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Detour



L2-regularized regression

• Recall the definition of L2-regularized regression:
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L2-regularized regression

• Recall the definition of L2-regularized regression:
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Matrix inversion lemma 
(special case)

• For any α > 0 and m x n matrix X:


• The RHS method is much faster!
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Matrix inversion lemma 
(special case)

• For any α > 0 and m x n matrix X:


• The RHS method is much faster when n < m!

(XX> + ↵I)�1 =
1

↵
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↵
X(X>X+ ↵I)�1X>

m x m n x n



Kernel trick



Feature transformations
• The conceptually simplest approach to training a classifier 

using transformed features is:


• Transform each example x into ɸ(x).


• Train on the transformed data ɸ(x(1)), …, ɸ(x(n))


• At test time:


• Transform the test point x to ɸ(x); then classify ɸ(x).


• This can be done for any ML model.

ML modelx Input transformer / 
feature extractor

ɸ(x)
g(�(x))



Feature transformations

• To train a model in this way, we could easily construct the 
design matrix of transformed examples:


• We can then pass X to the SVM solver: 
 
svm = sklearn.svm.SVC(kernel='linear')  
svm.fit(Xtilde, y)
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Feature transformations

• While this works fine in principle, for certain kinds of 
models — those that can be kernelized — the process 
can be made:


• More efficient.


• More powerful.


• SVMs are probably the most prominent kernelizable ML 
model…



Kernelization
• Recall that, in an SVM, the optimal w will always be a linear 

combination of the data points x(i), weighted by the α(i).


• Only the support vectors — those examples x(i) such that 
α(i) > 0 — will contribute to w:
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Dual form
• This also suggests a different way of optimizing an SVM:


• Instead of optimizing over                , where m is size of 
the feature vector (e.g., number of image pixels), 
we can optimize over              , where n is the number 
of training examples.
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Dual form
• Suppose we are training a smile detector, where the 

number of features m = 10,000 and n=1000 (examples).


• Which would you rather optimize:                or              ?

L(w, b,↵) =
1

2
w>w �

nX

i=1

↵(i)
⇣
y(i)

⇣
x(i)>w + b� 1

⌘⌘

@L

@w
= w �

nX

i=1

↵(i)y(i)x(i)

=) w =
nX

i=1

↵(i)y(i)x(i)

w 2 Rm ↵ 2 Rn

Show support_vectors.py demo



Dual form

• Optimizing over α instead of w is called the dual form of 
the constraint optimization.


• Optimizing w directly is called the primal form.


• Both approaches give the same solution.


• Training the SVM in dual form requires that we manipulate 
the function L algebraically a bit first…



Kernelization

• By setting        to 0 and solving, we can deduce:
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Kernelization
• We can now substitute for w into L and simplify:



Kernelization
• We can now substitute for w into L and simplify:

The training data occur only as inner 
products in the function L that we optimize.
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Only a function 
of α now.



Kernelization

• At test time, we compute the inner product between x 
and w:


• The result depends only on the inner products between 
the test point x and each of the support vectors x(i).

x>w + b = x>

 
nX

i=1

↵(i)y(i)x(i)

!
+ b

=
nX

i=1

↵(i)y(i)x>x(i) + b



Kernelization

• At test time, we compute the inner product between x 
and w:


• The result depends only on the inner products between 
the test point x and each of the support vectors x(i).

x>w + b = x>

 
nX

i=1

↵(i)y(i)x(i)

!
+ b

=
nX

i=1

↵(i)y(i)x>x(i) + b



Kernelization
• Both during training and testing, we only use each 

training point x(i) as part of an inner product — we don’t 
need the raw values themselves.


• Therefore, even if we want to transform each input using 
ɸ, we only really need to know the inner products 
between each ɸ(x) and ɸ(x(i)) (for training):
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Kernelization
• Both during training and testing, we only use each 

training point x(i) as part of an inner product — we don’t 
need the raw values themselves.


• Therefore, even if we want to transform each input using 
ɸ, we only really need to know the inner products 
between each ɸ(x) and ɸ(x(i)) (for testing):
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Kernelization

• For training, rather than compute ɸ(x(i)) for every training 
example x(i)…:
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Kernelization

• …instead compute the kernel matrix containing all pairs 
of inner products:
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Kernelization

• Then we just need to pass K to the SVM solver: 
 
svm = sklearn.svm.SVC(kernel='precomputed')  
K = Xtilde.T.dot(Xtilde)   #  
svm.fit(K, y)

K = X̃>X̃



Kernelization
• K is an n x n matrix, where n is # training examples.


• Suppose n=1000, m=10000 (e.g., 100x100 pixels).


• Storing each ɸ(x(i)) explicitly would take O(10,000,000) 
bytes.


• Storing just K will take O(1,000,000) bytes — 10x less!


• Training the SVM in dual form can also be much faster 
(for n ≪ m).


