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Quadratic 
programming



Quadratic programming
• Quadratic programming is not a kind of computer 

programming.


• Quadratic programming (QP) problems are a kind of 
mathematical optimization problem:


• Quadratic objective function (which we want to 
minimize or maximize).


• Linear equality and/or inequality constraints.


• Same vein as linear programming, dynamic programming.



Quadratic programming

• Nonetheless, quadratic programs are typically solved 
using computer programs.


• As part of homework 4, you will use an off-the-shelf 
Python-based quadratic programming solver (cvxopt).



cvxopt

http://cvxopt.org/userguide/coneprog.html#quadratic-programming



cvxopt

http://cvxopt.org/userguide/coneprog.html#quadratic-programming

Equality constraintsInequality constraints

Linear objectiveQuadratic objective

• To train an SVM using a QP, we need to define the 
appropriate matrices from our training data.


• The x comprises both the w (hyperplane) and b (bias) 
(similar to how we implemented bias in linear regression).



cvxopt

http://cvxopt.org/userguide/coneprog.html#quadratic-programming

Equality constraintsInequality constraints

Linear objectiveQuadratic objective

• q will just be 0 (we have no linear objective function).


• P: part of homework 4.



cvxopt

http://cvxopt.org/userguide/coneprog.html#quadratic-programming

Equality constraintsInequality constraints

Linear objectiveQuadratic objective

• G and h need to encode the linear inequality constraints.


• We will not use A or b (optional parameters) since we 
have no equality constraints.



Defining G and h

• Suppose you have just two optimization variables — x1 
and x2 — as well as the following constraints:


• 2x1 - 3x2 ≤ 2


• x1 + x2 ≥ 0   ⇒   -x1 - x2 ≤ 0


• We need to express these both as linear inequality 
constraints (≤ 0).
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SVM: classification



SVM: classification

• Here’s how an SVM classifies a new example:

SVM: w, bx ŷ = sgn(x>w + b)
Can decide class 

arbitrarily if sgn = 0.



Soft-margin SVMs



Soft vs hard SVM margin

• The SVM defined so far is a hard margin SVM:


• The hyperplane must perfectly separate all the + from 
the - examples.


• In many settings, this is unrealistic because the data are 
linearly inseparable — no separating hyperplane exists.


• To support such datasets, a soft margin SVM has also 
been formulated that allows for small “infractions” of the 
constraints.



Soft vs hard SVM margin

• We can “soften” the SVM constraint by allowing for slack 
in the position of each data point i w.r.t. the hyperplane H.
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Soft margin SVM
• With a soft-margin SVM, we loosen the constraint on 

each data point x(i) by giving it a slack variable ξ(i).


• We penalize large slack variables using a penalty 
parameter C.


• The new optimization problem becomes:


• Minimize:


• Subject to: y(i)
⇣
x(i)>w + b
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Feature 
transformations



Linearly inseparable data

• SVMs use a hyperplane to separate data in two classes.


• But what if the data are linearly inseparable, e.g.:

“XOR” problem

• No matter what w, b 
we choose, the SVM 
will never do a good 
job of classifying the 
data.
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Linearly inseparable data

• SVMs use a hyperplane to separate data in two classes.


• But what if the data are linearly inseparable, e.g.:

“XOR” problem

• No matter what w, b 
we choose, the SVM 
will never do a good 
job of classifying the 
data.



Feature transformations

SVM: w, bx
Can decide class 

arbitrarily if sgn = 0.

Input transformer / 
feature extractor

ɸ(x)
ŷ = sgn(�(x)>w + b)

• But what if we somehow transformed the raw input x into 
some (possibly higher-dimensional) representation ɸ(x)?


• Might the classes become linearly separable then?



Example
• The data shown below are not linearly separable.


• What is the essential difference between the classes?



Example
• The data shown below are not linearly separable.


• What is the essential difference between the classes?

• The blue points are 
farther from the origin 
than the orange points.


• How could we measure 
distance?


• x2 + y2
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Example
• We can render these two classes linearly separable by 

first transforming each point (x,y) into:

�(x, y) =


x2 + y2

0

�

The x coordinate will already 
reveal the class label; hence, 

the y-coordinate doesn’t matter.
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Exercise 1
• Which of the following transformation(s) will make these 

data linearly separable?
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Exercise 1
• Which of the following transformation(s) will make these 

data linearly separable?

�(x, y) =


x2

y2

�
1.

This collapses across both 
the left-right and up-down 
half-spaces, but does not 

render the two classes 
linearly separable.



Exercise 1
• Which of the following transformation(s) will make these 

data linearly separable?

�(x, y) =


x

x2 + y2

�
2.

x2 + y2 computes the 
distance from the origin, 

which is not related to the 
class label in this problem.



Exercise 1
• Which of the following transformation(s) will make these 

data linearly separable?

�(x, y) =


x
xy

�
3.

xy actually determines the 
class label in this problem; 
hence, this transformation 

makes the classes separable.



Exercise 2
• Which of the following transformation(s) will make these 

data linearly separable?
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Exercise 2
• Which of the following transformation(s) will make these 

data linearly separable?

�(x, y) =
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x� y

�
1.

This transformation is linear 
because it can be written:
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Exercise 2
• Which of the following transformation(s) will make these 

data linearly separable?

�(x, y) =


x+ y
x� y

�
1.

Linear transformations can 
only rotate, scale, and shear 

the input data.
No linear transformation can 

make linearly inseparable 
data linearly separable.



Exercise 2
• Which of the following transformation(s) will make these 

data linearly separable?

�(x, y) =


cos(x)

y

�
2.

Since y is already ~cos(x), 
transforming x to cos(x) puts 

the two axes on the same scale.



Exercise 2
• Which of the following transformation(s) will make these 

data linearly separable?

�(x, y) =
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|x|
y

�
3.

Because of the gap between 
the two curves, collapsing 

across the two left and right 
half-spaces (via |x|) renders the 

classes linearly separable.
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Example
• Let’s re-visit this set of data…

• Feature transformations 
are usually applied to 
map the input data into 
a higher dimensional 
space.


• With higher dimensions, 
there is a greater 
opportunity for the 
classes to separate.



Example
• For example, we might apply the transformation:

�(x, y) =

2
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Here, we transform each 2-D x 
into a 3-D ɸ(x).

Now, a hyperplane perpendicular 
to the z axis perfectly separates 

the two classes.



Feature engineering

• Deciding on a suitable transformation of the raw input 
space to make the data more amenable to classification 
is sometimes called feature engineering.


• Traditionally, this has been performed by hand using 
domain knowledge of the application domain.


• More recently (with deep neural networks), this is 
performed implicitly by the training process itself (more on 
this later).



Feature engineering: 
example 1

• Suppose you are forecasting stock prices based on 
historical data.


• One useful predictor might be the volatility of the stock 
during the past month.


• We can measure the change of the stock price relative to 
the previous day’s price with variable Δt = xt - xt-1.


• Because we care more about the absolute change than 
the sign of the change, we use (Δt)2 as a feature rather 
than the “raw” value Δt.



Feature engineering: 
example 2

• For classifying facial expression, it can be useful to focus 
on “edges” in the image, e.g., due to dimples, wrinkles, 
eyebrows, etc.


• Instead of classifying the raw image…


• … we can instead classify a filtered image:


