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Convex ML models



Convexity in higher
dimensions

* For higher-dimensional f, convexity is determined by the
second derivative matrix, known as the Hessian of 1.
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e For f : R™ — R, fis convex if the Hessian matrix is
positive semi-definite for every input x.
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Positive semi-definite

* Positive semi-definite is the matrix analog of being “non-
negative”.

* A real symmetric matrix A is positive semi-definite (PSD) if
(equivalent conditions):

e All its eigenvalues are >0.

* |f A happens to be diagonal, then its eigenvalues are
the diagonal elements.

 For every vector v: viAv >0

* Therefore: If there exists any vector v such that
VvTAv < 0, then A is not PSD.



Example

Suppose f(x, y) = 3x2 + 2y2 - 2.

Then the first derivatives are: 9/ _ g, 91 _ i,

ox oy
The Hessian matrix is therefore:
0° f 0 f - -
H — OxOx Ox 0y _ 6 0
— 02 f 0% f 10 4
OyOx oyoy _ - -

Notice that H for this f does not depend on (x,y).

Also, H is a diagonal matrix (with 6 and 4 on the diagonal).
Hence, the eigenvalues are just 6 and 4. Since they are both
non-negative, then f is convex.



Example

e Graph of f(x, y) = 3x2 + 2y2 - 2:
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Exercise

* Recall: if H is the Hessian of f, then f is convex if — at every
(x,y), we can show (equivalently):

e VvIHv >0 forevery v

* All eigenvalues of H are non-negative.
 Which of the following function(s) are convex?

* X2+y+5

* X2+ 3Xy

* X4+ XY + X?
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Exercise

* Recall: if H is the Hessian of f, then f is convex if — at every
(x,y), we can show (equivalently):

e VvIHv >0 forevery v

* All eigenvalues of H are non-negative.
 Which of the following function(s) are convex?

* X2+y+5

* X2+ 3Xy

* X4+ XY + X? H:[



Convexity of linear regression
and softmax regression

e Why are they convex?

e First, recall that, for any matrices A, B that can be
multiplied:

e (AB)T = BTAT
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Convexity of linear regression
and softmax regression

e Why are they convex?

* Next, recall the gradient of fuse (for linear regression):

VwivMse = Xy -—-Yy)
= X(X'w-y)
H = XX'

 For any vector v, we have:

v XX 'v (XTV)T (XTV)
0

Vol



Convex ML models

e Beyond linear regression and softmax regression, what
other convex ML models are there?

e One of the most prominent is the
support vector machine (SVM).



Constrained
optimization



Unconstrained optimization

e So far, the ML methods we have examined are based on
optimizing some objective function (loss or accuracy).

* The optimization variable has been unconstrained — it can
be any value in R™,

 Unconstrained optimal solutions exist at critical points of the
objective function f, i.e., where the gradient of fis O, e.q.:
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e The minimum of this function is at x=0.



Constrained optimization

e Things become more complicated when we put a
constraint on the optimization variables.

e What if we want to minimize f subject to the inequality
constraint that x = 1?

o

U




Constrained optimization

e Things become more complicated when we put a
constraint on the optimization variables.

e What if we want to minimize f subject to the inequality
constraint that x = 1?

* The solution no longer occurs at a critical point of f.

Vo

* The minimum of f, constrained s.t. x > 1, Is at x=1.



Constrained optimization
methods

e A variety of techniques exist for solving constrained
optimization problems.

e Many of these are applicable when the objective function
fis convex.

e [wo widely used techniques:
e | agrange multipliers

o Karush-Kuhn-Tucker (KKT) optimality conditions



Lagrange multipliers



Lagrange multipliers

e | agrange multipliers are useful for solving optimization
problems involving equality constraints, e.g., minimize:
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Lagrange multipliers

 \We can express the equality constraint (x+y=2) as a
constraint function g.

 \We define g so that g(x,y) = 0 when the constraint is

satisfied:
9(z,y) = [



Lagrange multipliers

 \We can express the equality constraint (x+y=2) as a
constraint function g.

 \We define g so that g(x,y) = 0 when the constraint is
satisfied:

g(z,y) =x+y—2



Lagrange multipliers

e Jo solve the constrained optimization problem, we define
the Lagrangian function L in terms of:

e The original optimization variables.
* The Lagrange multiplier(s) a (one for each constraint).

 For one constraint g, we have:

L(z,y,a) = f(z,y) + ag(z,y)



Lagrange multipliers

* The solution occurs at a critical point of L, i.e., where the
derivative of L with respect to x, y, and a = 0.

L(z,y,a) = f(x,y)+ ag(x,y)
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Example

f(z,y) = z°+3y* subjectto z+y=2
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Example
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Example
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Example

flz,y) = z*43y* subjectto z+y=2
L(z,y,a) = 2*+3y*+alz+y—2)
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f(z,y)
L(z,y, a)

Example

= 2x+a=0
= o6y+a=0
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Exercise

e Minimize:
f(z,y) = x+y subjectto z*+y*=1
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e Minimize:
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Exercise

e Minimize:
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Exercise

e Minimize:
f(z,y) = x+y subjectto z*+y*=1
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Exercise

e Tryx=y=+1/J2: f(+1/J2, +1/2) = +2/\J2 = +,/2/2

e Tryx=y=-1/J2: f(-1/y2,-1/J2) = -2/2 = -\J2/2




Support vector
machines



Support vector machines

e Support vector machines (SVMs) are a ML model for
binary classification.

e SVMs are optimized using constrained optimization
rather than unconstrained optimization (e.g., for logistic
regression).



Support vector machines

e Suppose we have the following set of training data (blue
IS negative, red is posmve)
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e Examples above the line will be classified as positive;
examples below the line will be classified as negative.

* Which line (or hyperplane in higher dimensions) would
likely perform better on testing data, and why?



Support vector machines

 For any hyperplane H that perfectly separates the positive

from the negative examples: o

* Find the subset S- of - examples that lie closest to H.
* The points in S- lie in a hyperplane H- parallel to H.

e Denote the shortest distance between H- and H as d-.



Support vector machines

 For any hyperplane H that perfectly separates the positive

from the negative examp‘l_@_g:___ °

..............

 Find the subset S+ of + examples that lie closest to H.
* The points in S+ lie in a hyperplane H+ parallel to H.

e Denote the shortest distance between H+ and H as d+.



Support vector machines

 For any hyperplane H that perfectly separates the positive

from the negative examples: o

| et d denote the margin — the sum of d+ and d-.

 The optimization objective of SVMs is to find a
separating hyperplane H that maximizes d.



