CS 453X: Class 13

Jacob Whitehill

Detour

$$f_{\text{MSE}}(\mathbf{w}) = \frac{1}{2n} (\mathbf{X}^{\top} \mathbf{w} - \mathbf{y})^{\top} (\mathbf{X}^{\top} \mathbf{w} - \mathbf{y}) + \frac{\alpha}{2n} \mathbf{w}^{\top} \mathbf{w}$$
$$\nabla_{\mathbf{w}} f_{\text{MSE}} = \frac{1}{n} \mathbf{X} (\mathbf{X}^{\top} \mathbf{w} - \mathbf{y}) + \frac{\alpha}{n} \mathbf{w} = 0$$

$$f_{\text{MSE}}(\mathbf{w}) = \frac{1}{2n} (\mathbf{X}^{\top} \mathbf{w} - \mathbf{y})^{\top} (\mathbf{X}^{\top} \mathbf{w} - \mathbf{y}) + \frac{\alpha}{2n} \mathbf{w}^{\top} \mathbf{w}$$

$$\nabla_{\mathbf{w}} f_{\text{MSE}} = \frac{1}{n} \mathbf{X} (\mathbf{X}^{\top} \mathbf{w} - \mathbf{y}) + \frac{\alpha}{n} \mathbf{w} = 0$$

$$\mathbf{X} \mathbf{X}^{\top} \mathbf{w} + \alpha \mathbf{w} = \mathbf{X} \mathbf{y}$$

$$f_{\text{MSE}}(\mathbf{w}) = \frac{1}{2n} (\mathbf{X}^{\top} \mathbf{w} - \mathbf{y})^{\top} (\mathbf{X}^{\top} \mathbf{w} - \mathbf{y}) + \frac{\alpha}{2n} \mathbf{w}^{\top} \mathbf{w}$$

$$\nabla_{\mathbf{w}} f_{\text{MSE}} = \frac{1}{n} \mathbf{X} (\mathbf{X}^{\top} \mathbf{w} - \mathbf{y}) + \frac{\alpha}{n} \mathbf{w} = 0$$

$$\mathbf{X} \mathbf{X}^{\top} \mathbf{w} + \alpha \mathbf{w} = \mathbf{X} \mathbf{y}$$

$$(\mathbf{X} \mathbf{X}^{\top} + \alpha \mathbf{I}) \mathbf{w} = \mathbf{X} \mathbf{y}$$

$$f_{\text{MSE}}(\mathbf{w}) = \frac{1}{2n} (\mathbf{X}^{\top} \mathbf{w} - \mathbf{y})^{\top} (\mathbf{X}^{\top} \mathbf{w} - \mathbf{y}) + \frac{\alpha}{2n} \mathbf{w}^{\top} \mathbf{w}$$

$$\nabla_{\mathbf{w}} f_{\text{MSE}} = \frac{1}{n} \mathbf{X} (\mathbf{X}^{\top} \mathbf{w} - \mathbf{y}) + \frac{\alpha}{n} \mathbf{w} = 0$$

$$\mathbf{X} \mathbf{X}^{\top} \mathbf{w} + \alpha \mathbf{w} = \mathbf{X} \mathbf{y}$$

$$(\mathbf{X} \mathbf{X}^{\top} + \alpha \mathbf{I}) \mathbf{w} = \mathbf{X} \mathbf{y}$$

$$\mathbf{w} = (\mathbf{X} \mathbf{X}^{\top} + \alpha \mathbf{I})^{-1} \mathbf{X} \mathbf{y}$$

$$\mathbf{w} = \mathbf{x} \mathbf{m} \mathbf{x} \mathbf{m}$$

Matrix inversion lemma (special case)

• For any a > 0 and $m \times n$ matrix **X**:

$$(\mathbf{X}\mathbf{X}^{\top} + \alpha \mathbf{I})^{-1} = \frac{1}{\alpha}\mathbf{I} - \frac{1}{\alpha}\mathbf{X}(\mathbf{X}^{\top}\mathbf{X} + \alpha \mathbf{I})^{-1}\mathbf{X}^{\top}$$

Matrix inversion lemma (special case)

• For any $\alpha > 0$ and $m \times n$ matrix **X**:

$$(\mathbf{X}\mathbf{X}^{\top} + \alpha \mathbf{I})^{-1} = \frac{1}{\alpha}\mathbf{I} - \frac{1}{\alpha}\mathbf{X}(\mathbf{X}^{\top}\mathbf{X} + \alpha \mathbf{I})^{-1}\mathbf{X}^{\top}$$

The RHS method is much faster when n < m!

Kernel trick

Feature transformations

- The conceptually simplest approach to training a classifier using transformed features is:
 - Transform each example **x** into $\phi(\mathbf{x})$.
 - Train on the transformed data $\phi(\mathbf{x}^{(1)}), \ldots, \phi(\mathbf{x}^{(n)})$
- At test time:
 - Transform the test point **x** to $\phi(\mathbf{x})$; then classify $\phi(\mathbf{x})$.
- This can be done for any ML model.

Feature transformations

 To train a model in this way, we could easily construct the design matrix of transformed examples:

$$\tilde{\mathbf{X}} = \begin{bmatrix} \phi(\mathbf{x}^{(1)}) & \dots & \phi(\mathbf{x}^{(n)}) \\ \phi(\mathbf{x}^{(n)}) & \dots & \phi(\mathbf{x}^{(n)}) \end{bmatrix}$$

We can then pass X to the SVM solver:

```
svm = sklearn.svm.SVC(kernel='linear')
svm.fit(Xtilde, y)
```

Feature transformations

- While this works fine in principle, for certain kinds of models — those that can be **kernelized** — the process can be made:
 - More efficient.
 - More powerful.
- SVMs are probably the most prominent kernelizable ML model...

- Recall that, in an SVM, the optimal **w** will always be a **linear combination** of the data points $\mathbf{x}^{(i)}$, weighted by the $a^{(i)}$.
- Only the support vectors those examples $\mathbf{x}^{(i)}$ such that $a^{(i)} > 0$ will contribute to \mathbf{w} :

$$L(\mathbf{w}, b, \alpha) = \frac{1}{2} \mathbf{w}^{\top} \mathbf{w} - \sum_{i=1}^{n} \alpha^{(i)} \left(y^{(i)} \left(\mathbf{x}^{(i)}^{\top} \mathbf{w} + b - 1 \right) \right)$$

$$\frac{\partial L}{\partial \mathbf{w}} = \mathbf{w} - \sum_{i=1}^{n} \alpha^{(i)} y^{(i)} \mathbf{x}^{(i)}$$

$$\implies \mathbf{w} = \sum_{i=1}^{n} \alpha^{(i)} y^{(i)} \mathbf{x}^{(i)}$$

Dual form

- This also suggests a different way of optimizing an SVM:
 - Instead of optimizing over $\mathbf{w} \in \mathbb{R}^m$, where m is size of the feature vector (e.g., number of image pixels), we can optimize over $\alpha \in \mathbb{R}^n$, where n is the number of training examples.

$$L(\mathbf{w}, b, \alpha) = \frac{1}{2} \mathbf{w}^{\top} \mathbf{w} - \sum_{i=1}^{n} \alpha^{(i)} \left(y^{(i)} \left(\mathbf{x}^{(i)}^{\top} \mathbf{w} + b - 1 \right) \right)$$

$$\frac{\partial L}{\partial \mathbf{w}} = \mathbf{w} - \sum_{i=1}^{n} \alpha^{(i)} y^{(i)} \mathbf{x}^{(i)}$$

$$\implies \mathbf{w} = \sum_{i=1}^{n} \alpha^{(i)} y^{(i)} \mathbf{x}^{(i)}$$

Dual form

- Suppose we are training a smile detector, where the number of features m = 10,000 and n=1000 (examples).
- Which would you rather optimize: $\mathbf{w} \in \mathbb{R}^m$ or $\alpha \in \mathbb{R}^n$?

$$L(\mathbf{w}, b, \alpha) = \frac{1}{2} \mathbf{w}^{\top} \mathbf{w} - \sum_{i=1}^{n} \alpha^{(i)} \left(y^{(i)} \left(\mathbf{x}^{(i)}^{\top} \mathbf{w} + b - 1 \right) \right)$$

$$\frac{\partial L}{\partial \mathbf{w}} = \mathbf{w} - \sum_{i=1}^{n} \alpha^{(i)} y^{(i)} \mathbf{x}^{(i)}$$

$$\implies \mathbf{w} = \sum_{i=1}^{n} \alpha^{(i)} y^{(i)} \mathbf{x}^{(i)}$$

Show support_vectors.py demo

Dual form

- Optimizing over α instead of w is called the dual form of the constraint optimization.
- Optimizing w directly is called the primal form.
- Both approaches give the same solution.
- Training the SVM in dual form requires that we manipulate the function L algebraically a bit first...

• By setting $\frac{\partial L}{\partial b}$ to 0 and solving, we can deduce:

$$L(\mathbf{w}, b, \alpha) = \frac{1}{2} \mathbf{w}^{\top} \mathbf{w} - \sum_{i=1}^{n} \alpha^{(i)} \left(y^{(i)} \left(\mathbf{x}^{(i)}^{\top} \mathbf{w} + b - 1 \right) \right)$$

$$\frac{\partial L}{\partial b} = -\sum_{i=1}^{n} \alpha^{(i)} y^{(i)}$$

$$\implies \sum_{i=1}^{n} \alpha^{(i)} y^{(i)} = 0$$

We can now substitute for w into L and simplify:

$$L(\mathbf{w}, b, \alpha) = \frac{1}{2} \mathbf{w}^{\top} \mathbf{w} - \sum_{i=1}^{n} \alpha^{(i)} \left(y^{(i)} \left(\mathbf{x}^{(i)}^{\top} \mathbf{w} + b - 1 \right) \right)$$

$$= \frac{1}{2} \left| \sum_{i=1}^{n} \alpha^{(i)} y^{(i)} \mathbf{x}^{(i)} \right|^{2} - \sum_{i=1}^{n} \alpha^{(i)} \left(y^{(i)} \left(\mathbf{x}^{(i)}^{\top} \left(\sum_{i'=1}^{n} \alpha^{(i')} y^{(i')} \mathbf{x}^{(i')} \right) + b - 1 \right) \right|$$

We can now substitute for w into L and simplify:

$$L(\mathbf{w}, b, \alpha) = \frac{1}{2} \mathbf{w}^{\top} \mathbf{w} - \sum_{i=1}^{n} \alpha^{(i)} \left(y^{(i)} \left(\mathbf{x}^{(i)}^{\top} \mathbf{w} + b - 1 \right) \right)$$

$$= \frac{1}{2} \left| \sum_{i=1}^{n} \alpha^{(i)} y^{(i)} \mathbf{x}^{(i)} \right|^{2} - \sum_{i=1}^{n} \alpha^{(i)} \left(y^{(i)} \left(\mathbf{x}^{(i)}^{\top} \left(\sum_{i'=1}^{n} \alpha^{(i')} y^{(i')} \mathbf{x}^{(i')} \right) + b - 1 \right) \right)$$

$$\implies L(\alpha) = \sum_{i=1}^{n} \alpha^{(i)} - \frac{1}{2} \sum_{i=1}^{n} \sum_{i'=1}^{n} \alpha^{(i)} \alpha^{(i')} y^{(i)} y^{(i')} \mathbf{x}^{(i)}^{\top} \mathbf{x}^{(i')}$$

Only a function of α now.

The training data occur only as inner products in the function *L* that we optimize.

At test time, we compute the inner product between x and w:

$$\mathbf{x}^{\top}\mathbf{w} + b = \mathbf{x}^{\top} \left(\sum_{i=1}^{n} \alpha^{(i)} y^{(i)} \mathbf{x}^{(i)} \right) + b$$

At test time, we compute the inner product between x and w:

$$\mathbf{x}^{\top}\mathbf{w} + b = \mathbf{x}^{\top} \left(\sum_{i=1}^{n} \alpha^{(i)} y^{(i)} \mathbf{x}^{(i)} \right) + b$$
$$= \sum_{i=1}^{n} \alpha^{(i)} y^{(i)} \mathbf{x}^{\top} \mathbf{x}^{(i)} + b$$

 The result depends only on the inner products between the test point x and each of the support vectors x⁽ⁱ⁾.

- Both during training and testing, we only use each training point x⁽ⁱ⁾ as part of an inner product — we don't need the raw values themselves.
- Therefore, even if we want to transform each input **using** ϕ , we only really need to know the inner products between each $\phi(\mathbf{x})$ and $\phi(\mathbf{x})$ (for training):

$$L(\alpha) = \sum_{i=1}^{n} \alpha^{(i)} - \frac{1}{2} \sum_{i=1}^{n} \sum_{i'=1}^{n} \alpha^{(i)} \alpha^{(i')} y^{(i)} y^{(i')} \phi(\mathbf{x}^{(i)})^{\top} \phi(\mathbf{x}^{(i')})$$

- Both during training and testing, we only use each training point x⁽ⁱ⁾ as part of an inner product — we don't need the raw values themselves.
- Therefore, even if we want to transform each input **using** ϕ , we only really need to know the inner products between each $\phi(\mathbf{x})$ and $\phi(\mathbf{x})$ (for testing):

$$\mathbf{x}^{\top}\mathbf{w} + b = \sum_{i=1}^{n} \alpha^{(i)} y^{(i)} \phi(\mathbf{x})^{\top} \phi(\mathbf{x}^{(i)}) + b$$

For training, rather than compute φ(x⁽ⁱ⁾) for every training example x⁽ⁱ⁾...:

$$\tilde{\mathbf{X}} = \begin{bmatrix} \phi(\mathbf{x}^{(1)}) & \dots & \phi(\mathbf{x}^{(n)}) \\ & & \end{bmatrix}$$

 $m \times n$

 ...instead compute the kernel matrix containing all pairs of inner products:

$$\mathbf{K} = \begin{bmatrix} \phi(\mathbf{x}^{(1)})^{\top} \phi(\mathbf{x}^{(1)}) & \dots & \phi(\mathbf{x}^{(1)})^{\top} \phi(\mathbf{x}^{(n)}) \\ & \ddots & & \\ \phi(\mathbf{x}^{(n)})^{\top} \phi(\mathbf{x}^{(1)}) & \dots & \phi(\mathbf{x}^{(n)})^{\top} \phi(\mathbf{x}^{(n)}) \end{bmatrix}$$

Then we just need to pass K to the SVM solver:

```
\label{eq:sym} \begin{split} \text{svm} &= \text{sklearn.svm.SVC} \, (\text{kernel='precomputed'}) \\ \text{K} &= \text{Xtilde.T.dot} \, (\text{Xtilde}) & \# \, K = \tilde{X}^\top \tilde{X} \\ \text{svm.fit} \, (\text{K, y}) \end{split}
```

- K is an n x n matrix, where n is # training examples.
- Suppose n=1000, m=10000 (e.g., 100x100 pixels).
- Storing each $\phi(\mathbf{x}^{(i)})$ explicitly would take O(10,000,000) bytes.
- Storing just K will take O(1,000,000) bytes 10x less!
- Training the SVM in dual form can also be much faster (for n ≪ m).