CS 453X: Class 10

Jacob Whitehill

Convex ML models

Convexity in higher dimensions

• For higher-dimensional *f*, convexity is determined by the second derivative matrix, known as the **Hessian** of *f*.

$$\mathbf{H} = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \, \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \, \partial x_n} \\ \\ \frac{\partial^2 f}{\partial x_2 \, \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \, \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \\ \frac{\partial^2 f}{\partial x_n \, \partial x_1} & \frac{\partial^2 f}{\partial x_n \, \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}.$$

• For $f: \mathbb{R}^m \to \mathbb{R}$, f is convex if the Hessian matrix is positive semi-definite for *every* input **x**.

Positive semi-definite

- Positive semi-definite is the matrix analog of being "nonnegative".
- A real symmetric matrix A is positive semi-definite (PSD) if (equivalent conditions):

Positive semi-definite

- Positive semi-definite is the matrix analog of being "nonnegative".
- A real symmetric matrix A is positive semi-definite (PSD) if (equivalent conditions):
 - All its eigenvalues are ≥0.
 - If A happens to be diagonal, then its eigenvalues are the diagonal elements.

Positive semi-definite

- Positive semi-definite is the matrix analog of being "nonnegative".
- A real symmetric matrix A is positive semi-definite (PSD) if (equivalent conditions):
 - All its eigenvalues are ≥0.
 - If A happens to be diagonal, then its eigenvalues are the diagonal elements.
 - For every vector \mathbf{v} : $\mathbf{v}^{\mathsf{T}}\mathbf{A}\mathbf{v} \geq 0$
 - Therefore: If there exists any vector v such that
 v^TAv < 0, then A is not PSD.

- Suppose $f(x, y) = 3x^2 + 2y^2 2$.
- Then the first derivatives are: $\frac{\partial f}{\partial x} = 6x$ $\frac{\partial f}{\partial y} = 4y$
- The Hessian matrix is therefore:

$$\mathbf{H} = \begin{bmatrix} \frac{\partial^2 f}{\partial x \partial x} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial u \partial x} & \frac{\partial^2 f}{\partial u \partial y} \end{bmatrix} = \begin{bmatrix} 6 & 0 \\ 0 & 4 \end{bmatrix}$$

- Notice that **H** for this f does not depend on (x,y).
- Also, H is a diagonal matrix (with 6 and 4 on the diagonal).
 Hence, the eigenvalues are just 6 and 4. Since they are both non-negative, then f is convex.

• Graph of $f(x, y) = 3x^2 + 2y^2 - 2$:

- Recall: if **H** is the Hessian of *f*, then *f* is convex if at *every* (*x*,*y*), we can show (equivalently):
 - $\mathbf{v}^{\mathsf{T}}\mathbf{H}\mathbf{v} \geq 0$ for every \mathbf{v}
 - All eigenvalues of **H** are non-negative.
- Which of the following function(s) are convex?

•
$$x^2 + y + 5$$

•
$$x^2 + 3xy$$

•
$$X^4 + XY + X^2$$

- Recall: if **H** is the Hessian of *f*, then *f* is convex if at *every* (*x*,*y*), we can show (equivalently):
 - $\mathbf{v}^{\mathsf{T}}\mathbf{H}\mathbf{v} \geq 0$ for every \mathbf{v}
 - All eigenvalues of **H** are non-negative.
- Which of the following function(s) are convex?

•
$$x^2 + y + 5$$
 $\mathbf{H} = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$

•
$$x^2 + 3xy$$

•
$$X^4 + XY + X^2$$

- Recall: if **H** is the Hessian of *f*, then *f* is convex if at *every* (*x*,*y*), we can show (equivalently):
 - $\mathbf{v}^{\mathsf{T}}\mathbf{H}\mathbf{v} \geq 0$ for every \mathbf{v}
 - All eigenvalues of **H** are non-negative.
- Which of the following function(s) are convex?

•
$$x^2 + y + 5$$
 $\mathbf{H} = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$ Eigenvalues are 2, 0 => PSD.

•
$$x^2 + 3xy$$

•
$$X^4 + Xy + X^2$$

- Recall: if **H** is the Hessian of *f*, then *f* is convex if at *every* (*x*,*y*), we can show (equivalently):
 - $\mathbf{v}^{\mathsf{T}}\mathbf{H}\mathbf{v} \geq 0$ for every \mathbf{v}
 - All eigenvalues of **H** are non-negative.
- Which of the following function(s) are convex?

•
$$x^2 + y + 5$$

•
$$x^2 + 3xy$$
 $\mathbf{H} = \begin{bmatrix} 2 & 3 \\ 3 & 0 \end{bmatrix}$

•
$$X^4 + Xy + X^2$$

- Recall: if **H** is the Hessian of *f*, then *f* is convex if at *every* (*x*,*y*), we can show (equivalently):
 - $\mathbf{v}^{\mathsf{T}}\mathbf{H}\mathbf{v} \geq 0$ for every \mathbf{v}
 - All eigenvalues of **H** are non-negative.
- Which of the following function(s) are convex?

•
$$x^2 + y + 5$$

•
$$\mathbf{X}^2 + \mathbf{3}\mathbf{X}\mathbf{y}$$
 $\mathbf{H} = \begin{bmatrix} 2 & 3 \\ 3 & 0 \end{bmatrix}$ $\mathbf{v} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ $\mathbf{v}^{\mathsf{T}}\mathbf{H}\mathbf{v} = -4$

•
$$X^4 + Xy + X^2$$

- Recall: if **H** is the Hessian of *f*, then *f* is convex if at *every* (*x*,*y*), we can show (equivalently):
 - v^THv ≥0 for every v
 - All eigenvalues of **H** are non-negative.
- Which of the following function(s) are convex?

•
$$x^2 + y + 5$$

•
$$x^2 + 3xy$$

•
$$x^4 + xy + x^2$$
 $\mathbf{H} = \begin{bmatrix} 12x^2 + 2 & 1 \\ 1 & 0 \end{bmatrix}$

- Recall: if **H** is the Hessian of *f*, then *f* is convex if at *every* (*x*,*y*), we can show (equivalently):
 - v^THv ≥0 for every v
 - All eigenvalues of **H** are non-negative.
- Which of the following function(s) are convex?

•
$$x^2 + y + 5$$

$$\bullet \quad x^2 + 3xy \qquad \qquad x = 1$$

•
$$\mathbf{X}^4 + \mathbf{X}\mathbf{Y} + \mathbf{X}^2$$
 $\mathbf{H} = \begin{bmatrix} 12x^2 + 2 & 1 \\ 1 & 0 \end{bmatrix}$ $\mathbf{v} = \begin{bmatrix} -1 \\ 15 \end{bmatrix}$ $\mathbf{v}^{\mathsf{T}}\mathbf{H}\mathbf{v} = -16$ Not PSD.

Convexity of linear regression and softmax regression

- Why are they convex?
- First, recall that, for any matrices **A**, **B** that can be multiplied:
 - $(AB)^{\mathsf{T}} = B^{\mathsf{T}}A^{\mathsf{T}}$

Convexity of linear regression and softmax regression

- Why are they convex?
- Next, recall the gradient of f_{MSE} (for linear regression):

$$abla_{\mathbf{w}} f_{\text{MSE}} = \mathbf{X} (\hat{\mathbf{y}} - \mathbf{y})$$

$$= \mathbf{X} (\mathbf{X}^{\top} \mathbf{w} - \mathbf{y})$$

$$\mathbf{H} = \mathbf{X} \mathbf{X}^{\top}$$

Convexity of linear regression and softmax regression

- Why are they convex?
- Next, recall the gradient of f_{MSE} (for linear regression):

$$abla_{\mathbf{w}} f_{\text{MSE}} = \mathbf{X} (\hat{\mathbf{y}} - \mathbf{y})$$

$$= \mathbf{X} (\mathbf{X}^{\top} \mathbf{w} - \mathbf{y})$$

$$\mathbf{H} = \mathbf{X} \mathbf{X}^{\top}$$

• For any vector **v**, we have:

$$\mathbf{v}^{\top} \mathbf{X} \mathbf{X}^{\top} \mathbf{v} = (\mathbf{X}^{\top} \mathbf{v})^{\top} (\mathbf{X}^{\top} \mathbf{v})$$

 ≥ 0

Convex ML models

- Beyond linear regression and softmax regression, what other convex ML models are there?
- One of the most prominent is the support vector machine (SVM).

Constrained optimization

Unconstrained optimization

- So far, the ML methods we have examined are based on optimizing some objective function (loss or accuracy).
- The optimization variable has been unconstrained it can be any value in \mathbb{R}^m .
- Unconstrained optimal solutions exist at critical points of the objective function f, i.e., where the gradient of f is 0, e.g.:

• The minimum of this function is at x=0.

Constrained optimization

- Things become more complicated when we put a constraint on the optimization variables.
- What if we want to minimize f subject to the inequality constraint that x ≥ 1?

Constrained optimization

- Things become more complicated when we put a constraint on the optimization variables.
- What if we want to minimize f subject to the inequality constraint that x ≥ 1?
- The solution no longer occurs at a critical point of f.

• The minimum of f, constrained s.t. $x \ge 1$, is at x=1.

Constrained optimization methods

- A variety of techniques exist for solving constrained optimization problems.
- Many of these are applicable when the objective function f is convex.
- Two widely used techniques:
 - Lagrange multipliers
 - Karush-Kuhn-Tucker (KKT) optimality conditions

 Lagrange multipliers are useful for solving optimization problems involving equality constraints, e.g., minimize:

$$f(x,y) = x^2 + 3y^2$$
 subject to $x + y = 2$

 Lagrange multipliers are useful for solving optimization problems involving equality constraints, e.g., minimize:

$$f(x,y) = x^2 + 3y^2$$
 subject to $x + y = 2$ Objective function Equality constraint

- We can express the equality constraint (x+y=2) as a constraint function g.
- We define g so that g(x,y) = 0 when the constraint is satisfied:

$$g(x,y) =$$
 ?

- We can express the equality constraint (x+y=2) as a constraint function g.
- We define g so that g(x,y) = 0 when the constraint is satisfied:

$$g(x,y) = x + y - 2$$

- To solve the constrained optimization problem, we define the Lagrangian function L in terms of:
 - The original optimization variables.
 - The Lagrange multiplier(s) α (one for each constraint).
- For one constraint *g*, we have:

$$L(x, y, \alpha) = f(x, y) + \alpha g(x, y)$$

• The solution occurs at a critical point of L, i.e., where the derivative of L with respect to x, y, and $\alpha = 0$.

$$L(x, y, \alpha) = f(x, y) + \alpha g(x, y)$$

$$\frac{\partial L}{\partial x} = 0$$

$$\frac{\partial L}{\partial y} = 0$$

$$\frac{\partial L}{\partial \alpha} = 0$$

$$f(x,y) = x^2 + 3y^2$$
 subject to $x + y = 2$

$$f(x,y) = x^2 + 3y^2$$
 subject to $x + y = 2$
 $L(x,y,\alpha) = x^2 + 3y^2 + \alpha(x+y-2)$

$$f(x,y) = x^2 + 3y^2 \text{ subject to } x + y = 2$$

$$L(x,y,\alpha) = x^2 + 3y^2 + \alpha(x+y-2)$$

$$\frac{\partial L}{\partial x} = 2x + \alpha = 0$$

$$\frac{\partial L}{\partial y} = 6y + \alpha = 0$$

$$\frac{\partial L}{\partial \alpha} = x + y - 2 = 0$$

$$f(x,y) = x^2 + 3y^2 \text{ subject to } x + y = 2$$

$$L(x,y,\alpha) = x^2 + 3y^2 + \alpha(x+y-2)$$

$$\frac{\partial L}{\partial x} = 2x + \alpha = 0$$

$$\frac{\partial L}{\partial y} = 6y + \alpha = 0$$

$$\frac{\partial L}{\partial \alpha} = x + y - 2 = 0$$

$$2x = 6y$$

$$f(x,y) = x^2 + 3y^2 \text{ subject to } x + y = 2$$

$$L(x,y,\alpha) = x^2 + 3y^2 + \alpha(x+y-2)$$

$$\frac{\partial L}{\partial x} = 2x + \alpha = 0$$

$$\frac{\partial L}{\partial y} = 6y + \alpha = 0$$

$$\frac{\partial L}{\partial \alpha} = x + y - 2 = 0$$

$$2x = 6y$$

$$x = 3y$$

$$f(x,y) = x^2 + 3y^2 \text{ subject to } x + y = 2$$

$$L(x,y,\alpha) = x^2 + 3y^2 + \alpha(x+y-2)$$

$$\frac{\partial L}{\partial x} = 2x + \alpha = 0$$

$$\frac{\partial L}{\partial y} = 6y + \alpha = 0$$

$$\frac{\partial L}{\partial \alpha} = x + y - 2 = 0$$

$$2x = 6y$$

$$x = 3y$$

$$3y + y - 2 = 0$$

$$f(x,y) = x^2 + 3y^2 \text{ subject to } x + y = 2$$

$$L(x,y,\alpha) = x^2 + 3y^2 + \alpha(x+y-2)$$

$$\frac{\partial L}{\partial x} = 2x + \alpha = 0$$

$$\frac{\partial L}{\partial y} = 6y + \alpha = 0$$

$$\frac{\partial L}{\partial \alpha} = x + y - 2 = 0$$

$$2x = 6y$$

$$x = 3y$$

$$3y + y - 2 = 0$$

$$4y = 2$$

$$f(x,y) = x^2 + 3y^2 \text{ subject to } x + y = 2$$

$$L(x,y,\alpha) = x^2 + 3y^2 + \alpha(x+y-2)$$

$$\frac{\partial L}{\partial x} = 2x + \alpha = 0$$

$$\frac{\partial L}{\partial y} = 6y + \alpha = 0$$

$$\frac{\partial L}{\partial \alpha} = x + y - 2 = 0$$

$$2x = 6y$$

$$x = 3y$$

$$3y + y - 2 = 0$$

$$4y = 2$$

$$y = 1/2$$

$$f(x,y) = x^{2} + 3y^{2} \text{ subject to } x + y = 2$$

$$L(x,y,\alpha) = x^{2} + 3y^{2} + \alpha(x+y-2)$$

$$\frac{\partial L}{\partial x} = 2x + \alpha = 0$$

$$\frac{\partial L}{\partial y} = 6y + \alpha = 0$$

$$\frac{\partial L}{\partial \alpha} = x + y - 2 = 0$$

$$2x = 6y$$

$$x = 3y$$

$$3y + y - 2 = 0$$

$$4y = 2$$

$$y = 1/2$$

$$x = 3/2$$

$$f(x,y) = x+y$$
 subject to $x^2+y^2=1$

$$f(x,y) = x+y$$
 subject to $x^2+y^2=1$

$$f(x,y) = x + y$$
 subject to $x^2 + y^2 = 1$
 $L(x,y,\alpha) = x + y + \alpha(x^2 + y^2 - 1)$

$$f(x,y) = x + y \text{ subject to } x^2 + y^2 = 1$$

$$L(x,y,\alpha) = x + y + \alpha(x^2 + y^2 - 1)$$

$$\frac{\partial L}{\partial x} = 1 + 2\alpha x = 0$$

$$\frac{\partial L}{\partial y} = 1 + 2\alpha y = 0$$

$$\frac{\partial L}{\partial \alpha} = x^2 + y^2 - 1 = 0$$

Minimize:

$$f(x,y) = x + y \text{ subject to } x^2 + y^2 = 1$$

$$L(x,y,\alpha) = x + y + \alpha(x^2 + y^2 - 1)$$

$$\frac{\partial L}{\partial x} = 1 + 2\alpha x = 0$$

$$\frac{\partial L}{\partial y} = 1 + 2\alpha y = 0$$

$$\frac{\partial L}{\partial \alpha} = x^2 + y^2 - 1 = 0$$

$$2\alpha x = -1$$

$$x = -1/(2\alpha)$$

$$y = -1/(2\alpha) = x$$

$$x^2 + (x)^2 - 1 = 0$$

$$2x^2 = 1$$

$$x^2 = 1/2$$

$$x = y = \pm 1/\sqrt{2}$$

- Try $x = y = +1/\sqrt{2}$: $f(+1/\sqrt{2}, +1/\sqrt{2}) = +2/\sqrt{2} = +\sqrt{2}/2$ Maximum
- Try $x = y = -1/\sqrt{2}$: $f(-1/\sqrt{2}, -1/\sqrt{2}) = -2/\sqrt{2} = -\sqrt{2}/2$ Minimum

- Support vector machines (SVMs) are a ML model for binary classification.
- SVMs are optimized using constrained optimization rather than unconstrained optimization (e.g., for logistic regression).

 Suppose we have the following set of training data (blue is negative, red is positive):

- Examples above the line will be classified as positive;
 examples below the line will be classified as negative.
- Which line (or hyperplane in higher dimensions) would likely perform better on testing data, and why?

 For any hyperplane H that perfectly separates the positive from the negative examples:

- Find the subset S⁻ of examples that lie closest to H.
- The points in S⁻ lie in a hyperplane H⁻ parallel to H.
- Denote the shortest distance between H- and H as d-.

• For any hyperplane *H* that perfectly separates the positive from the negative examples:

- Find the subset S+ of + examples that lie closest to H.
- The points in S+ lie in a hyperplane H+ parallel to H.
- Denote the shortest distance between H+ and H as d+.

 For any hyperplane H that perfectly separates the positive from the negative examples:

- Let d denote the margin the sum of d^+ and d^- .
- The optimization objective of SVMs is to find a separating hyperplane H that maximizes d.