CS 453X: Class 11

Jacob Whitehill

More on constrained
optimization

Why do Lagrange multipliers work?

e Where does the Lagrangian function come from?

* How does finding its critical point yield the constrained
optimal solution? 2.0

1.5
e \We need to restrict our

“search” for optimal w
to the feasible set — 0.5
points where g(w) = 0.

1.0

0.0

* Imagine we are doinga ©>
gradient descent search _ |
starting from some point
w such thatgiw)=0. 1

'2-0] I I I I 1
20 -15 -1.0 -05 00 05 1.0 15 2.0

Why do Lagrange multipliers work?

 We want to “move” w to reduce f, but we need to keep w
In the feasible set.

2.0

1.5
e Hence, we can move w

along only the
components of Vy f(w) o5
that do not change g(w).

1.0

0.0

 The directions that 0.5
change g(w) are those
aligned with Vwg(w).

-1.5

-2.0 -

Why do Lagrange multipliers work?

 We want to “move” w to reduce f, but we need to keep w
In the feasible set.

2.0

e Hence, we will subtract ;s
from VvV f(w) those
components that are
parallel to Vyg(w). 0.5

1.0

. . . 0.0
e |n particular, we will find

a “restricted gradient” o5
vector:

wa(W) R onWg(W)
for some value a. 1.5

-1.0

-2.0 -

Why do Lagrange multipliers work?

 We want to “move” w to reduce f, but we need to keep w
In the feasible set.

e We will reach a
constrained minimum
when the “restricted
gradient” is 0.

 We can compute the
“restricted gradient”
vector as the gradient of
the Lagrangian:

L(w,a) = f(w) — ag(w)

e We then differentiate, set
to 0, and solve.

Lagrange multipliers

e Note that either of the following Lagrangian formulations
will work (since the value of a can compensate):

L(w,a) = f(w) — ag(w)
L(w,a) = f(w) + ag(w)

e However, with SVMSs, the convention is:

L(w,a) = f(w) — ag(w)

Karush-Kuhn-Tucker (KKT)
conditions

e A generalization of Lagrange multipliers to handle both

equality and inequality constraints are the Karush-Kuhn-
Tucker (KKT) conditions.

e Suppose we wish to minimize f subject to g(x)<O0:

Karush-Kuhn-Tucker (KKT)
conditions

e A generalization of Lagrange multipliers to handle both

equality and inequality constraints are the Karush-Kuhn-
Tucker (KKT) conditions.

e Suppose we wish to minimize f subject to g(x)<O0:

Karush-Kuhn-Tucker (KKT)
conditions

e A generalization of Lagrange multipliers to handle both

equality and inequality constraints are the Karush-Kuhn-
Tucker (KKT) conditions.

e Suppose we wish to minimize f subject to g(x)<O0:

Karush-Kuhn-Tucker (KKT)
conditions

e A generalization of Lagrange multipliers to handle both

equality and inequality constraints are the Karush-Kuhn-
Tucker (KKT) conditions.

e Suppose we wish to minimize f subject to g(x)<O0:

/

Karush-Kuhn-Tucker (KKT)
conditions

e A generalization of Lagrange multipliers to handle both

equality and inequality constraints are the Karush-Kuhn-
Tucker (KKT) conditions.

e Suppose we wish to minimize f subject to g(x)<O0:

/

Karush-Kuhn-Tucker (KKT)
conditions

e A generalization of Lagrange multipliers to handle both

equality and inequality constraints are the Karush-Kuhn-
Tucker (KKT) conditions.

e Suppose we wish to minimize f subject to g(x)<O0:

Karush-Kuhn-Tucker (KKT)
conditions

e Similarly as with Lagrange multipliers, with KKT conditions
we also use a set of “multipliers” a (one for each
constraint), sometimes known as dual variables.

L(w,a) = f(w) — Z ;igi(W)

Karush-Kuhn-Tucker (KKT)
conditions

e Similarly as with Lagrange multipliers, with KKT conditions
we also use a set of “multipliers” a (one for each

constraint), sometimes known as dual variables.

Liw,a) = f(w) — Zozigi(w) \ A /

 Key points:

1.With inequality constraints,
we require that each a;=0.

2.At optimal solution:

e q;> 0 if the constraint is active.

Karush-Kuhn-Tucker (KKT)
conditions

e Similarly as with Lagrange multipliers, with KKT conditions
we also use a set of “multipliers” a (one for each

constraint), sometimes known as dual variables.

L(w,)

 Key points:

Z ;i gi (W

1.With inequality constraints,
we require that each a;=0.

2.At optimal solution:

e a;i>01Ift

ai =

Oift

ne constraint is active.

ne constraint is inactive.

\

gx)=x-1/2

Hyperplanes

Defining a hyperplane

* A hyperplane is defined by a normal vector w (L to H) and
a bias b that is proportional to the distance to the origin.

* The points on hyperplane H are those values of x that
satisfy: x'w+b=0

Hyperplane examples

H={xecR":x'w+b=0}

w=I[1,1]1" b=1

Hyperplane examples

H={xecR":x'w+b=0}

w=I[1,11" b=2

Hyperplane examples

H={xecR":x'w+b=0}

w=[1,1]" b=3

Hyperplane examples

H={xecR":x'w+b=0}

w=I[-1,2]" b=1

Hyperplane examples

H={xecR":x'w+b=0}

w=[2, —0.75]" b=1

Hyperplane examples

H={xecR":x'w+b=0}

w=1[4, —1.5]" b=2

Distance from O to H

* To find the shortest (perpendicular) distance between the
origin O and the hyperplane H:

Distance from O to H

* To find the shortest (perpendicular) distance between the
origin O and the hyperplane H:

e Define a unit vector n with same direction as w: n = ﬁ
W

Distance from O to H

H

* To find the shortest (perpendicular) distance between the
origin O and the hyperplane H:

e Define a unit vector n with same direction as w: n = %

W

e The shortest line from O to H ends at cn, for some
distance c.

Distance from O to H

H={xecR":x'w+b=0}

By

H
 Since cn is within H, we have: en'w+b = 0

Distance from O to H

H
 Since cn is within H, we have: en'w+b = 0

* We can then solve for c
(distance from O to H):

Distance from O to H

H
 Since cn is within H, we have: en'w+b = 0

—
%3
N———
_|
s
|
|

* We can then solve for c
(distance from O to H):

Distance from O to H

H
 Since cn is within H, we have: en'w+b = 0

* We can then solve for c
(distance from O to H): Wl

Distance from O to H

W
OQ
H
 Since cn is within H, we have: en'w+b = 0
W T
* \We can then solve for c ¢
(distance from O to H): wivw o=t

Distance from O to H

W
O.
H
 Since cn is within H, we have: en'w+b = 0

W T
() w =

* \We can then solve for c ¢
(distance from O to H): wivw o=t

c 2

—|w|* = =b

Distance from O to H

* Therefore, the shortest distance between the origin O and
the hyperplane H is: —_b

Wi

Support vector
machines

Support vector machines

e Support vector machines (SVMs) are a ML model for
binary classification.

e SVMs are optimized using constrained optimization
rather than unconstrained optimization (e.g., for logistic
regression).

Support vector machines

e Suppose we have the following set of training data (blue
IS negative, red is posmve)

“,
.
L]
]
]
]
.
-
.
L]
]
]
]
L]
-
.
L]
]
.
]
L]
.
.
L]
]
L]
]
L]
-
.
L]
.
“,
",

e Examples above the line will be classified as positive;
examples below the line will be classified as negative.

* Which line (or hyperplane in higher dimensions) would
likely perform better on testing data, and why?

Support vector machines

 For any hyperplane H that perfectly separates the positive

from the negative examples: o

* Find the subset S- of - examples that lie closest to H.
* The points in S- lie in a hyperplane H- parallel to H.

e Denote the shortest distance between H- and H as d-.

Support vector machines

 For any hyperplane H that perfectly separates the positive

from the negative examp‘l_@_g:___ °

..............

 Find the subset S+ of + examples that lie closest to H.
* The points in S+ lie in a hyperplane H+ parallel to H.

e Denote the shortest distance between H+ and H as d+.

Support vector machines

 For any hyperplane H that perfectly separates the positive

from the negative examples: o

| et d denote the margin — the sum of d+ and d-.

 The optimization objective of SVMs is to find a
separating hyperplane H that maximizes d.

Support vector machines

e Recall that H Il H+ Il H-. Then they can share the same w.

O
H y
e \We can thus scale w and b such that:
H™ : X W 1+ Hp=—1

H : X wi+b=0
HT : x' w4 b=41

Support vector machines

e H-and H+ intersect the negatively and positively labeled
data points closest to H, respectively.

i
e Since all data points not in H+ or H- must lie even farther

from H, we require that:

yW =41 = X(i)TW +0>+1

y=-1 = X(i)TW +6< -1

Support vector machines

e H-and H+ intersect the negatively and positively labeled
data points closest to H, respectively.

e These two sets of constraints can be unified:

y) (x(i)TW +b)>1 Vi

Maximizing the margin

* How do we maximize the margin d?

e Since H-is (-1-b)/|w| from the origin and H+ is (1-b)/|w|
from the origin, then the margin must be:
1—b —1-b 2
W wl |wl

Maximizing the margin

* How do we maximize the margin d?

e To maximize d=2/|w|, we can thus minimize |w|/2 or
(equivalently) minimize:

SVM optimization problem

e Putting the parts together, we wish to:

. I —+
e Minimize: §W W

e Subjectto: y@(xD wb)>1 Vi

SVM optimization problem

e Putting the parts together, we wish to:

1WTW
e Minimize: 2

;)T ,
e Subject to: y O (x w+b) > 1 Vi

* This is a quadratic programming problem: quadratic

objective with linear inequality (and/or equality)
constraints.

e There are many efficient solvers for quadratic programs.

SVM optimization problem

e However, we can get some intuition by doing some
analytical simplification.

e Similar as with Lagrange multipliers, with KKT conditions
we also define a function L of the optimization variables

(w) and the dual variables (q):

1 ik . . .
Liw,b,a) = §WTW — Z o) (y(z) (X(Z)Tw +b— 1))
i=1

SVM optimization problem

e However, we can get some intuition by doing some
analytical simplification.

e Similar as with Lagrange multipliers, with KKT conditions
we also define a function L of the optimization variables
(w) and the dual variables (q):

1 ik . . .
Liw,b,a) = §WTW — Z o) (y(z) (X(Z)TW +b— 1))

1=1

* We then compute the gradient of L, set to 0, and solve
(numerically)...

SVM optimization problem

* As shown below, an optimal w will always be a linear
combination of the data points x0, weighted by the a®.

_ LT Zn () (@ (@7
Liw,b,a) = oW W ._104 (y (X W—I—b—l))
OL D
_ _ (1) 5, (4) 5 (2)
G =V ;:1 a'y\tx

1=1

SVM optimization problem

* As shown below, an optimal w will always be a linear
combination of the data points x0, weighted by the a®.

* As mentioned earlier, only some of the n constraints will
be active — for the others (inactive), at) = 0.

_ LT Zn () (@ (@7
Liw,b,a) = oW W ._104 (y (X W—I—b—l))
OL D
_ _ (1) 5, (4) 5 (2)
G =V ;:1 a'y\tx

1=1

SVM optimization problem

* This means that w will actually only be a linear combination of a
subset of the input vectors x0.

* The data x) for which a®? > O are called support vectors.

 The other data (for which a) = 0) are essentially irrelevant — they
do not influence the location or orientation of the hyperplane.

_ e Zn () (@ (@7
Liw,b,a) = oW W ._104 (y (X W—I—b—l))
OL D
i _ (1) 5, (4) 5 (2)
G =V ;:1 a'y\tx

1=1

SVM optimization problem

* This means that w will actually only be a linear combination of a
subset of the input vectors x0.

* The data x) for which a®? > O are called support vectors.

 The other data (for which a) = 0) are essentially irrelevant — they
do not influence the location or orientation of the hyperplane.

.
2
.
.
.
°, '
. 4
.
. ',
.
.
.
.
.
., .
. .
., oy
* *
. .
. -
.
Y Y N
Y
g A\
.
.
y
CY
.

Quadratic
programming

Quadratic programming

 Quadratic programming is not a kind of computer
programming.

 Quadratic programming (QP) problems are a kind of
mathematical optimization problem:

e Quadratic objective function (which we want to
minimize or maximize).

e Linear equality and/or inequality constraints.

e Same vein as linear programming, dynamic programming.

Quadratic programming

* Nonetheless, quadratic programs are typically solved
using computer programs.

e As part of homework 4, you will use an off-the-shelf
Python-based quadratic programming solver (cvxopt).

