
CS 453X: Class 12
Jacob Whitehill

Quadratic
programming

Quadratic programming
• Quadratic programming is not a kind of computer

programming.

• Quadratic programming (QP) problems are a kind of
mathematical optimization problem:

• Quadratic objective function (which we want to
minimize or maximize).

• Linear equality and/or inequality constraints.

• Same vein as linear programming, dynamic programming.

Quadratic programming

• Nonetheless, quadratic programs are typically solved
using computer programs.

• As part of homework 4, you will use an off-the-shelf
Python-based quadratic programming solver (cvxopt).

cvxopt

http://cvxopt.org/userguide/coneprog.html#quadratic-programming

cvxopt

http://cvxopt.org/userguide/coneprog.html#quadratic-programming

Equality constraintsInequality constraints

Linear objectiveQuadratic objective

• To train an SVM using a QP, we need to define the
appropriate matrices from our training data.

• The x comprises both the w (hyperplane) and b (bias)
(similar to how we implemented bias in linear regression).

cvxopt

http://cvxopt.org/userguide/coneprog.html#quadratic-programming

Equality constraintsInequality constraints

Linear objectiveQuadratic objective

• q will just be 0 (we have no linear objective function).

• P: part of homework 4.

cvxopt

http://cvxopt.org/userguide/coneprog.html#quadratic-programming

Equality constraintsInequality constraints

Linear objectiveQuadratic objective

• G and h need to encode the linear inequality constraints.

• We will not use A or b (optional parameters) since we
have no equality constraints.

Defining G and h

• Suppose you have just two optimization variables — x1
and x2 — as well as the following constraints:

• 2x1 - 3x2 ≤ 2

• x1 + x2 ≥ 0 ⇒ -x1 - x2 ≤ 0

• We need to express these both as linear inequality
constraints (≤ 0).

Defining G and h

• Suppose you have just two optimization variables — x1
and x2 — as well as the following constraints:

• 2x1 - 3x2 ≤ 2

• x1 + x2 ≥ 0 ⇒ -x1 - x2 ≤ 0

• We need to express these both as linear inequality
constraints (≤ 0).

Defining G and h

• Suppose you have just two optimization variables — x1
and x2 — as well as the following constraints:

• 2x1 - 3x2 ≤ 2

• x1 + x2 ≥ 0 ⇒ -x1 - x2 ≤ 0

• We need to express these both as linear inequality
constraints (≤ 0).


2 �3
�1 �1

� 
x1

x2

�



2
0

�

G hx

SVM: classification

SVM: classification

• Here’s how an SVM classifies a new example:

SVM: w, bx ŷ = sgn(x>w + b)
Can decide class

arbitrarily if sgn = 0.

Soft-margin SVMs

Soft vs hard SVM margin

• The SVM defined so far is a hard margin SVM:

• The hyperplane must perfectly separate all the + from
the - examples.

• In many settings, this is unrealistic because the data are
linearly inseparable — no separating hyperplane exists.

• To support such datasets, a soft margin SVM has also
been formulated that allows for small “infractions” of the
constraints.

Soft vs hard SVM margin

• We can “soften” the SVM constraint by allowing for slack
in the position of each data point i w.r.t. the hyperplane H.

HH-
H+

x>w + b = �1 x>w + b = +1

ξ

Soft margin SVM
• With a soft-margin SVM, we loosen the constraint on

each data point x(i) by giving it a slack variable ξ(i).

• We penalize large slack variables using a penalty
parameter C.

• The new optimization problem becomes:

• Minimize:

• Subject to: y(i)
⇣
x(i)>w + b

⌘
� 1� ⇠(i)

Slack

1

2
w>w + C

nX

i=1

⇠(i)

Error penalty

Feature
transformations

Linearly inseparable data

• SVMs use a hyperplane to separate data in two classes.

• But what if the data are linearly inseparable, e.g.:

“XOR” problem

• No matter what w, b
we choose, the SVM
will never do a good
job of classifying the
data.

Linearly inseparable data

• SVMs use a hyperplane to separate data in two classes.

• But what if the data are linearly inseparable, e.g.:

“XOR” problem

• No matter what w, b
we choose, the SVM
will never do a good
job of classifying the
data.

Linearly inseparable data

• SVMs use a hyperplane to separate data in two classes.

• But what if the data are linearly inseparable, e.g.:

“XOR” problem

• No matter what w, b
we choose, the SVM
will never do a good
job of classifying the
data.

Feature transformations

SVM: w, bx
Can decide class

arbitrarily if sgn = 0.

Input transformer /
feature extractor

ɸ(x)
ŷ = sgn(�(x)>w + b)

• But what if we somehow transformed the raw input x into
some (possibly higher-dimensional) representation ɸ(x)?

• Might the classes become linearly separable then?

Example
• The data shown below are not linearly separable.

• What is the essential difference between the classes?

Example
• The data shown below are not linearly separable.

• What is the essential difference between the classes?

• The blue points are
farther from the origin
than the orange points.

• How could we measure
distance?

• x2 + y2

Example
• The data shown below are not linearly separable.

• What is the essential difference between the classes?

• The blue points are
farther from the origin
than the orange points.

• How could we measure
distance?

• x2 + y2

Example
• We can render these two classes linearly separable by

first transforming each point (x,y) into:

�(x, y) =


x2 + y2

0

�

The x coordinate will already
reveal the class label; hence,

the y-coordinate doesn’t matter.

H

Exercise 1
• Which of the following transformation(s) will make these

data linearly separable?

�(x, y) =


x2

y2

�

�(x, y) =


x

x2 + y2

�

�(x, y) =


x
xy

�

1.

2.

3.

Exercise 1
• Which of the following transformation(s) will make these

data linearly separable?

�(x, y) =


x2

y2

�
1.

This collapses across both
the left-right and up-down
half-spaces, but does not

render the two classes
linearly separable.

Exercise 1
• Which of the following transformation(s) will make these

data linearly separable?

�(x, y) =


x

x2 + y2

�
2.

x2 + y2 computes the
distance from the origin,

which is not related to the
class label in this problem.

Exercise 1
• Which of the following transformation(s) will make these

data linearly separable?

�(x, y) =


x
xy

�
3.

xy actually determines the
class label in this problem;
hence, this transformation

makes the classes separable.

Exercise 2
• Which of the following transformation(s) will make these

data linearly separable?

�(x, y) =


x+ y
x� y

�

�(x, y) =


cos(x)

y

�

�(x, y) =


|x|
y

�

1.

2.

3.

Exercise 2
• Which of the following transformation(s) will make these

data linearly separable?

�(x, y) =


x+ y
x� y

�
1.

This transformation is linear
because it can be written:

�(x, y) =


1 1
1 �1

� 
x
y

�

Exercise 2
• Which of the following transformation(s) will make these

data linearly separable?

�(x, y) =


x+ y
x� y

�
1.

Linear transformations can
only rotate, scale, and shear

the input data.
No linear transformation can

make linearly inseparable
data linearly separable.

Exercise 2
• Which of the following transformation(s) will make these

data linearly separable?

�(x, y) =


cos(x)

y

�
2.

Since y is already ~cos(x),
transforming x to cos(x) puts

the two axes on the same scale.

Exercise 2
• Which of the following transformation(s) will make these

data linearly separable?

�(x, y) =


|x|
y

�
3.

Because of the gap between
the two curves, collapsing

across the two left and right
half-spaces (via |x|) renders the

classes linearly separable.

H

Example
• Let’s re-visit this set of data…

• Feature transformations
are usually applied to
map the input data into
a higher dimensional
space.

• With higher dimensions,
there is a greater
opportunity for the
classes to separate.

Example
• For example, we might apply the transformation:

�(x, y) =

2

4
x
y

x2 + y2

3

5

Here, we transform each 2-D x
into a 3-D ɸ(x).

Now, a hyperplane perpendicular
to the z axis perfectly separates

the two classes.

Feature engineering

• Deciding on a suitable transformation of the raw input
space to make the data more amenable to classification
is sometimes called feature engineering.

• Traditionally, this has been performed by hand using
domain knowledge of the application domain.

• More recently (with deep neural networks), this is
performed implicitly by the training process itself (more on
this later).

Feature engineering:
example 1

• Suppose you are forecasting stock prices based on
historical data.

• One useful predictor might be the volatility of the stock
during the past month.

• We can measure the change of the stock price relative to
the previous day’s price with variable Δt = xt - xt-1.

• Because we care more about the absolute change than
the sign of the change, we use (Δt)2 as a feature rather
than the “raw” value Δt.

Feature engineering:
example 2

• For classifying facial expression, it can be useful to focus
on “edges” in the image, e.g., due to dimples, wrinkles,
eyebrows, etc.

• Instead of classifying the raw image…

• … we can instead classify a filtered image:

