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Quadratic
programming



Quadratic programming

 Quadratic programming is not a kind of computer
programming.

 Quadratic programming (QP) problems are a kind of
mathematical optimization problem:

e Quadratic objective function (which we want to
minimize or maximize).

e Linear equality and/or inequality constraints.

e Same vein as linear programming, dynamic programming.



Quadratic programming

* Nonetheless, quadratic programs are typically solved
using computer programs.

e As part of homework 4, you will use an off-the-shelf
Python-based quadratic programming solver (cvxopt).



cvxopt

cvxopt.solvers. qp (P,q[,G,h[,A,b|[,solver],initvals] ]11] ])
Solves the pair of primal and dual convex quadratic programs

minimize (1/2)z" Pz + ¢’z
subject to Gz < h
Ar =0

http://cvxopt.org/userguide/coneprog.html#quadratic-programming



cvxopt

cvxopt.solvers. qp (P,q[,G,h[,Ab]|,solver| ,initvalsf] 1] ])

Solves the pair of primal and dual coqvex quadratiic programs

minimize (1./'2).1‘TP1‘ +qlz
subject to ,Gxr < h
Ar =0

AN

 To train an SVM using a QP, we need to define the
appropriate matrices from our training data.

* The x comprises both the w (hyperplane) and b (bias)
(similar to how we implemented bias in linear regression).

http://cvxopt.org/userguide/coneprog.html#quadratic-programming



cvxopt

cvxopt.solvers. qp (P,q[,G,h[,AWb|[,solver],initvals]] 11 1)

Solves the pair of primal and dual coqvex quadratilc programs

minimize (1/2)z? Pz + ¢'x
subject to ,Gxr < h
Ar =0

AN

e q will just be 0 (we have no linear objective function).

e P: part of homework 4.

http://cvxopt.org/userguide/coneprog.html#quadratic-programming



cvxopt

cvxopt.solvers. qp (P,q[,G,h[,Ab]|,solver| ,initvalsf] 1] ])

Solves the pair of primal and dual coqvex quadratilc programs

minimize (1/2)z? Pz + q'x
subject to ,Gxr < h
Az =0

AN

* G and h need to encode the linear inequality constraints.

 We will not use A or b (optional parameters) since we
have no equality constraints.

http://cvxopt.org/userguide/coneprog.html#quadratic-programming



Defining G and h

* Suppose you have just two optimization variables — x
and x2 — as well as the following constraints:

® 2X1-3X2< 2

e X1+x2=>0

e We need to express these both as linear inequality
constraints (< 0).



Defining G and h

* Suppose you have just two optimization variables — x
and x2 — as well as the following constraints:

® 2X1-3X2< 2

* X1+4X2>0 = -X1-x2<0

e We need to express these both as linear inequality
constraints (< 0).



Defining G and h

* Suppose you have just two optimization variables — x
and x2 — as well as the following constraints:

® 2X1-3X2< 2

* X1+4X2>0 = -X1-x2<0

e We need to express these both as linear inequality
constraints (< 0).
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SVM: classification



SVM: classification

e Here’s how an SVM classifies a new example:




Soft-margin SVMs



Soft vs hard SVM margin

e The SVM defined so far is a hard margin SVM:

e The hyperplane must perfectly separate all the + from
the - examples.

 |n many settings, this is unrealistic because the data are
linearly inseparable — no separating hyperplane exists.

* To support such datasets, a soft margin SVM has also
been formulated that allows for small “infractions” of the
constraints.



Soft vs hard SVM margin

* \We can “soften” the SVM constraint by allowing for slack
in the position of each data point / w.r.t. the hyperplane H.



Soft margin SVM

e With a soft-margin SVM, we loosen the constraint on
each data point x? by giving it a slack variable &0,

e We penalize large slack variables using a penalty
parameter C.

e The new optimization problem becomes:
¢ Minimize: -w'w+C)» ¢W
1=1

* Subject to: (%) (X(’i)TW 4 b) >1—¢®



Feature
transformations



Linearly inseparable data

e SVMs use a hyperplane to separate data in two classes.

 But what if the data are linearly inseparable, e.g.:

e No matter what w, b
we choose, the SVM
will never do a good 01
job of classifying the |
data.




Linearly inseparable data

e SVMs use a hyperplane to separate data in two classes.

 But what if the data are linearly inseparable, e.g.:
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e No matter what w, b
we choose, the SVM
will never do a good 01
job of classifying the |
data.




Linearly inseparable data

e SVMs use a hyperplane to separate data in two classes.

 But what if the data are linearly inseparable, e.g.:

6_

e No matter what w, b
we choose, the SVM
will never do a good 01
job of classifying the |
data.




Feature transformations

 But what if we somehow transformed the raw input x into
some (possibly higher-dimensional) representation ¢(x)?

e Might the classes become linearly separable then?

Input transformer / P(x) . T




Example

e The data shown below are not linearly separable.

e \What is the essential difference between the classes?




Example

The data shown below are not linearly separable.

What is the essential difference between the classes?

The blue points are 4
farther from the origin
than the orange points.

2_
0_

How could we measure
distance?




Example

The data shown below are not linearly separable.

What is the essential difference between the classes?

The blue points are 4
farther from the origin
than the orange points.

2_
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How could we measure
distance?
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Example

e \We can render these two classes linearly separable by
first transforming each point (x,y) into:

¢(x,y) = [

22 4 92
0

|

0.008 A

0.006 A

0.004 A

0.002 A

0.000 A

—0.002 A

—0.004 A

—0.006 A

—0.008 A

H

30

35

40




Exercise 1

Which of the following transformation(s) will make these
data linearly separable?

-2 6 - o
- ¢(:Bay) — :;2 ]
xr 2 ®
P(x,y) = x2+y2 ] ¢
x
o(x,y) = [ oy ] -2




Exercise 1

e Which of the following transformation(s) will make these

data linearly separable?

2 35{ ©
1' ¢(£B,y) — [ y2 ]
30 A
This collapses across both -
the left-right and up-down ®°
half-spaces, but does not 20| : °e
render the two classes oo’ ® o,

linearly separable.

30




Exercise 1

e Which of the following transformation(s) will make these
data linearly separable?

40 -

2. ¢(x,y) = [ a}2f—y2 ] 30 - ¢ K

20 -
X2 + y2 computes the

distance from the origin,
which is not related to the 197
class label in this problem.




Exercise 1

e Which of the following transformation(s) will make these
data linearly separable?

20 A O

xy actually determines the

class label in this problem; 10 A

hence, this transformation
makes the classes separable.

s o) =| 0| e

—20 -




Exercise 2

Which of the following transformation(s) will make these
data linearly separable?

1.0 1
say)=| "
| cos(x) 0.0 o
¢($7y) o Y ®
~0.5- °
gb(ﬂf,y) — ’g‘ ] —-1.0 - ...



Exercise 2

e Which of the following transformation(s) will make these
data linearly separable?

o) = | 21V |
e[V AL LD



Exercise 2

e Which of the following transformation(s) will make these
data linearly separable?

4 o
+ > :
cb(:v,y):[ig] 2 :
1- s




Exercise 2

e Which of the following transformation(s) will make these
data linearly separable?

1.0 -

0.5 -

O(z,y) = [

_0.5 -

_10 -

Cosy(x) ] 0.01

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50

0.75 1.00




Exercise 2

e Which of the following transformation(s) will make these
data linearly separable?




Example

o | et’s re-visit this set of data...

e Feature transformations
are usually applied to 1o
map the input data into
a higher dimensional
space. 0-

2_

 With higher dimensions,
there is a greater 4
opportunity for the
classes to separate. ~6-




e For example, we might apply the transformation:

o(z,y) =

2Pty

x
Y

Example




Feature engineering

e Deciding on a suitable transformation of the raw input
space to make the data more amenable to classification

IS sometimes called feature engineering.

e Traditionally, this has been performed by hand using
domain knowledge of the application domain.

e More recently (with deep neural networks), this is
performed implicitly by the training process itself (more on
this later).



Feature engineering:
example 1

Suppose you are forecasting stock prices based on
historical data.

One useful predictor might be the volatility of the stock
during the past month.

We can measure the change of the stock price relative to
the previous day’s price with variable At = x: - xt-1.

Because we care more about the absolute change than
the sign of the change, we use (At)? as a feature rather
than the “raw” value At.



Feature engineering:
example 2

e For classifying facial expression, it can be useful to focus
on “edges” in the image, e.g., due to dimples, wrinkles,
eyebrows, etc.

e |nstead of classifying the raw image...

* ... wWe can instead classify a filtered image:




