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Convex ML models



Convexity in higher 
dimensions

• For higher-dimensional f, convexity is determined by the 
second derivative matrix, known as the Hessian of f.


• For                     , f is convex if the Hessian matrix is 
positive semi-definite for every input x.

f : Rm ! R



Positive semi-definite
• Positive semi-definite is the matrix analog of being “non-

negative”.


• A real symmetric matrix A is positive semi-definite (PSD) if 
(equivalent conditions):


• All its eigenvalues are ≥0.


• If A happens to be diagonal, then its eigenvalues are 
the diagonal elements.


• For every vector x:  xTAx ≥0


• Therefore: If there exists any vector x such that 
xTAx < 0, then A is not PSD.
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Positive semi-definite
• Positive semi-definite is the matrix analog of being “non-

negative”.


• A real symmetric matrix A is positive semi-definite (PSD) if 
(equivalent conditions):


• All its eigenvalues are ≥0.


• If A happens to be diagonal, then its eigenvalues are 
the diagonal elements.


• For every vector v:  vTAv ≥0


• Therefore: If there exists any vector v such that 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Example
• Suppose f(x, y) = 3x2 + 2y2 - 2.


• Then the first derivatives are:


• The Hessian matrix is therefore:


• Notice that H for this f does not depend on (x,y).


• Also, H is a diagonal matrix (with 6 and 4 on the diagonal). 
Hence, the eigenvalues are just 6 and 4. Since they are both 
non-negative, then f is convex.
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Example
• Graph of f(x, y) = 3x2 + 2y2 - 2:



Exercise
• Recall: if H is the Hessian of f, then f is convex if — at every 

(x,y), we can show (equivalently):


• vTHv ≥0 for every v


• All eigenvalues of H are non-negative.


• Which of the following function(s) are convex?


• x2 + y + 5


• x2 + 3xy 

• x4 + xy + x2
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Convexity of linear regression 
and softmax regression

• Why are they convex?


• First, recall that, for any matrices A, B that can be 
multiplied:


• (AB)T = BTAT



Convexity of linear regression 
and softmax regression

• Why are they convex?


• Next, recall the gradient of fMSE (for linear regression):


• For any vector v, we have:

rwfMSE = X(ŷ � y)

= X(X>
w � y)

H = XX
>
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Convex ML models

• Beyond linear regression and softmax regression, what 
other convex ML models are there?


• One of the most prominent is the  
support vector machine (SVM).



Constrained 
optimization



Unconstrained optimization
• So far, the ML methods we have examined are based on 

optimizing some objective function (loss or accuracy).


• The optimization variable has been unconstrained — it can 
be any value in       .


• Unconstrained optimal solutions exist at critical points of the 
objective function f, i.e., where the gradient of f is 0, e.g.:


• The minimum of this function is at x=0.

Rm



Constrained optimization
• Things become more complicated when we put a 

constraint on the optimization variables.


• What if we want to minimize f subject to the inequality 
constraint that x ≥ 1?


• The solution no longer occurs at a critical point of f.


• The minimum of f, constrained s.t. x ≥ 1, is at x=1.

Constraint



Constrained optimization
• Things become more complicated when we put a 

constraint on the optimization variables.


• What if we want to minimize f subject to the inequality 
constraint that x ≥ 1?


• The solution no longer occurs at a critical point of f.


• The minimum of f, constrained s.t. x ≥ 1, is at x=1.

Constraint



Constrained optimization 
methods

• A variety of techniques exist for solving constrained 
optimization problems.


• Many of these are applicable when the objective function 
f is convex.


• Two widely used techniques:


• Lagrange multipliers


• Karush-Kuhn-Tucker (KKT) optimality conditions



Lagrange multipliers



Lagrange multipliers
• Lagrange multipliers are useful for solving optimization 

problems involving equality constraints, e.g., minimize:
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f(x, y) = x2 + 3y2 subject to x+ y = 2



Lagrange multipliers
• Lagrange multipliers are useful for solving optimization 

problems involving equality constraints, e.g., minimize:

f

x

y

y

x

f(x, y) = x2 + 3y2 subject to x+ y = 2
Objective function Equality constraint



Lagrange multipliers

• We can express the equality constraint (x+y=2) as a 
constraint function g.


• We define g so that g(x,y) = 0 when the constraint is 
satisfied:

g(x, y) = x+ y � 2?



Lagrange multipliers

• We can express the equality constraint (x+y=2) as a 
constraint function g.


• We define g so that g(x,y) = 0 when the constraint is 
satisfied:
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Lagrange multipliers
• To solve the constrained optimization problem, we define 

the Lagrangian function L in terms of:


• The original optimization variables.


• The Lagrange multiplier(s) α (one for each constraint).


• For one constraint g, we have:

L(x, y,↵) = f(x, y) + ↵g(x, y)



Lagrange multipliers
• The solution occurs at a critical point of L, i.e., where the 

derivative of L with respect to x, y, and α = 0.

L(x, y,↵) = f(x, y) + ↵g(x, y)
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Example
f(x, y) = x2 + 3y2 subject to x+ y = 2

L(x, y,↵) = x2 + 3y2 + �(x+ y � 2)
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Exercise
• Minimize:

f(x, y) = x+ y subject to x2 + y2 = 1

L(x, y,↵) = x+ y + ↵(x2 + y2 � 1)
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Exercise
• Try x = y = +1/√2:    f(+1/√2, +1/√2) = +2/√2 = +√2/2


• Try x = y = -1/√2:     f(-1/√2, -1/√2) = -2/√2 = -√2/2 Minimum

Maximum
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Support vector 
machines



Support vector machines

• Support vector machines (SVMs) are a ML model for 
binary classification.


• SVMs are optimized using constrained optimization 
rather than unconstrained optimization (e.g., for logistic 
regression).



• Suppose we have the following set of training data (blue 
is negative, red is positive):


• Examples above the line will be classified as positive; 
examples below the line will be classified as negative.


• Which line (or hyperplane in higher dimensions) would 
likely perform better on testing data, and why?

Support vector machines

A
B



• For any hyperplane H that perfectly separates the positive 
from the negative examples:


• Find the subset S- of - examples that lie closest to H.


• The points in S- lie in a hyperplane H- parallel to H.


• Denote the shortest distance between H- and H as d-.

Support vector machines

H

S-

H-

d-



• For any hyperplane H that perfectly separates the positive 
from the negative examples:


• Find the subset S+ of + examples that lie closest to H.


• The points in S+ lie in a hyperplane H+ parallel to H.


• Denote the shortest distance between H+ and H as d+.

Support vector machines

H

S-

H-
H+

d-
d+

S+



• For any hyperplane H that perfectly separates the positive 
from the negative examples:


• Let d denote the margin — the sum of d+ and d-.


• The optimization objective of SVMs is to find a 
separating hyperplane H that maximizes d.

Support vector machines
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