CS 453X: Class 11

Jacob Whitehill

More on constrained optimization

Where does the Lagrangian function come from?

How does finding its critical point yield the constrained

optimal solution?

 We need to restrict our "search" for optimal w to the **feasible set** points where g(w) = 0.

Imagine we are doing a gradient descent search starting from some point
 w such that g(w) = 0.

We want to "move" w to reduce f, but we need to keep w in the feasible set.

- Hence, we can move \mathbf{w} along *only* the components of $\nabla_{\mathbf{w}} f(\mathbf{w})$ that *do not change* $g(\mathbf{w})$.
- The directions that change $g(\mathbf{w})$ are those aligned with $\nabla_{\mathbf{w}} g(\mathbf{w})$.

- We want to "move" w to reduce f, but we need to keep w in the feasible set.
- Hence, we will subtract from $\nabla_{\mathbf{w}} f(\mathbf{w})$ those components that are parallel to $\nabla_{\mathbf{w}} g(\mathbf{w})$.
- In particular, we will find a "restricted gradient" vector:

 $\nabla_{\mathbf{w}} f(\mathbf{w}) - \alpha \nabla_{\mathbf{w}} g(\mathbf{w})$ for some value a.

- We want to "move" w to reduce f, but we need to keep w in the feasible set.
- We will reach a constrained minimum when the "restricted gradient" is 0.
- We can compute the "restricted gradient" vector as the gradient of the Lagrangian:

$$L(\mathbf{w}, \alpha) = f(\mathbf{w}) - \alpha g(\mathbf{w})$$

 We then differentiate, set to 0, and solve.

Lagrange multipliers

 Note that either of the following Lagrangian formulations will work (since the value of α can compensate):

$$L(\mathbf{w}, \alpha) = f(\mathbf{w}) - \alpha g(\mathbf{w})$$
$$L(\mathbf{w}, \alpha) = f(\mathbf{w}) + \alpha g(\mathbf{w})$$

However, with SVMs, the convention is:

$$L(\mathbf{w}, \alpha) = f(\mathbf{w}) - \alpha g(\mathbf{w})$$

- A generalization of Lagrange multipliers to handle both equality and inequality constraints are the Karush-Kuhn-Tucker (KKT) conditions.
- Suppose we wish to minimize f subject to $g(x) \le 0$:

- A generalization of Lagrange multipliers to handle both equality and inequality constraints are the Karush-Kuhn-Tucker (KKT) conditions.
- Suppose we wish to minimize f subject to $g(x) \le 0$:

- A generalization of Lagrange multipliers to handle both equality and inequality constraints are the Karush-Kuhn-Tucker (KKT) conditions.
- Suppose we wish to minimize f subject to $g(x) \le 0$:

- A generalization of Lagrange multipliers to handle both equality and inequality constraints are the Karush-Kuhn-Tucker (KKT) conditions.
- Suppose we wish to minimize f subject to $g(x) \le 0$:

- A generalization of Lagrange multipliers to handle both equality and inequality constraints are the Karush-Kuhn-Tucker (KKT) conditions.
- Suppose we wish to minimize f subject to $g(x) \le 0$:

- A generalization of Lagrange multipliers to handle both equality and inequality constraints are the Karush-Kuhn-Tucker (KKT) conditions.
- Suppose we wish to minimize f subject to $g(x) \le 0$:

 Similarly as with Lagrange multipliers, with KKT conditions we also use a set of "multipliers" α (one for each constraint), sometimes known as dual variables.

$$L(\mathbf{w}, \alpha) = f(\mathbf{w}) - \sum_{i=1}^{n} \alpha_i g_i(\mathbf{w})$$

• Similarly as with Lagrange multipliers, with KKT conditions we also use a set of "multipliers" *α* (one for each constraint), sometimes known as **dual variables**.

$$L(\mathbf{w}, \alpha) = f(\mathbf{w}) - \sum_{i=1}^{n} \alpha_i g_i(\mathbf{w})$$

- Key points:
 - 1.With *inequality* constraints, we require that each $a_i \ge 0$.
 - 2.At optimal solution:
 - $a_i > 0$ if the constraint is **active**.

• Similarly as with Lagrange multipliers, with KKT conditions we also use a set of "multipliers" *α* (one for each constraint), sometimes known as **dual variables**.

$$L(\mathbf{w}, \alpha) = f(\mathbf{w}) - \sum_{i=1}^{n} \alpha_i g_i(\mathbf{w})$$

- Key points:
 - 1.With *inequality* constraints, we require that each $a_i \ge 0$.
 - 2.At optimal solution:
 - $a_i > 0$ if the constraint is **active**.
 - $a_i = 0$ if the constraint is **inactive**.

Hyperplanes

Defining a hyperplane

- A **hyperplane** is defined by a normal vector \mathbf{w} (\perp to H) and a bias b that is proportional to the distance to the origin.
- The points on hyperplane H are those values of \mathbf{x} that satisfy: $\mathbf{x}^{\top}\mathbf{w} + b = 0$

$$H = \{ \mathbf{x} \in \mathbb{R}^m : \mathbf{x}^\top \mathbf{w} + b = 0 \}$$

$$H = \{ \mathbf{x} \in \mathbb{R}^m : \mathbf{x}^\top \mathbf{w} + b = 0 \}$$

$$H = \{ \mathbf{x} \in \mathbb{R}^m : \mathbf{x}^\top \mathbf{w} + b = 0 \}$$

$$H = \{ \mathbf{x} \in \mathbb{R}^m : \mathbf{x}^\top \mathbf{w} + b = 0 \}$$

$$w = [-1, 2]^T$$
 $b = 1$

$$H = \{ \mathbf{x} \in \mathbb{R}^m : \mathbf{x}^\top \mathbf{w} + b = 0 \}$$

$$H = \{ \mathbf{x} \in \mathbb{R}^m : \mathbf{x}^\top \mathbf{w} + b = 0 \}$$

$$w = [4, -1.5]^T$$
 $b = 2$

 To find the shortest (perpendicular) distance between the origin O and the hyperplane H:

- To find the shortest (perpendicular) distance between the origin O and the hyperplane H:
 - Define a *unit* vector **n** with same direction as **w**: $\mathbf{n} = \frac{\mathbf{w}}{|\mathbf{w}|}$

- To find the shortest (perpendicular) distance between the origin O and the hyperplane H:
 - Define a *unit* vector **n** with same direction as **w**: $\mathbf{n} = \frac{\mathbf{w}}{|\mathbf{w}|}$
 - The shortest line from O to H ends at cn, for some distance c.

• Since $c\mathbf{n}$ is within H, we have: $c\mathbf{n}^{\mathsf{T}}\mathbf{w} + b = 0$

• Since cn is within H, we have:

$$c\mathbf{n}^{\mathsf{T}}\mathbf{w} + b = 0$$

 We can then solve for c (distance from O to H):

- Since *c***n** is within *H*, we have:
- We can then solve for c (distance from O to H):

$$c\mathbf{n}^{\top}\mathbf{w} + b = 0$$

$$c\left(\frac{\mathbf{w}}{|\mathbf{w}|}\right)^{\top}\mathbf{w} = -b$$

- Since *c***n** is within *H*, we have:
- We can then solve for c (distance from O to H):

$$c\mathbf{n}^{\top}\mathbf{w} + b = 0$$

$$c\left(\frac{\mathbf{w}}{|\mathbf{w}|}\right)^{\top}\mathbf{w} = -b$$

$$\frac{c}{|\mathbf{w}|}\mathbf{w}^{\top}\mathbf{w} = -b$$

- Since *c***n** is within *H*, we have:
- We can then solve for c (distance from O to H):

$$c\mathbf{n}^{\top}\mathbf{w} + b = 0$$

$$c\left(\frac{\mathbf{w}}{|\mathbf{w}|}\right)^{\top}\mathbf{w} = -b$$

$$\frac{c}{|\mathbf{w}|}\mathbf{w}^{\top}\mathbf{w} = -b$$

$$\frac{c}{|\mathbf{w}|}|\mathbf{w}|^{2} = -b$$

- Since cn is within H, we have:
- We can then solve for c (distance from O to H):

$$c\mathbf{n}^{\top}\mathbf{w} + b = 0$$

$$c\left(\frac{\mathbf{w}}{|\mathbf{w}|}\right)^{\top}\mathbf{w} = -b$$

$$\frac{c}{|\mathbf{w}|}\mathbf{w}^{\top}\mathbf{w} = -b$$

$$\frac{c}{|\mathbf{w}|}|\mathbf{w}|^{2} = -b$$

$$c|\mathbf{w}| = -b$$

$$c = \frac{-b}{|\mathbf{w}|}$$

• Therefore, the shortest distance between the origin O and the hyperplane H is: $\frac{-b}{-b}$

 \mathbf{W}

Support vector machines

Support vector machines

- Support vector machines (SVMs) are a ML model for binary classification.
- SVMs are optimized using constrained optimization rather than unconstrained optimization (e.g., for logistic regression).

 Suppose we have the following set of training data (blue is negative, red is positive):

- Examples above the line will be classified as positive;
 examples below the line will be classified as negative.
- Which line (or hyperplane in higher dimensions) would likely perform better on testing data, and why?

 For any hyperplane H that perfectly separates the positive from the negative examples:

- Find the subset S⁻ of examples that lie closest to H.
- The points in S⁻ lie in a hyperplane H⁻ parallel to H.
- Denote the shortest distance between H- and H as d-.

• For any hyperplane *H* that perfectly separates the positive from the negative examples:

- Find the subset S+ of + examples that lie closest to H.
- The points in S+ lie in a hyperplane H+ parallel to H.
- Denote the shortest distance between H+ and H as d+.

 For any hyperplane H that perfectly separates the positive from the negative examples:

- Let d denote the margin the sum of d^+ and d^- .
- The optimization objective of SVMs is to find a separating hyperplane H that maximizes d.

• Recall that $H \parallel H^+ \parallel H^-$. Then they can share the same **w**.

We can thus scale w and b such that:

$$H^-: \mathbf{x}^\top \mathbf{w} + b = -1$$
 $H: \mathbf{x}^\top \mathbf{w} + b = 0$

$$H^+: \quad \mathbf{x}^\top \mathbf{w} + b = +1$$

 H- and H+ intersect the negatively and positively labeled data points closest to H, respectively.

 Since all data points not in H+ or H- must lie even farther from H, we require that:

$$y^{(i)} = +1 \implies \mathbf{x}^{(i)} \mathbf{w} + b \ge +1$$

 $y^{(i)} = -1 \implies \mathbf{x}^{(i)} \mathbf{w} + b \le -1$

 H- and H+ intersect the negatively and positively labeled data points closest to H, respectively.

These two sets of constraints can be unified:

$$y^{(i)}(\mathbf{x^{(i)}}^{\top}\mathbf{w} + b) \ge 1 \quad \forall i$$
Inequality constraints

Maximizing the margin

How do we maximize the margin d?

Since H⁻ is (-1-b)/|w| from the origin and H⁺ is (1-b)/|w| from the origin, then the margin must be:

$$d = \frac{1 - b}{|\mathbf{w}|} - \frac{-1 - b}{|\mathbf{w}|} = \frac{2}{|\mathbf{w}|}$$

Maximizing the margin

How do we maximize the margin d?

• To maximize $d=2/|\mathbf{w}|$, we can thus minimize $|\mathbf{w}|/2$ or (equivalently) minimize:

$$\frac{1}{2}\mathbf{w}^{\top}\mathbf{w}$$

Optimization objective (cost function)

Putting the parts together, we wish to:

• Minimize:
$$\frac{1}{2}\mathbf{w}^{\top}\mathbf{w}$$

• Subject to: $y^{(i)}(\mathbf{x}^{(i)}^{\top}\mathbf{w} + b) \ge 1 \quad \forall i$

Putting the parts together, we wish to:

• Minimize:
$$\frac{1}{2}\mathbf{w}^{\top}\mathbf{w}$$

- Subject to: $y^{(i)}(\mathbf{x}^{(i)}^{\top}\mathbf{w} + b) \geq 1 \quad \forall i$
- This is a quadratic programming problem: quadratic objective with linear inequality (and/or equality) constraints.
- There are many efficient solvers for quadratic programs.

- However, we can get some intuition by doing some analytical simplification.
- Similar as with Lagrange multipliers, with KKT conditions we also define a function L of the optimization variables
 (w) and the dual variables (α):

$$L(\mathbf{w}, b, \alpha) = \frac{1}{2} \mathbf{w}^{\top} \mathbf{w} - \sum_{i=1}^{n} \alpha^{(i)} \left(y^{(i)} \left(\mathbf{x}^{(i)}^{\top} \mathbf{w} + b - 1 \right) \right)$$

Objective

Inequality constraints

- However, we can get some intuition by doing some analytical simplification.
- Similar as with Lagrange multipliers, with KKT conditions we also define a function L of the optimization variables (w) and the dual variables (a):

$$L(\mathbf{w}, b, \alpha) = \frac{1}{2} \mathbf{w}^{\top} \mathbf{w} - \sum_{i=1}^{n} \alpha^{(i)} \left(y^{(i)} \left(\mathbf{x}^{(i)}^{\top} \mathbf{w} + b - 1 \right) \right)$$

Objective

Inequality constraints

 We then compute the gradient of L, set to 0, and solve (numerically)...

• As shown below, an optimal **w** will always be a **linear** combination of the data points $\mathbf{x}^{(i)}$, weighted by the $a^{(i)}$.

$$L(\mathbf{w}, b, \alpha) = \frac{1}{2} \mathbf{w}^{\top} \mathbf{w} - \sum_{i=1}^{n} \alpha^{(i)} \left(y^{(i)} \left(\mathbf{x}^{(i)}^{\top} \mathbf{w} + b - 1 \right) \right)$$

$$\frac{\partial L}{\partial \mathbf{w}} = \mathbf{w} - \sum_{i=1}^{n} \alpha^{(i)} y^{(i)} \mathbf{x}^{(i)}$$

$$\implies \mathbf{w} = \sum_{i=1}^{n} \alpha^{(i)} y^{(i)} \mathbf{x}^{(i)}$$

- As shown below, an optimal **w** will always be a **linear** combination of the data points $\mathbf{x}^{(i)}$, weighted by the $a^{(i)}$.
- As mentioned earlier, only some of the n constraints will be active for the others (inactive), $\alpha^{(i)} = 0$.

$$L(\mathbf{w}, b, \alpha) = \frac{1}{2} \mathbf{w}^{\top} \mathbf{w} - \sum_{i=1}^{n} \alpha^{(i)} \left(y^{(i)} \left(\mathbf{x}^{(i)}^{\top} \mathbf{w} + b - 1 \right) \right)$$

$$\frac{\partial L}{\partial \mathbf{w}} = \mathbf{w} - \sum_{i=1}^{n} \alpha^{(i)} y^{(i)} \mathbf{x}^{(i)}$$

$$\implies \mathbf{w} = \sum_{i=1}^{n} \alpha^{(i)} y^{(i)} \mathbf{x}^{(i)}$$

- This means that **w** will actually only be a linear combination of a subset of the input vectors **x**⁽ⁱ⁾.
 - The data $\mathbf{x}^{(i)}$ for which $a^{(i)} > 0$ are called **support vectors**.
- The other data (for which $\alpha^{(i)} = 0$) are essentially irrelevant they do not influence the location or orientation of the hyperplane.

$$L(\mathbf{w}, b, \alpha) = \frac{1}{2} \mathbf{w}^{\top} \mathbf{w} - \sum_{i=1}^{n} \alpha^{(i)} \left(y^{(i)} \left(\mathbf{x}^{(i)}^{\top} \mathbf{w} + b - 1 \right) \right)$$

$$\frac{\partial L}{\partial \mathbf{w}} = \mathbf{w} - \sum_{i=1}^{n} \alpha^{(i)} y^{(i)} \mathbf{x}^{(i)}$$

$$\implies \mathbf{w} = \sum_{i=1}^{n} \alpha^{(i)} y^{(i)} \mathbf{x}^{(i)}$$

- This means that **w** will actually only be a linear combination of a subset of the input vectors **x**(i).
 - The data $\mathbf{x}^{(i)}$ for which $a^{(i)} > 0$ are called **support vectors**.
- The other data (for which $\alpha^{(i)} = 0$) are essentially irrelevant they do not influence the location or orientation of the hyperplane.

Quadratic programing

Quadratic programming

- Quadratic programming is not a kind of computer programming.
- Quadratic programming (QP) problems are a kind of mathematical optimization problem:
 - Quadratic objective function (which we want to minimize or maximize).
 - Linear equality and/or inequality constraints.
- Same vein as linear programming, dynamic programming.

Quadratic programming

- Nonetheless, quadratic programs are typically solved using computer programs.
- As part of homework 4, you will use an off-the-shelf
 Python-based quadratic programming solver (cvxopt).