
3

5

m x n

~

Feature transformations

• While this works fine in principle, for certain kinds of
models — those that can be kernelized — the process
can be made:

• More efficient.

• More powerful.

• SVMs are probably the most prominent kernelizable ML
model…

Kernelization
• Recall that, in an SVM, the optimal w will always be a linear

combination of the data points x(i), weighted by the α(i).

• Only the support vectors — those examples x(i) such that 
α(i) > 0 — will contribute to w:

L(w, b,↵) =
1

2
w>w �

nX

i=1

↵(i)
⇣
y(i)

⇣
x(i)>w + b� 1

⌘⌘

@L

@w
= w �

nX

i=1

↵(i)y(i)x(i)

=) w =
nX

i=1

↵(i)y(i)x(i)

Dual form
• This also suggests a different way of optimizing an SVM:

• Instead of optimizing over , where m is size of
the feature vector (e.g., number of image pixels), 
we can optimize over , where n is the number
of training examples.

L(w, b,↵) =
1

2
w>w �

nX

i=1

↵(i)
⇣
y(i)

⇣
x(i)>w + b� 1

⌘⌘

@L

@w
= w �

nX

i=1

↵(i)y(i)x(i)

=) w =
nX

i=1

↵(i)y(i)x(i)

w 2 Rm

↵ 2 Rn

Dual form
• Suppose we are training a smile detector, where the

number of features m = 10,000 and n=1000 (examples).

• Which would you rather optimize: or ?

L(w, b,↵) =
1

2
w>w �

nX

i=1

↵(i)
⇣
y(i)

⇣
x(i)>w + b� 1

⌘⌘

@L

@w
= w �

nX

i=1

↵(i)y(i)x(i)

=) w =
nX

i=1

↵(i)y(i)x(i)

w 2 Rm ↵ 2 Rn

Show support_vectors.py demo

Dual form

• Optimizing over α instead of w is called the dual form of
the constraint optimization.

• Optimizing w directly is called the primal form.

• Both approaches give the same solution.

• Training the SVM in dual form requires that we manipulate
the function L algebraically a bit first…

Kernelization

• By setting to 0 and solving, we can deduce:

L(w, b,↵) =
1

2
w>w �

nX

i=1

↵(i)
⇣
y(i)

⇣
x(i)>w + b� 1

⌘⌘

@L

@b
= �

nX

i=1

↵(i)y(i)

=)
nX

i=1

↵(i)y(i) = 0

@L

@b

L(w, b,↵) =
1

2
w>w �

nX

i=1

↵(i)
⇣
y(i)

⇣
x(i)>w + b� 1

⌘⌘

=
1

2

�����

nX

i=1

↵(i)y(i)x(i)

�����

2

�
nX

i=1

↵(i)

y(i)

x(i)>

nX

i0=1

↵(i0)y(i
0)x(i0)

!
+ b� 1

!!

=) L(↵) =
nX

i=1

↵(i) � 1

2

nX

i=1

nX

i0=1

↵(i)↵(i0)y(i)y(i
0)x(i)>x(i0)

Kernelization
• We can now substitute for w into L and simplify:

Kernelization
• We can now substitute for w into L and simplify:

The training data occur only as inner
products in the function L that we optimize.

L(w, b,↵) =
1

2
w>w �

nX

i=1

↵(i)
⇣
y(i)

⇣
x(i)>w + b� 1

⌘⌘

=
1

2

�����

nX

i=1

↵(i)y(i)x(i)

�����

2

�
nX

i=1

↵(i)

y(i)

x(i)>

nX

i0=1

↵(i0)y(i
0)x(i0)

!
+ b� 1

!!

=) L(↵) =
nX

i=1

↵(i) � 1

2

nX

i=1

nX

i0=1

↵(i)↵(i0)y(i)y(i
0)x(i)>x(i0)

Only a function
of α now.

Kernelization

• At test time, we compute the inner product between x
and w:

• The result depends only on the inner products between
the test point x and each of the support vectors x(i).

x>w + b = x>

nX

i=1

↵(i)y(i)x(i)

!
+ b

=
nX

i=1

↵(i)y(i)x>x(i) + b

Kernelization

• At test time, we compute the inner product between x
and w:

• The result depends only on the inner products between
the test point x and each of the support vectors x(i).

x>w + b = x>

nX

i=1

↵(i)y(i)x(i)

!
+ b

=
nX

i=1

↵(i)y(i)x>x(i) + b

Kernelization
• Both during training and testing, we only use each

training point x(i) as part of an inner product — we don’t
need the raw values themselves.

• Therefore, even if we want to transform each input using
ɸ, we only really need to know the inner products
between each ɸ(x) and ɸ(x(i)) (for training):

L(↵) =
nX

i=1

↵(i) � 1

2

nX

i=1

nX

i0=1

↵(i)↵(i0)y(i)y(i
0)�(x(i))>�(x(i0))

Kernelization
• Both during training and testing, we only use each

training point x(i) as part of an inner product — we don’t
need the raw values themselves.

• Therefore, even if we want to transform each input using
ɸ, we only really need to know the inner products
between each ɸ(x) and ɸ(x(i)) (for testing):

x>w + b =
nX

i=1

↵(i)y(i)�(x)>�(x(i)) + b

Kernelization

• For training, rather than compute ɸ(x(i)) for every training
example x(i)…:

X̃ =

2

4 �
�
x(1)

�
. . . �

�
x(n)

�
3

5

m x n

Kernelization

• …instead compute the kernel matrix containing all pairs
of inner products:

K =

2

664

�(x(1))
>
�(x(1)) . . . �(x(1))

>
�(x(n))

. . .

�(x(n))
>
�(x(1)) . . . �(x(n))

>
�(x(n))

3

775

n x n

Kernelization

• Then we just need to pass K to the SVM solver: 
 
svm = sklearn.svm.SVC(kernel='precomputed')  
K = Xtilde.T.dot(Xtilde) #  
svm.fit(K, y)

K = X̃>X̃

Kernelization
• K is an n x n matrix, where n is # training examples.

• Suppose n=1000, m=10000 (e.g., 100x100 pixels).

• Storing each ɸ(x(i)) explicitly would take O(10,000,000)
bytes.

• Storing just K will take O(1,000,000) bytes — 10x less!

• Training the SVM in dual form can also be much faster 
(for n ≪ m).

