Quadratic programming
Quadratic programming

- Quadratic programming is *not* a kind of computer programming.

- **Quadratic programming (QP)** problems are a kind of mathematical optimization problem:
 - Quadratic objective function (which we want to minimize or maximize).
 - Linear equality and/or inequality constraints.
 - Same vein as linear programming, dynamic programming.
Quadratic programming

- Nonetheless, quadratic programs are typically solved using computer programs.

- As part of homework 4, you will use an off-the-shelf Python-based quadratic programming solver (cvxopt).
Solves the pair of primal and dual convex quadratic programs

\[
\begin{align*}
\text{minimize} & \quad \frac{1}{2} x^T P x + q^T x \\
\text{subject to} & \quad G x \leq h \\
& \quad A x = b
\end{align*}
\]

`cvxopt.solversqp(P, q [, G, h [, A, b [, solver [, initvals]]]]])`

http://cvxopt.org/userguide/coneprog.html#quadratic-programming
To train an SVM using a QP, we need to define the appropriate matrices from our training data.

The x comprises both the w (hyperplane) and b (bias) (similar to how we implemented bias in linear regression).
cvxopt

Solves the pair of primal and dual convex quadratic programs

\[
\begin{align*}
\text{minimize} & \quad \frac{1}{2}x^T P x + q^T x \\
\text{subject to} & \quad Gx \leq h \\
& \quad Ax = b
\end{align*}
\]

• \(q \) will just be 0 (we have no linear objective function).

• \(P \): part of homework 4.

http://cvxopt.org/userguide/coneprog.html#quadratic-programming
- \(\mathbf{G} \) and \(\mathbf{h} \) need to encode the linear inequality constraints.

- We will not use \(\mathbf{A} \) or \(\mathbf{b} \) (optional parameters) since we have no equality constraints.

http://cvxopt.org/userguide/coneprog.html#quadratic-programming
Defining G and h

- Suppose you have just two optimization variables — x_1 and x_2 — as well as the following constraints:
 - $2x_1 - 3x_2 \leq 2$
 - $x_1 + x_2 \geq 0$
- We need to express these both as linear inequality constraints (≤ 0).
Defining G and h

- Suppose you have just two optimization variables — x_1 and x_2 — as well as the following constraints:
 - $2x_1 - 3x_2 \leq 2$
 - $x_1 + x_2 \geq 0 \Rightarrow -x_1 - x_2 \leq 0$

- We need to express these both as linear inequality constraints (≤ 0).
Defining G and h

• Suppose you have just two optimization variables — x_1 and x_2 — as well as the following constraints:
 • $2x_1 - 3x_2 \leq 2$
 • $x_1 + x_2 \geq 0 \Rightarrow -x_1 - x_2 \leq 0$

• We need to express these both as linear inequality constraints (≤ 0).

\[
\begin{bmatrix}
2 & -3 \\
-1 & -1
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
\leq
\begin{bmatrix}
2 \\
0
\end{bmatrix}
\]
SVM: classification
Here’s how an SVM classifies a new example:

\[\hat{y} = \text{sgn}(x^\top w + b) \]

Can decide class arbitrarily if sgn = 0.
Soft-margin SVMs
Soft vs hard SVM margin

• The SVM defined so far is a **hard margin** SVM:
 - The hyperplane must perfectly separate all the + from the - examples.

• In many settings, this is unrealistic because the data are **linearly inseparable** — no separating hyperplane exists.

• To support such datasets, a **soft margin** SVM has also been formulated that allows for small “infractions” of the constraints.
We can “soften” the SVM constraint by allowing for slack in the position of each data point \(i \) w.r.t. the hyperplane \(H \).
Soft margin SVM

• With a soft-margin SVM, we loosen the constraint on each data point $x^{(i)}$ by giving it a slack variable $\xi^{(i)}$.

• We penalize large slack variables using a penalty parameter C.

• The new optimization problem becomes:

 - Minimize: $\frac{1}{2}w^T w + C \sum_{i=1}^{n} \xi^{(i)}$

 - Subject to: $y^{(i)} \left(x^{(i)^T} w + b \right) \geq 1 - \xi^{(i)}$

 Error penalty

 Slack
Feature transformations
Linearly inseparable data

- SVMs use a hyperplane to separate data in two classes.
- But what if the data are **linearly inseparable**, e.g.:
 - No matter what w, b we choose, the SVM will never do a good job of classifying the data.
Linearly inseparable data

- SVMs use a hyperplane to separate data in two classes.
- But what if the data are **linearly inseparable**, e.g.:
- No matter what w, b we choose, the SVM will never do a good job of classifying the data.
Linearly inseparable data

- SVMs use a hyperplane to separate data in two classes.
- But what if the data are **linearly inseparable**, e.g.:
 - No matter what w, b we choose, the SVM will never do a good job of classifying the data.
Feature transformations

- But what if we somehow transformed the raw input x into some (possibly higher-dimensional) representation $\phi(x)$?
- Might the classes become linearly separable then?

\[\hat{y} = \text{sgn}(\phi(x)^T w + b) \]

Can decide class arbitrarily if $\text{sgn} = 0$.

SVM: w, b
Example

- The data shown below are not linearly separable.

- What is the essential difference between the classes?
Example

- The data shown below are not linearly separable.
- What is the essential difference between the classes?
 - The blue points are farther from the origin than the orange points.
- How could we measure distance?

$x^2 + y^2$
Example

- The data shown below are not linearly separable.

- What is the essential difference between the classes?

- The blue points are farther from the origin than the orange points.

- How could we measure distance?
 - $x^2 + y^2$
• We can render these two classes linearly separable by first transforming each point \((x,y)\) into:

\[
\phi(x, y) = \begin{bmatrix} x^2 + y^2 \\ 0 \end{bmatrix}
\]

The \(x\) coordinate will already reveal the class label; hence, the \(y\)-coordinate doesn’t matter.
Exercise 1

- Which of the following transformation(s) will make these data linearly separable?

1. \(\phi(x, y) = \begin{bmatrix} x^2 \\ y^2 \end{bmatrix} \)

2. \(\phi(x, y) = \begin{bmatrix} x \\ x^2 + y^2 \end{bmatrix} \)

3. \(\phi(x, y) = \begin{bmatrix} x \\ xy \end{bmatrix} \)
Exercise 1

• Which of the following transformation(s) will make these data linearly separable?

1. \(\phi(x, y) = \begin{bmatrix} x^2 \\ y^2 \end{bmatrix} \)

This collapses across both the left-right and up-down half-spaces, but does not render the two classes linearly separable.
Exercise 1

• Which of the following transformation(s) will make these data linearly separable?

2. \(\phi(x, y) = \begin{bmatrix} x \\ x^2 + y^2 \end{bmatrix} \)

\(x^2 + y^2 \) computes the distance from the origin, which is not related to the class label in this problem.
Exercise 1

- Which of the following transformation(s) will make these data linearly separable?

\[\phi(x, y) = \begin{bmatrix} x \\ xy \end{bmatrix} \]

xy actually determines the class label in this problem; hence, this transformation makes the classes separable.
Exercise 2

• Which of the following transformation(s) will make these data linearly separable?

1. \(\phi(x, y) = \begin{bmatrix} x + y \\ x - y \end{bmatrix} \)

2. \(\phi(x, y) = \begin{bmatrix} \cos(x) \\ y \end{bmatrix} \)

3. \(\phi(x, y) = \begin{bmatrix} |x| \\ y \end{bmatrix} \)
Exercise 2

- Which of the following transformation(s) will make these data linearly separable?

1. \(\phi(x, y) = \begin{bmatrix} x + y \\ x - y \end{bmatrix} \)

This transformation is linear because it can be written:

\[
\phi(x, y) = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}
\]
Exercise 2

• Which of the following transformation(s) will make these data linearly separable?

1. \(\phi(x, y) = \begin{bmatrix} x + y \\ x - y \end{bmatrix} \)

Linear transformations can only rotate, scale, and shear the input data.

No linear transformation can make linearly inseparable data linearly separable.
Exercise 2

- Which of the following transformation(s) will make these data linearly separable?

Since y is already $\sim \cos(x)$, transforming x to $\cos(x)$ puts the two axes on the same scale.

2. $\phi(x, y) = \begin{bmatrix} \cos(x) \\ y \end{bmatrix}$
Exercise 2

• Which of the following transformation(s) will make these data linearly separable?

Because of the gap between the two curves, collapsing across the two left and right half-spaces (via $|x|$) renders the classes linearly separable.

3. $\phi(x, y) = \left[\begin{array}{c} |x| \\ y \end{array} \right]$
Example

• Let’s re-visit this set of data…

• Feature transformations are usually applied to map the input data into a higher dimensional space.

• With higher dimensions, there is a greater opportunity for the classes to separate.
Example

• For example, we might apply the transformation:

\[\phi(x, y) = \begin{bmatrix} x \\ y \\ x^2 + y^2 \end{bmatrix} \]

Here, we transform each 2-D \(x \) into a 3-D \(\phi(x) \).

Now, a hyperplane perpendicular to the \(z \) axis perfectly separates the two classes.
Feature engineering

- Deciding on a suitable transformation of the raw input space to make the data more amenable to classification is sometimes called **feature engineering**.

- Traditionally, this has been performed by hand using domain knowledge of the application domain.

- More recently (with deep neural networks), this is performed implicitly by the training process itself (more on this later).
Feature engineering: example 1

• Suppose you are forecasting stock prices based on historical data.

• One useful predictor might be the volatility of the stock during the past month.

• We can measure the change of the stock price relative to the previous day’s price with variable $\Delta t = x_t - x_{t-1}$.

• Because we care more about the absolute change than the sign of the change, we use $(\Delta t)^2$ as a feature rather than the “raw” value Δt.
Feature engineering: example 2

- For classifying facial expression, it can be useful to focus on “edges” in the image, e.g., due to dimples, wrinkles, eyebrows, etc.

- Instead of classifying the raw image...

- ... we can instead classify a filtered image: