CS 453X: Class 11

Jacob Whitehill
More on constrained optimization
Why do Lagrange multipliers work?

• Where does the Lagrangian function come from?

• How does finding *its* critical point yield the constrained optimal solution?

• We need to restrict our “search” for optimal \mathbf{w} to the feasible set — points where $g(\mathbf{w}) = 0$.

• Imagine we are doing a gradient descent search starting from some point \mathbf{w} such that $g(\mathbf{w}) = 0$.
Why do Lagrange multipliers work?

- We want to “move” \(\mathbf{w} \) to reduce \(f \), but we need to keep \(\mathbf{w} \) in the feasible set.

- Hence, we can move \(\mathbf{w} \) along only the components of \(\nabla_{\mathbf{w}} f(\mathbf{w}) \) that \textit{do not change} \(g(\mathbf{w}) \).

- The directions that change \(g(\mathbf{w}) \) are those aligned with \(\nabla_{\mathbf{w}} g(\mathbf{w}) \).
Why do Lagrange multipliers work?

• We want to “move” w to reduce f, but we need to keep w in the feasible set.

• Hence, we will subtract from $\nabla_w f(w)$ those components that are parallel to $\nabla_w g(w)$.

• In particular, we will find a “restricted gradient” vector:
 $\nabla_w f(w) - \alpha \nabla_w g(w)$ for some value α.
Why do Lagrange multipliers work?

• We want to “move” \(w \) to reduce \(f \), but we need to keep \(w \) in the feasible set.

• We will reach a constrained minimum when the “restricted gradient” is 0.

• We can compute the “restricted gradient” vector as the gradient of the Lagrangian:
 \[
 L(w, \alpha) = f(w) - \alpha g(w)
 \]

• We then differentiate, set to 0, and solve.
Lagrange multipliers

• Note that either of the following Lagrangian formulations will work (since the value of α can compensate):

\[L(w, \alpha) = f(w) - \alpha g(w) \]
\[L(w, \alpha) = f(w) + \alpha g(w) \]

• However, with SVMs, the convention is:

\[L(w, \alpha) = f(w) - \alpha g(w) \]
Karush-Kuhn-Tucker (KKT) conditions

• A generalization of Lagrange multipliers to handle both equality and inequality constraints are the Karush-Kuhn-Tucker (KKT) conditions.

• Suppose we wish to minimize f subject to $g(x) \leq 0$: $\quad g(x) = ?$
Karush-Kuhn-Tucker (KKT) conditions

• A generalization of Lagrange multipliers to handle both equality and inequality constraints are the Karush-Kuhn-Tucker (KKT) conditions.

• Suppose we wish to minimize f subject to $g(x) \leq 0$:

$$g(x) = x + 1$$
Karush-Kuhn-Tucker (KKT) conditions

- A generalization of Lagrange multipliers to handle both equality and inequality constraints are the Karush-Kuhn-Tucker (KKT) conditions.

- Suppose we wish to minimize f subject to $g(x) \leq 0$:
Karush-Kuhn-Tucker (KKT) conditions

- A generalization of Lagrange multipliers to handle both equality and inequality constraints are the Karush-Kuhn-Tucker (KKT) conditions.

- Suppose we wish to minimize f subject to $g(x) \leq 0$:

\[g(x) = 1 - x \]
Karush-Kuhn-Tucker (KKT) conditions

• A generalization of Lagrange multipliers to handle both equality and inequality constraints are the Karush-Kuhn-Tucker (KKT) conditions.

• Suppose we wish to minimize f subject to $g(x) \leq 0$:

$$g(x) = -1 - x$$
Karush-Kuhn-Tucker (KKT) conditions

- A generalization of Lagrange multipliers to handle both equality and inequality constraints are the Karush-Kuhn-Tucker (KKT) conditions.

- Suppose we wish to minimize f subject to $g(x) \leq 0$:

$$g(x) = -x$$
Karush-Kuhn-Tucker (KKT) conditions

- Similarly as with Lagrange multipliers, with KKT conditions we also use a set of “multipliers” α (one for each constraint), sometimes known as dual variables.

\[L(w, \alpha) = f(w) - \sum_{i=1}^{n} \alpha_i g_i(w) \]
Karush-Kuhn-Tucker (KKT) conditions

• Similarly as with Lagrange multipliers, with KKT conditions we also use a set of “multipliers” \(\alpha \) (one for each constraint), sometimes known as dual variables.

\[
L(w, \alpha) = f(w) - \sum_{i=1}^{n} \alpha_i g_i(w)
\]

• Key points:
 1. With inequality constraints, we require that each \(\alpha_i \geq 0 \).
 2. At optimal solution:
 • \(\alpha_i > 0 \) if the constraint is active.
Karush-Kuhn-Tucker (KKT) conditions

• Similarly as with Lagrange multipliers, with KKT conditions we also use a set of “multipliers” α (one for each constraint), sometimes known as dual variables.

$$L(w, \alpha) = f(w) - \sum_{i=1}^{n} \alpha_i g_i(w)$$

• Key points:

1. With inequality constraints, we require that each $\alpha_i \geq 0$.

2. At optimal solution:
 - $\alpha_i > 0$ if the constraint is active.
 - $\alpha_i = 0$ if the constraint is inactive.
Hyperplanes
Defining a hyperplane

- A **hyperplane** is defined by a normal vector \mathbf{w} (\perp to H) and a bias b that is proportional to the distance to the origin.

- The points on hyperplane H are those values of \mathbf{x} that satisfy:
 $$\mathbf{x}^\top \mathbf{w} + b = 0$$
Hyperplane examples

\[H = \{ x \in \mathbb{R}^m : x^\top w + b = 0 \} \]

\[w = [1, 1]^T \quad b = 1 \]
Hyperplane examples

\[H = \{ \mathbf{x} \in \mathbb{R}^m : \mathbf{x}^\top \mathbf{w} + b = 0 \} \]

\[\mathbf{w} = [1, 1]^T \quad b = 2 \]

Adjusting \(b \) translates the plane.
Hyperplane examples

\[H = \{ x \in \mathbb{R}^m : x^\top w + b = 0 \} \]

Adjusting \(b \) translates the plane.
Hyperplane examples

\[H = \{ x \in \mathbb{R}^m : x^\top w + b = 0 \} \]

\(w = [-1, 2]^T \quad b = 1 \)
Hyperplane examples

\[H = \{ \mathbf{x} \in \mathbb{R}^m : \mathbf{x}^\top \mathbf{w} + b = 0 \} \]

\[\mathbf{w} = [2, -0.75]^T \quad b = 1 \]
Hyperplane examples

\[H = \{ \mathbf{x} \in \mathbb{R}^m : \mathbf{x}^\top \mathbf{w} + b = 0 \} \]

The parameterization of \(H \) is not unique — multiplying \(\mathbf{w} \) and \(b \) by the same constant \(c \) results in the same \(H \).
Distance from O to H

- To find the shortest (perpendicular) distance between the origin O and the hyperplane H:

Distance from O to H

- To find the shortest (perpendicular) distance between the origin O and the hyperplane H:
 - Define a *unit* vector n with same direction as w: $n = \frac{w}{|w|}$
Distance from O to H

- To find the shortest (perpendicular) distance between the origin O and the hyperplane H:
 - Define a *unit* vector \mathbf{n} with same direction as \mathbf{w}: $\mathbf{n} = \frac{\mathbf{w}}{||\mathbf{w}||}$
 - The shortest line from O to H ends at $c\mathbf{n}$, for some distance c.
Distance from O to H

$$H = \{ \mathbf{x} \in \mathbb{R}^m : \mathbf{x}^\top \mathbf{w} + b = 0 \}$$

- Since \mathbf{cn} is within H, we have: $\mathbf{cn}^\top \mathbf{w} + b = 0$
Distance from O to H

- Since $c\mathbf{n}$ is within H, we have:

$$c\mathbf{n}^\top\mathbf{w} + b = 0$$

- We can then solve for c (distance from O to H):
Distance from O to H

- Since cn is within H, we have:
 \[
 cn^T w + b = 0
 \]

- We can then solve for c (distance from O to H):
 \[
 c \left(\frac{w}{|w|} \right)^T w = -b
 \]
Distance from O to H

- Since cn is within H, we have:
 \[cn^T w + b = 0 \]
 \[c \left(\frac{w}{|w|} \right)^T w = -b \]
 \[\frac{c}{|w|} w^T w = -b \]

- We can then solve for c (distance from O to H):
Distance from O to H

- Since cn is within H, we have:

- We can then solve for c (distance from O to H):

\[
\begin{align*}
\mathbf{cn}^\top \mathbf{w} + b &= 0 \\
c \left(\frac{\mathbf{w}}{|\mathbf{w}|} \right)^\top \mathbf{w} &= -b \\
\frac{c}{|\mathbf{w}|} \mathbf{w}^\top \mathbf{w} &= -b \\
\frac{c}{|\mathbf{w}|} |\mathbf{w}|^2 &= -b
\end{align*}
\]
We have:

\[c \mathbf{n}^T \mathbf{w} + b = 0 \]

\[c \left(\frac{\mathbf{w}}{||\mathbf{w}||} \right)^T \mathbf{w} = -b \]

\[\frac{c}{||\mathbf{w}||} \mathbf{w}^T \mathbf{w} = -b \]

\[\frac{c}{||\mathbf{w}||} ||\mathbf{w}||^2 = -b \]

\[c ||\mathbf{w}|| = -b \]

\[c = \frac{-b}{||\mathbf{w}||} \]
Therefore, the shortest distance between the origin O and the hyperplane H is:

$$\frac{-b}{\|w\|}$$
Support vector machines
Support vector machines

- **Support vector machines (SVMs)** are a ML model for binary classification.

- SVMs are optimized using **constrained optimization** rather than unconstrained optimization (e.g., for logistic regression).
Suppose we have the following set of training data (blue is negative, red is positive):

Examples above the line will be classified as positive; examples below the line will be classified as negative.

Which line (or hyperplane in higher dimensions) would likely perform better on testing data, and why?
For any hyperplane H that perfectly separates the positive from the negative examples:

- Find the subset S^- of - examples that lie closest to H.
- The points in S^- lie in a hyperplane H^- parallel to H.
- Denote the shortest distance between H^- and H as d^-.

Support vector machines
Support vector machines

• For any hyperplane H that perfectly separates the positive from the negative examples:

 • Find the subset S^+ of + examples that lie closest to H.
 • The points in S^+ lie in a hyperplane H^+ parallel to H.
 • Denote the shortest distance between H^+ and H as d^+.
Support vector machines

- For any hyperplane H that perfectly separates the positive from the negative examples:

- Let d denote the **margin** — the sum of d^+ and d^-.

- The optimization objective of SVMs is to find a separating hyperplane H that maximizes d.

Support vector machines

- Recall that $H \parallel H^+ \parallel H^-$. Then they can share the same w.

- We can thus scale w and b such that:

\[
H^- : \quad x^T w + b = -1 \\
H : \quad x^T w + b = 0 \\
H^+ : \quad x^T w + b = +1
\]
Support vector machines

• H^- and H^+ intersect the negatively and positively labeled data points closest to H, respectively.

• Since all data points not in H^+ or H^- must lie even farther from H, we require that:

\[y^{(i)} = +1 \quad \Rightarrow \quad x^{(i)\top}w + b \geq +1 \]
\[y^{(i)} = -1 \quad \Rightarrow \quad x^{(i)\top}w + b \leq -1 \]
Support vector machines

- H^- and H^+ intersect the negatively and positively labeled data points closest to H, respectively.

- These two sets of constraints can be unified:

$$y^{(i)}(x^{(i)\top}w + b) \geq 1 \quad \forall i$$

Inequality constraints
Maximizing the margin

• How do we maximize the margin d?

Since H^- is $(-1-b)/|w|$ from the origin and H^+ is $(1-b)/|w|$ from the origin, then the margin must be:

\[d = \frac{1-b}{|w|} - \frac{-1-b}{|w|} = \frac{2}{|w|} \]
Maximizing the margin

- How do we maximize the margin d?

- To maximize $d = 2/|w|$, we can thus minimize $|w|/2$ or (equivalently) minimize:

$$\frac{1}{2} w^T w$$

Optimization objective (cost function)
SVM optimization problem

- Putting the parts together, we wish to:

 - Minimize: \(\frac{1}{2} \mathbf{w}^\top \mathbf{w} \)

 - Subject to: \(y^{(i)} (\mathbf{x}^{(i)} \mathbf{w} + b) \geq 1 \quad \forall i \)
SVM optimization problem

• Putting the parts together, we wish to:

\[
\frac{1}{2} \mathbf{w}^\top \mathbf{w}
\]

• Minimize:

\[
\frac{1}{2} \mathbf{w}^\top \mathbf{w}
\]

• Subject to:

\[
y^{(i)} (\mathbf{x}^{(i)} \mathbf{w} + b) \geq 1 \quad \forall i
\]

• This is a quadratic programming problem: quadratic objective with linear inequality (and/or equality) constraints.

• There are many efficient solvers for quadratic programs.
SVM optimization problem

• However, we can get some intuition by doing some analytical simplification.

• Similar as with Lagrange multipliers, with KKT conditions we also define a function L of the optimization variables (w) and the dual variables (α):

$$L(w, b, \alpha) = \frac{1}{2} w^T w - \sum_{i=1}^{n} \alpha^{(i)} \left(y^{(i)} \left(x^{(i)^T} w + b - 1 \right) \right)$$

- Objective
- Inequality constraints
SVM optimization problem

• However, we can get some intuition by doing some analytical simplification.

• Similar as with Lagrange multipliers, with KKT conditions we also define a function L of the optimization variables (w) and the dual variables (α):

$$L(w, b, \alpha) = \frac{1}{2} w^T w - \sum_{i=1}^{n} \alpha^{(i)} \left(y^{(i)} \left(x^{(i)^T} w + b - 1 \right) \right)$$

 Objective Inequality constraints

• We then compute the gradient of L, set to 0, and solve (numerically)…
SVM optimization problem

- As shown below, an optimal \mathbf{w} will always be a **linear combination** of the data points $\mathbf{x}^{(i)}$, weighted by the $\alpha^{(i)}$.

\[
L(w, b, \alpha) = \frac{1}{2} \mathbf{w}^\top \mathbf{w} - \sum_{i=1}^{n} \alpha^{(i)} \left(y^{(i)} \left(\mathbf{x}^{(i)} \mathbf{w} + b - 1 \right) \right)
\]

\[
\frac{\partial L}{\partial \mathbf{w}} = \mathbf{w} - \sum_{i=1}^{n} \alpha^{(i)} y^{(i)} \mathbf{x}^{(i)}
\]

\[\implies \mathbf{w} = \sum_{i=1}^{n} \alpha^{(i)} y^{(i)} \mathbf{x}^{(i)}\]
SVM optimization problem

• As shown below, an optimal w will always be a **linear combination** of the data points $x^{(i)}$, weighted by the $\alpha^{(i)}$.

• As mentioned earlier, only some of the n constraints will be active — for the others (inactive), $\alpha^{(i)} = 0$.

$$L(w, b, \alpha) = \frac{1}{2} w^T w - \sum_{i=1}^{n} \alpha^{(i)} \left(y^{(i)} \left(x^{(i)^T} w + b - 1 \right) \right)$$

$$\frac{\partial L}{\partial w} = w - \sum_{i=1}^{n} \alpha^{(i)} y^{(i)} x^{(i)}$$

$$\implies w = \sum_{i=1}^{n} \alpha^{(i)} y^{(i)} x^{(i)}$$
SVM optimization problem

- This means that \mathbf{w} will actually only be a linear combination of a subset of the input vectors $\mathbf{x}^{(i)}$.
- The data $\mathbf{x}^{(i)}$ for which $\alpha^{(i)} > 0$ are called support vectors.
- The other data (for which $\alpha^{(i)} = 0$) are essentially irrelevant — they do not influence the location or orientation of the hyperplane.

\[
L(\mathbf{w}, b, \alpha) = \frac{1}{2} \mathbf{w}^\top \mathbf{w} - \sum_{i=1}^{n} \alpha^{(i)} \left(y^{(i)} \left(\mathbf{x}^{(i)} \mathbf{w} + b - 1 \right) \right)
\]

\[
\frac{\partial L}{\partial \mathbf{w}} = \mathbf{w} - \sum_{i=1}^{n} \alpha^{(i)} y^{(i)} \mathbf{x}^{(i)}
\]

\[
\implies \mathbf{w} = \sum_{i=1}^{n} \alpha^{(i)} y^{(i)} \mathbf{x}^{(i)}
\]
SVM optimization problem

- This means that \mathbf{w} will actually only be a linear combination of a
 subset of the input vectors $\mathbf{x}^{(i)}$.

- The data $\mathbf{x}^{(i)}$ for which $\alpha^{(i)} > 0$ are called *support vectors*.

- The other data (for which $\alpha^{(i)} = 0$) are essentially *irrelevant* — they
 do *not* influence the *location* or *orientation* of the hyperplane.
Quadratic programming
Quadratic programming

• Quadratic programming is not a kind of computer programming.

• **Quadratic programming (QP)** problems are a kind of mathematical optimization problem:

 • Quadratic objective function (which we want to minimize or maximize).

 • Linear equality and/or inequality constraints.

 • Same vein as linear programming, dynamic programming.
Quadratic programming

- Nonetheless, quadratic programs are typically *solved* using computer programs.

- As part of homework 4, you will use an off-the-shelf Python-based quadratic programming solver (*cvxopt*).