
CS 453X: Class 11
Jacob Whitehill

More on constrained
optimization

Why do Lagrange multipliers work?
• Where does the Lagrangian function come from?

• How does finding its critical point yield the constrained
optimal solution?

�rwf(w)

• We need to restrict our
“search” for optimal w
to the feasible set —
points where g(w) = 0.

• Imagine we are doing a
gradient descent search
starting from some point
w such that g(w) = 0.

rwg(w)

Why do Lagrange multipliers work?
• We want to “move” w to reduce f, but we need to keep w

in the feasible set.

�rwf(w)

• Hence, we can move w
along only the
components of 
that do not change g(w).

• The directions that
change g(w) are those
aligned with .

rwf(w)
rwg(w)

rwg(w)

Why do Lagrange multipliers work?
• We want to “move” w to reduce f, but we need to keep w

in the feasible set.

�rwf(w)

• Hence, we will subtract
from those
components that are
parallel to .

• In particular, we will find
a “restricted gradient”
vector: 
 
for some value α.

rwf(w)

rwg(w)
rwg(w)

rwf(w)� ↵rwg(w)

Why do Lagrange multipliers work?
• We want to “move” w to reduce f, but we need to keep w

in the feasible set.

�rwf(w)

• We will reach a
constrained minimum
when the “restricted
gradient” is 0.

• We can compute the
“restricted gradient”
vector as the gradient of
the Lagrangian: 

• We then differentiate, set
to 0, and solve.

rwg(w)

L(w,↵) = f(w)� ↵g(w)

Lagrange multipliers

• Note that either of the following Lagrangian formulations
will work (since the value of α can compensate):

• However, with SVMs, the convention is:

L(w,↵) = f(w)� ↵g(w)

L(w,↵) = f(w) + ↵g(w)

L(w,↵) = f(w)� ↵g(w)

g(x)=x+1

Karush-Kuhn-Tucker (KKT)
conditions

• A generalization of Lagrange multipliers to handle both
equality and inequality constraints are the Karush-Kuhn-
Tucker (KKT) conditions.

• Suppose we wish to minimize f subject to g(x)≤0:

+1-1 0

?

Karush-Kuhn-Tucker (KKT)
conditions

• A generalization of Lagrange multipliers to handle both
equality and inequality constraints are the Karush-Kuhn-
Tucker (KKT) conditions.

• Suppose we wish to minimize f subject to g(x)≤0:

g(x)=x+1
+1-1 0

Karush-Kuhn-Tucker (KKT)
conditions

• A generalization of Lagrange multipliers to handle both
equality and inequality constraints are the Karush-Kuhn-
Tucker (KKT) conditions.

• Suppose we wish to minimize f subject to g(x)≤0:

g(x)=1-x
+1-1 0

?

Karush-Kuhn-Tucker (KKT)
conditions

• A generalization of Lagrange multipliers to handle both
equality and inequality constraints are the Karush-Kuhn-
Tucker (KKT) conditions.

• Suppose we wish to minimize f subject to g(x)≤0:

g(x)=1-x
+1-1 0

Karush-Kuhn-Tucker (KKT)
conditions

• A generalization of Lagrange multipliers to handle both
equality and inequality constraints are the Karush-Kuhn-
Tucker (KKT) conditions.

• Suppose we wish to minimize f subject to g(x)≤0:

g(x)=-1-x
+1-1 0

Karush-Kuhn-Tucker (KKT)
conditions

• A generalization of Lagrange multipliers to handle both
equality and inequality constraints are the Karush-Kuhn-
Tucker (KKT) conditions.

• Suppose we wish to minimize f subject to g(x)≤0:

g(x)=-x
+1-1 0

Karush-Kuhn-Tucker (KKT)
conditions

• Similarly as with Lagrange multipliers, with KKT conditions
we also use a set of “multipliers” α (one for each
constraint), sometimes known as dual variables.

• Key points:

1.With inequality constraints, 

we require that α≥0.

2.At optimal solution:

• α > 0 if the constraint is active.

• α = 0 if the constraint is inactive.

L(w,↵) = f(w)�
nX

i=1

↵igi(w)

Karush-Kuhn-Tucker (KKT)
conditions

• Similarly as with Lagrange multipliers, with KKT conditions
we also use a set of “multipliers” α (one for each
constraint), sometimes known as dual variables.

• Key points:

1.With inequality constraints, 

we require that each αi≥0.

2.At optimal solution:

• αi > 0 if the constraint is active.

• α = 0 if the constraint is inactive.

L(w,↵) = f(w)�
nX

i=1

↵igi(w)

g(x)=x

• Similarly as with Lagrange multipliers, with KKT conditions
we also use a set of “multipliers” α (one for each
constraint), sometimes known as dual variables.

• Key points:

1.With inequality constraints, 

we require that each αi≥0.

2.At optimal solution:

• αi > 0 if the constraint is active.

• αi = 0 if the constraint is inactive.

Karush-Kuhn-Tucker (KKT)
conditions

L(w,↵) = f(w)�
nX

i=1

↵igi(w)

g(x)=x-1/2

Hyperplanes

Defining a hyperplane

• A hyperplane is defined by a normal vector w (⊥ to H) and
a bias b that is proportional to the distance to the origin.

• The points on hyperplane H are those values of x that
satisfy: x>w + b = 0

H

w

O

b

Hyperplane examples
H = {x 2 Rm : x>w + b = 0}

Hyperplane examples

Adjusting b
translates the plane.

H = {x 2 Rm : x>w + b = 0}

Hyperplane examples
H = {x 2 Rm : x>w + b = 0}

Adjusting b
translates the plane.

Hyperplane examples
H = {x 2 Rm : x>w + b = 0}

Hyperplane examples
H = {x 2 Rm : x>w + b = 0}

Hyperplane examples
H = {x 2 Rm : x>w + b = 0}

The parameterization of H is
not unique — multiplying w

and b by the same constant c
results in the same H.

Distance from O to H

• To find the shortest (perpendicular) distance between the
origin O and the hyperplane H:

• Define a unit vector n with same direction as w:

• The shortest line from O to H ends at cn, for some
distance c.

H

w

O

Distance from O to H

• To find the shortest (perpendicular) distance between the
origin O and the hyperplane H:

• Define a unit vector n with same direction as w:

• The shortest line from O to H ends at cn, for some
distance c.

H

w

O

n =
w

|w|

n

Distance from O to H

• To find the shortest (perpendicular) distance between the
origin O and the hyperplane H:

• Define a unit vector n with same direction as w:

• The shortest line from O to H ends at cn, for some
distance c.

H

w

O

n =
w

|w|

cn

Distance from O to H

• Since cn is within H, we have:

• We can then solve for c 
(distance from O to H):

H

w

O
cn

cn>w + b = 0

c

✓
w

|w|

◆>
w = �b

c

|w|w
>w = �b

c

|w| |w|2 = �b

c|w| = �b

c =
�b

|w|

H = {x 2 Rm : x>w + b = 0}

Distance from O to H

H

w

O
cn

cn>w + b = 0

c

✓
w

|w|

◆>
w = �b

c

|w|w
>w = �b

c

|w| |w|2 = �b

c|w| = �b

c =
�b

|w|

• Since cn is within H, we have:

• We can then solve for c 
(distance from O to H):

Distance from O to H

H

w

O
cn

cn>w + b = 0

c

✓
w

|w|

◆>
w = �b

c

|w|w
>w = �b

c

|w| |w|2 = �b

c|w| = �b

c =
�b

|w|

• Since cn is within H, we have:

• We can then solve for c 
(distance from O to H):

Distance from O to H

H

w

O
cn

cn>w + b = 0

c

✓
w

|w|

◆>
w = �b

c

|w|w
>w = �b

c

|w| |w|2 = �b

c|w| = �b

c =
�b

|w|

• Since cn is within H, we have:

• We can then solve for c 
(distance from O to H):

Distance from O to H

H

w

O
cn

cn>w + b = 0

c

✓
w

|w|

◆>
w = �b

c

|w|w
>w = �b

c

|w| |w|2 = �b

c|w| = �b

c =
�b

|w|

• Since cn is within H, we have:

• We can then solve for c 
(distance from O to H):

Distance from O to H

H

w

O
cn

cn>w + b = 0

c

✓
w

|w|

◆>
w = �b

c

|w|w
>w = �b

c

|w| |w|2 = �b

c|w| = �b

c =
�b

|w|

• Since cn is within H, we have:

• We can then solve for c 
(distance from O to H):

Distance from O to H

• Therefore, the shortest distance between the origin O and
the hyperplane H is:

H

w

O

�b

|w|

�b

|w|

Support vector
machines

Support vector machines

• Support vector machines (SVMs) are a ML model for
binary classification.

• SVMs are optimized using constrained optimization
rather than unconstrained optimization (e.g., for logistic
regression).

• Suppose we have the following set of training data (blue
is negative, red is positive):

• Examples above the line will be classified as positive;
examples below the line will be classified as negative.

• Which line (or hyperplane in higher dimensions) would
likely perform better on testing data, and why?

Support vector machines

A
B

• For any hyperplane H that perfectly separates the positive
from the negative examples:

• Find the subset S- of - examples that lie closest to H.

• The points in S- lie in a hyperplane H- parallel to H.

• Denote the shortest distance between H- and H as d-.

Support vector machines

H

S-

H-

d-

• For any hyperplane H that perfectly separates the positive
from the negative examples:

• Find the subset S+ of + examples that lie closest to H.

• The points in S+ lie in a hyperplane H+ parallel to H.

• Denote the shortest distance between H+ and H as d+.

Support vector machines

H

S-

H-
H+

d-
d+

S+

• For any hyperplane H that perfectly separates the positive
from the negative examples:

• Let d denote the margin — the sum of d+ and d-.

• The optimization objective of SVMs is to find a
separating hyperplane H that maximizes d.

Support vector machines

HH-
H+

d-
d+

d

• Recall that H ‖ H+ ‖ H-. Then they can share the same w.

• We can thus scale w and b such that:

Support vector machines

HH-
H+

H
� : x>w + b = �1

H : x>w + b = 0

H
+ : x>w + b = +1

w

x>w + b = �1 x>w + b = +1

• H− and H+ intersect the negatively and positively labeled
data points closest to H, respectively.

• Since all data points not in H+ or H− must lie even farther
from H, we require that:

Support vector machines

HH-
H+

y(i) = +1 =) x(i)>w + b � +1

y(i) = �1 =) x(i)>w + b  �1

x>w + b = �1 x>w + b = +1

• H− and H+ intersect the negatively and positively labeled
data points closest to H, respectively.

• These two sets of constraints can be unified:

Support vector machines

HH-
H+

x>w + b = �1 x>w + b = +1

y(i)(x(i)>w + b) � 1 8i
Inequality constraints

• How do we maximize the margin d?

• Since H- is (-1-b)/|w| from the origin and H+ is (1-b)/|w|
from the origin, then the margin must be:

Maximizing the margin

HH-
H+

x>w + b = �1 x>w + b = +1

d

d =
1� b

|w| � �1� b

|w| =
2

|w|

• How do we maximize the margin d?

• To maximize d=2/|w|, we can thus minimize |w|/2 or
(equivalently) minimize:

Maximizing the margin

HH-
H+

x>w + b = �1 x>w + b = +1

d

1

2
w>w

Optimization objective (cost function)

SVM optimization problem
• Putting the parts together, we wish to:

• Minimize:

• Subject to:

• This is a quadratic programming problem: quadratic
objective with linear inequality (and/or equality)
constraints.

• Quadratic programs are convex optimization problems,
and many efficient solvers exist to tackle them.

1

2
w>w

y(i)(x(i)>w + b) � 1 8i

SVM optimization problem

• Putting the parts together, we wish to:

• Minimize:

• Subject to:

• This is a quadratic programming problem: quadratic
objective with linear inequality (and/or equality)
constraints.

• There are many efficient solvers for quadratic programs.

1

2
w>w

y(i)(x(i)>w + b) � 1 8i

L(w, b,↵) =
1

2
w>w �

nX

i=1

↵(i)
⇣
y(i)

⇣
x(i)>w + b� 1

⌘⌘

@L

@w
= w �

nX

i=1

↵(i)y(i)x(i)

=) w =
nX

i=1

↵(i)y(i)x(i)

SVM optimization problem
• However, we can get some intuition by doing some

analytical simplification.

• Similar as with Lagrange multipliers, with KKT conditions
we also define a function L of the optimization variables
(w) and the dual variables (α):

• We then compute the gradient of L, set to 0, and solve
(numerically).

Objective Inequality constraints

L(w, b,↵) =
1

2
w>w �

nX

i=1

↵(i)
⇣
y(i)

⇣
x(i)>w + b� 1

⌘⌘

@L

@w
= w �

nX

i=1

↵(i)y(i)x(i)

=) w =
nX

i=1

↵(i)y(i)x(i)

SVM optimization problem
• However, we can get some intuition by doing some

analytical simplification.

• Similar as with Lagrange multipliers, with KKT conditions
we also define a function L of the optimization variables
(w) and the dual variables (α):

• We then compute the gradient of L, set to 0, and solve
(numerically)…

Objective Inequality constraints

SVM optimization problem
• As shown below, an optimal w will always be a linear

combination of the data points x(i), weighted by the α(i).

• As mentioned earlier, only some of the n constraints will
be active — for the others (inactive), α(i) = 0.

L(w, b,↵) =
1

2
w>w �

nX

i=1

↵(i)
⇣
y(i)

⇣
x(i)>w + b� 1

⌘⌘

@L

@w
= w �

nX

i=1

↵(i)y(i)x(i)

=) w =
nX

i=1

↵(i)y(i)x(i)

SVM optimization problem
• As shown below, an optimal w will always be a linear

combination of the data points x(i), weighted by the α(i).

• As mentioned earlier, only some of the n constraints will
be active — for the others (inactive), α(i) = 0.

L(w, b,↵) =
1

2
w>w �

nX

i=1

↵(i)
⇣
y(i)

⇣
x(i)>w + b� 1

⌘⌘

@L

@w
= w �

nX

i=1

↵(i)y(i)x(i)

=) w =
nX

i=1

↵(i)y(i)x(i)

SVM optimization problem
• This means that w will actually only be a linear combination of a

subset of the input vectors x(i).

• The data x(i) for which α(i) > 0 are called support vectors.

• The other data (for which α(i) = 0) are essentially irrelevant — they
do not influence the location or orientation of the hyperplane.

L(w, b,↵) =
1

2
w>w �

nX

i=1

↵(i)
⇣
y(i)

⇣
x(i)>w + b� 1

⌘⌘

@L

@w
= w �

nX

i=1

↵(i)y(i)x(i)

=) w =
nX

i=1

↵(i)y(i)x(i)

SVM optimization problem
• This means that w will actually only be a linear combination of a

subset of the input vectors x(i).

• The data x(i) for which α(i) > 0 are called support vectors.

• The other data (for which α(i) = 0) are essentially irrelevant — they
do not influence the location or orientation of the hyperplane.

HH-
H+d

Support vectors

Quadratic
programming

Quadratic programming
• Quadratic programming is not a kind of computer

programming.

• Quadratic programming (QP) problems are a kind of
mathematical optimization problem:

• Quadratic objective function (which we want to
minimize or maximize).

• Linear equality and/or inequality constraints.

• Same vein as linear programming, dynamic programming.

Quadratic programming

• Nonetheless, quadratic programs are typically solved
using computer programs.

• As part of homework 4, you will use an off-the-shelf
Python-based quadratic programming solver (cvxopt).

