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More on constrained 
optimization



Why do Lagrange multipliers work?
• Where does the Lagrangian function come from?


• How does finding its critical point yield the constrained 
optimal solution?

�rwf(w)

• We need to restrict our 
“search” for optimal w 
to the feasible set — 
points where g(w) = 0.


• Imagine we are doing a 
gradient descent search 
starting from some point 
w such that g(w) = 0.

rwg(w)



Why do Lagrange multipliers work?
• We want to “move” w to reduce f, but we need to keep w 

in the feasible set.

�rwf(w)

• Hence, we can move w 
along only the 
components of 
that do not change g(w).


• The directions that 
change g(w) are those 
aligned with            .
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Why do Lagrange multipliers work?
• We want to “move” w to reduce f, but we need to keep w 

in the feasible set.

�rwf(w)

• Hence, we will subtract 
from               those 
components that are 
parallel to             .


• In particular, we will find 
a “restricted gradient” 
vector: 
 
for some value α.
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Why do Lagrange multipliers work?
• We want to “move” w to reduce f, but we need to keep w 

in the feasible set.

�rwf(w)

• We will reach a 
constrained minimum 
when the “restricted 
gradient” is 0.


• We can compute the 
“restricted gradient” 
vector as the gradient of 
the Lagrangian: 

• We then differentiate, set 
to 0, and solve.

rwg(w)

L(w,↵) = f(w)� ↵g(w)



Lagrange multipliers

• Note that either of the following Lagrangian formulations 
will work (since the value of α can compensate):


• However, with SVMs, the convention is:

L(w,↵) = f(w)� ↵g(w)

L(w,↵) = f(w) + ↵g(w)

L(w,↵) = f(w)� ↵g(w)



g(x)=x+1

Karush-Kuhn-Tucker (KKT) 
conditions

• A generalization of Lagrange multipliers to handle both 
equality and inequality constraints are the Karush-Kuhn-
Tucker (KKT) conditions.


• Suppose we wish to minimize f subject to g(x)≤0:

+1-1 0

?
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Karush-Kuhn-Tucker (KKT) 
conditions

• A generalization of Lagrange multipliers to handle both 
equality and inequality constraints are the Karush-Kuhn-
Tucker (KKT) conditions.


• Suppose we wish to minimize f subject to g(x)≤0:

g(x)=1-x
+1-1 0

?
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Karush-Kuhn-Tucker (KKT) 
conditions

• A generalization of Lagrange multipliers to handle both 
equality and inequality constraints are the Karush-Kuhn-
Tucker (KKT) conditions.


• Suppose we wish to minimize f subject to g(x)≤0:

g(x)=-1-x
+1-1 0



Karush-Kuhn-Tucker (KKT) 
conditions

• A generalization of Lagrange multipliers to handle both 
equality and inequality constraints are the Karush-Kuhn-
Tucker (KKT) conditions.


• Suppose we wish to minimize f subject to g(x)≤0:

g(x)=-x
+1-1 0



Karush-Kuhn-Tucker (KKT) 
conditions

• Similarly as with Lagrange multipliers, with KKT conditions 
we also use a set of “multipliers” α (one for each 
constraint), sometimes known as dual variables.


• Key points:

1.With inequality constraints, 

we require that α≥0.

2.At optimal solution:


• α > 0 if the constraint is active.


• α = 0 if the constraint is inactive.

L(w,↵) = f(w)�
nX
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Karush-Kuhn-Tucker (KKT) 
conditions

• Similarly as with Lagrange multipliers, with KKT conditions 
we also use a set of “multipliers” α (one for each 
constraint), sometimes known as dual variables.


• Key points:

1.With inequality constraints, 

we require that each αi≥0.

2.At optimal solution:


• αi > 0 if the constraint is active.


• α = 0 if the constraint is inactive.

L(w,↵) = f(w)�
nX

i=1

↵igi(w)

g(x)=x



• Similarly as with Lagrange multipliers, with KKT conditions 
we also use a set of “multipliers” α (one for each 
constraint), sometimes known as dual variables.


• Key points:

1.With inequality constraints, 

we require that each αi≥0.

2.At optimal solution:


• αi > 0 if the constraint is active.


• αi = 0 if the constraint is inactive.

Karush-Kuhn-Tucker (KKT) 
conditions

L(w,↵) = f(w)�
nX

i=1

↵igi(w)

g(x)=x-1/2



Hyperplanes



Defining a hyperplane

• A hyperplane is defined by a normal vector w (⊥ to H) and 
a bias b that is proportional to the distance to the origin.


• The points on hyperplane H are those values of x that 
satisfy: x>w + b = 0

H

w

O

b



Hyperplane examples
H = {x 2 Rm : x>w + b = 0}



Hyperplane examples

Adjusting b 
translates the plane.

H = {x 2 Rm : x>w + b = 0}



Hyperplane examples
H = {x 2 Rm : x>w + b = 0}

Adjusting b 
translates the plane.



Hyperplane examples
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Hyperplane examples
H = {x 2 Rm : x>w + b = 0}



Hyperplane examples
H = {x 2 Rm : x>w + b = 0}

The parameterization of H is 
not unique — multiplying w 

and b by the same constant c 
results in the same H.



Distance from O to H

• To find the shortest (perpendicular) distance between the 
origin O and the hyperplane H:


• Define a unit vector n with same direction as w:


• The shortest line from O to H ends at cn, for some 
distance c.

H

w

O



Distance from O to H

• To find the shortest (perpendicular) distance between the 
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• Define a unit vector n with same direction as w:
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Distance from O to H

• To find the shortest (perpendicular) distance between the 
origin O and the hyperplane H:


• Define a unit vector n with same direction as w:


• The shortest line from O to H ends at cn, for some 
distance c.
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Distance from O to H

• Since cn is within H, we have:


• We can then solve for c 
(distance from O to H):
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• Since cn is within H, we have:


• We can then solve for c 
(distance from O to H):



Distance from O to H

• Therefore, the shortest distance between the origin O and 
the hyperplane H is:

H

w

O

�b

|w|
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|w|



Support vector 
machines



Support vector machines

• Support vector machines (SVMs) are a ML model for 
binary classification.


• SVMs are optimized using constrained optimization 
rather than unconstrained optimization (e.g., for logistic 
regression).



• Suppose we have the following set of training data (blue 
is negative, red is positive):


• Examples above the line will be classified as positive; 
examples below the line will be classified as negative.


• Which line (or hyperplane in higher dimensions) would 
likely perform better on testing data, and why?

Support vector machines

A
B



• For any hyperplane H that perfectly separates the positive 
from the negative examples:


• Find the subset S- of - examples that lie closest to H.


• The points in S- lie in a hyperplane H- parallel to H.


• Denote the shortest distance between H- and H as d-.

Support vector machines

H
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• For any hyperplane H that perfectly separates the positive 
from the negative examples:


• Find the subset S+ of + examples that lie closest to H.


• The points in S+ lie in a hyperplane H+ parallel to H.


• Denote the shortest distance between H+ and H as d+.

Support vector machines

H

S-

H-
H+

d-
d+

S+



• For any hyperplane H that perfectly separates the positive 
from the negative examples:


• Let d denote the margin — the sum of d+ and d-.


• The optimization objective of SVMs is to find a 
separating hyperplane H that maximizes d.

Support vector machines

HH-
H+

d-
d+

d



• Recall that H ‖ H+ ‖ H-. Then they can share the same w.


• We can thus scale w and b such that:

Support vector machines

HH-
H+

H
� : x>w + b = �1

H : x>w + b = 0

H
+ : x>w + b = +1

w

x>w + b = �1 x>w + b = +1



• H− and H+ intersect the negatively and positively labeled 
data points closest to H, respectively.


• Since all data points not in H+ or H− must lie even farther 
from H, we require that:

Support vector machines

HH-
H+

y(i) = +1 =) x(i)>w + b � +1

y(i) = �1 =) x(i)>w + b  �1

x>w + b = �1 x>w + b = +1



• H− and H+ intersect the negatively and positively labeled 
data points closest to H, respectively.


• These two sets of constraints can be unified:

Support vector machines

HH-
H+

x>w + b = �1 x>w + b = +1

y(i)(x(i)>w + b) � 1 8i
Inequality constraints



• How do we maximize the margin d?


• Since H- is (-1-b)/|w| from the origin and H+ is (1-b)/|w| 
from the origin, then the margin must be:

Maximizing the margin

HH-
H+

x>w + b = �1 x>w + b = +1

d

d =
1� b

|w| � �1� b

|w| =
2

|w|



• How do we maximize the margin d?


• To maximize d=2/|w|, we can thus minimize |w|/2 or 
(equivalently) minimize:

Maximizing the margin

HH-
H+

x>w + b = �1 x>w + b = +1

d

1

2
w>w

Optimization objective (cost function)



SVM optimization problem
• Putting the parts together, we wish to:


• Minimize:


• Subject to:


• This is a quadratic programming problem: quadratic 
objective with linear inequality (and/or equality) 
constraints.


• Quadratic programs are convex optimization problems, 
and many efficient solvers exist to tackle them.

1

2
w>w

y(i)(x(i)>w + b) � 1 8i



SVM optimization problem

• Putting the parts together, we wish to:


• Minimize:


• Subject to:


• This is a quadratic programming problem: quadratic 
objective with linear inequality (and/or equality) 
constraints.


• There are many efficient solvers for quadratic programs.

1

2
w>w

y(i)(x(i)>w + b) � 1 8i
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SVM optimization problem
• However, we can get some intuition by doing some 

analytical simplification.


• Similar as with Lagrange multipliers, with KKT conditions 
we also define a function L of the optimization variables 
(w) and the dual variables (α):


• We then compute the gradient of L, set to 0, and solve 
(numerically).

Objective Inequality constraints
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SVM optimization problem
• However, we can get some intuition by doing some 

analytical simplification.


• Similar as with Lagrange multipliers, with KKT conditions 
we also define a function L of the optimization variables 
(w) and the dual variables (α):


• We then compute the gradient of L, set to 0, and solve 
(numerically)…

Objective Inequality constraints



SVM optimization problem
• As shown below, an optimal w will always be a linear 

combination of the data points x(i), weighted by the α(i).


• As mentioned earlier, only some of the n constraints will 
be active — for the others (inactive), α(i) = 0.
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SVM optimization problem
• As shown below, an optimal w will always be a linear 

combination of the data points x(i), weighted by the α(i).
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SVM optimization problem
• This means that w will actually only be a linear combination of a 

subset of the input vectors x(i).


• The data x(i) for which α(i) > 0 are called support vectors.


• The other data (for which α(i) = 0) are essentially irrelevant — they 
do not influence the location or orientation of the hyperplane.
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SVM optimization problem
• This means that w will actually only be a linear combination of a 

subset of the input vectors x(i).


• The data x(i) for which α(i) > 0 are called support vectors.


• The other data (for which α(i) = 0) are essentially irrelevant — they 
do not influence the location or orientation of the hyperplane.

HH-
H+d

Support vectors



Quadratic 
programming



Quadratic programming
• Quadratic programming is not a kind of computer 

programming.


• Quadratic programming (QP) problems are a kind of 
mathematical optimization problem:


• Quadratic objective function (which we want to 
minimize or maximize).


• Linear equality and/or inequality constraints.


• Same vein as linear programming, dynamic programming.



Quadratic programming

• Nonetheless, quadratic programs are typically solved 
using computer programs.


• As part of homework 4, you will use an off-the-shelf 
Python-based quadratic programming solver (cvxopt).


