CS 453X: Class 1

Jacob Whitehill

How old are these people?

Guess how old each person is — at the time the photo was taken — based on their face image.

Whose guesses were the best?

- Who of you was best at guessing the people's ages?
- How do we define "best"?
- We need some kind of accuracy function.

- Suppose there are n faces.
- Let $\mathbf{y} \in \mathbb{R}^n$ be an n-vector of the **ground-truth** age values.
- Let $\hat{\mathbf{y}} \in \mathbb{R}^n$ be an *n*-vector of **guesses** for the age values.
- We write y_i and $\hat{y_i}$ for the *i*th ground-truth and guess (i=1, ..., n), respectively.
- What kinds of functions $f(\hat{y}, y)$ might we define to express the accuracy of the guesses w.r.t. ground-truth?

- Percent exactly Correct: $f_{PC}(\mathbf{y}, \hat{\mathbf{y}}) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}[y_i = \hat{y}_i]$
 - where $\mathbb{I}[\cdot]$ equals 1 if the condition is true, and 0 otherwise.
 - Higher scores are better.

• Percent exactly Correct: $f_{PC}(\mathbf{y}, \hat{\mathbf{y}}) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}[y_i = \hat{y}_i]$

where $\mathbb{I}[\cdot]$ equals 1 if the condition is true, and 0 otherwise.

• Example:

$$\mathbf{y} = [66, 18, 38, 61]$$

 $\mathbf{\hat{y}}^{(1)} = [65, 19, 38, 60]$
 $\mathbf{\hat{y}}^{(2)} = [5, 6, 2, 61]$

$$f_{\mathrm{PC}}(\mathbf{y},\hat{\mathbf{y}}^{(1)})=$$
 ?
 $f_{\mathrm{PC}}(\mathbf{y},\hat{\mathbf{y}}^{(2)})=$?

• Percent exactly Correct: $f_{PC}(\mathbf{y}, \hat{\mathbf{y}}) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}[y_i = \hat{y}_i]$

where $\mathbb{I}[\cdot]$ equals 1 if the condition is true, and 0 otherwise.

Example:

$$\mathbf{y} = [66, 18, 38, 61]$$

 $\mathbf{\hat{y}}^{(1)} = [65, 19, 38, 60]$
 $\mathbf{\hat{y}}^{(2)} = [5, 6, 2, 61]$

$$f_{PC}(\mathbf{y}, \hat{\mathbf{y}}^{(1)}) = 0.25$$

 $f_{PC}(\mathbf{y}, \hat{\mathbf{y}}^{(2)}) = 0.25$

Problem: It gives no consideration to the *distance* from ground-truth.

• Percent exactly Correct: $f_{PC}(\mathbf{y}, \hat{\mathbf{y}}) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}[y_i = \hat{y}_i]$

where $\mathbb{I}[\cdot]$ equals 1 if the condition is true, and 0 otherwise.

• Example:

```
\mathbf{y} = [66, 18, 38, 61]
\mathbf{\hat{y}}^{(1)} = [65, 19, 38, 60]
\mathbf{\hat{y}}^{(2)} = [5, 6, 2, 61]
```

 For a regression problem such as ours — in which we the ground-truth can be any real number — f_{PC} is almost never used.

- Average distance: $f_{\text{avgdist}}(\mathbf{y}, \hat{\mathbf{y}}) = \frac{1}{n} \sum_{i=1}^{n} (y_i \hat{y}_i)$
 - Lower scores are better.

• Average distance: $f_{\text{avgdist}}(\mathbf{y}, \hat{\mathbf{y}}) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)$

• Example:

$$\mathbf{y} = [66, 18, 38, 61]$$

 $\mathbf{\hat{y}}^{(1)} = [65, 17, 39, 64]$
 $\mathbf{\hat{y}}^{(2)} = [5, 79, 34, 69]$

$$f_{ ext{avgdist}}(\mathbf{y}, \hat{\mathbf{y}}^{(1)}) =$$
 $f_{ ext{avgdist}}(\mathbf{y}, \hat{\mathbf{y}}^{(2)}) =$

• Average distance: $f_{ ext{avgdist}}(\mathbf{y}, \mathbf{\hat{y}}) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)$ $= \frac{1}{n} \sum_{i=1}^{n} y_i - \frac{1}{n} \sum_{i=1}^{n} \hat{y}_i$ average average average

• Example:

$$\mathbf{y} = [66, 18, 38, 61]$$

$$\mathbf{\hat{y}}^{(1)} = [65, 17, 39, 64]$$

$$\mathbf{\hat{y}}^{(2)} = [5, 79, 34, 69]$$

$$f_{\text{avgdist}}(\mathbf{y}, \mathbf{\hat{y}}^{(1)}) = \frac{1}{4}(1 + 1 - 1 - 3) = -0.5 \text{ yr}$$

$$f_{\text{avgdist}}(\mathbf{y}, \mathbf{\hat{y}}^{(2)}) = \frac{1}{4}(60 - 62 + 5 - 5) = -0.5 \text{ yr}$$

Problem: It only measures whether the average guess is close to the average ground-truth (i.e., bias). Individual distances are averaged out.

ground-truth

guess

- Mean absolute error: $f_{\text{MAE}}(\mathbf{y}, \mathbf{\hat{y}}) = \frac{1}{n} \sum_{i=1}^{n} |y_i \hat{y}_i|$
 - Lower scores are better.

• Example:

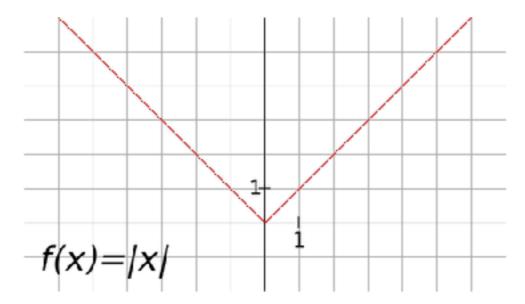
$$\mathbf{y} = [66, 18, 38, 61]$$
 $\mathbf{\hat{y}}^{(1)} = [65, 17, 39, 64]$
 $\mathbf{\hat{y}}^{(2)} = [5, 79, 34, 69]$
 $f_{\text{MAE}}(\mathbf{y}, \mathbf{\hat{y}}^{(1)}) = ?$

- Mean absolute error: $f_{\text{MAE}}(\mathbf{y}, \hat{\mathbf{y}}) = \frac{1}{n} \sum_{i=1}^{n} |y_i \hat{y}_i|$
 - Lower scores are better.

• Example:

$$\mathbf{y} = [66, 18, 38, 61]$$
 $\mathbf{\hat{y}}^{(1)} = [65, 17, 39, 64]$
 $\mathbf{\hat{y}}^{(2)} = [5, 79, 34, 69]$
 $f_{\text{MAE}}(\mathbf{y}, \mathbf{\hat{y}}^{(1)}) = \frac{1}{4}(1+1+1+3) = 1.5 \text{ yr}$
 $f_{\text{MAE}}(\mathbf{y}, \mathbf{\hat{y}}^{(2)}) = \frac{1}{4}(60+62+5+5) = 23 \text{ yr}$

- Mean absolute error: $f_{\text{MAE}}(\mathbf{y}, \mathbf{\hat{y}}) = \frac{1}{n} \sum_{i=1}^{n} |y_i \hat{y}_i|$
 - Issue: Absolute value is not differentiable at 0. This is important since much of ML involves differential calculus.



https://commons.wikimedia.org/wiki/File:F(x)%3DAbs(x).svg

- Mean squared error: $f_{\text{MSE}}(\mathbf{y}, \hat{\mathbf{y}}) = \frac{1}{n} \sum_{i=1}^{n} (y_i \hat{y}_i)^2$
 - Lower scores are better.

$$\mathbf{y} = [66, 18, 38, 61]$$
 $\mathbf{\hat{y}}^{(1)} = [65, 17, 39, 64]$
 $\mathbf{\hat{y}}^{(2)} = [5, 79, 34, 69]$

$$f_{\text{MSE}}(\mathbf{y}, \mathbf{\hat{y}}^{(1)}) = \frac{1}{4}(1^2 + 1^2 + 1^2 + 3^2) = 3 \text{ yr}^2$$

$$f_{\mathrm{MSE}}(\mathbf{y}, \hat{\mathbf{y}}^{(2)}) = \frac{1}{4}(60^2 + 62^2 + 5^2 + 5^2) = 1873.5 \,\mathrm{yr^2}$$

- Mean squared error: $f_{\text{MSE}}(\mathbf{y}, \hat{\mathbf{y}}) = \frac{1}{n} \sum_{i=1}^{n} (y_i \hat{y}_i)^2$
 - f_{MSF} is also differentiable.
 - Note: f_{MSE} expresses the error in squared units.

- Root mean squared error: $f_{\text{RMSE}}(\mathbf{y}, \hat{\mathbf{y}}) = \left(\frac{1}{n} \sum_{i=1}^{n} (y_i \hat{y}_i)^2\right)^{1/2}$
 - Lower scores are better.

$$\mathbf{y} = [66, 18, 38, 61]$$

$$\mathbf{\hat{y}}^{(1)} = [65, 17, 39, 64]$$

$$\mathbf{\hat{y}}^{(2)} = [5, 79, 34, 69]$$

$$f_{\text{RMSE}}(\mathbf{y}, \mathbf{\hat{y}}^{(1)}) = \left(\frac{1}{4}(1^2 + 1^2 + 1^2 + 3^2)\right)^{1/2} \approx 1.73 \text{ yr}$$

$$f_{\text{RMSE}}(\mathbf{y}, \mathbf{\hat{y}}^{(2)}) = \left(\frac{1}{4}(60^2 + 62^2 + 5^2 + 5^2)\right)^{1/2} \approx 43.28 \text{ yr}$$

• Root mean squared error: $f_{\text{RMSE}}(\mathbf{y}, \hat{\mathbf{y}}) = \left(\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2\right)^{1/2}$

Note: f_{RMSE} function expresses the error in the same *scale* as the ground-truth: years (not years²). However, in practice, f_{MSE} is more commonly used:

- Square root is tedious.
- Monotonic relationship:
 - $\hat{\mathbf{y}}^{(1)}$ is better than $\hat{\mathbf{y}}^{(2)}$ in terms of RMSE \Leftrightarrow
 - $\hat{\mathbf{y}}^{(1)}$ is better than $\hat{\mathbf{y}}^{(2)}$ in terms of MSE

- In general, there are many ways of measuring accuracy.
- The appropriate metric depends on the kind of task (e.g., regression, classification) and the application domain.

Regression:

- Ground-truth values are usually elements of an infinite set (e.g., real numbers).
- We care more about distance between guess and ground-truth than exact match.
- Example: estimate age from a face image

- In general, there are many ways of measuring accuracy.
- The appropriate metric depends on the kind of task (e.g., regression, classification) and the application domain.

Classification:

- Ground-truth values are usually elements of a finite set (e.g., {0,1}, {-1,+1}, {\cupee, \cupee, \cupee, \cupee}).
- Example: estimate emotion from a face image.

- Some people define "accuracy" as only f_{PC} .
- Many other people (including me) treat "accuracy" as a broad family of functions:
 - When the accuracy measures the error (i.e., lower is better), it is often called a cost or a loss.
 - Loss, cost (e.g., f_{MSE} , f_{MAE}): want to *minimize*.
 - Accuracy (e.g., f_{PC} , f_{AUC}): want to *maximize*.

How old are these people?

Guess how old each person is — at the time the photo was taken — based on their face image.

Age estimation accuracy

- Ground-truth y = [66, 18, 38, 61, 57, 53, 29, 23]
- Compute your own MSE on these 8 images:

$$f_{\text{MSE}}(\mathbf{y}, \hat{\mathbf{y}}) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Who had the best (lowest) score?

Age estimation accuracy

What if we compute the average of the different predictions?

$$\overline{\mathbf{y}} = \frac{1}{m} \sum_{j=1}^{m} \hat{\mathbf{y}}^{(j)}$$

What is the MSE of the average predictor?

$$f_{\mathrm{MSE}}(\overline{\mathbf{y}})$$

 How does this compare with the average MSE of all the predictors?

$$\frac{1}{m} \sum_{j=1}^{m} f_{\text{MSE}}(\mathbf{\hat{y}}^{(j)})$$

Python and ML

- Python is one of the most popular languages for machine learning (ML).
- Advantages:
 - Interpreted easy for debugging
 - High level of abstraction to accomplish large amounts of computation with concise syntax
 - Excellent library support for scientific computing & ML.
- Disadvantage:
 - Slower than C for many programming tasks.

Vectorization

- Computational bottleneck in Python: iteration is slow.
- To avoid large-scale iteration, we can often perform the same operation using matrix arithmetic.
 - With libraries such as numpy, Python can "offload" tedious computation to a high-performance low-level library for matrix manipulation (BLAS, CUDA, etc.).
 - This conversion is sometimes called vectorization.
- GPU-based fast linear algebra routines have resulted in big gains for machine learning applications.

Vectorization

- Example: dot product between two large vectors x, y
 - Iterative:

```
def dot (x, y): # x, y are Python lists
  total = 0
  for i in range(len(x)):
    total += x[i] * y[i]
  return total
```

Vectorized:

```
def dot (x, y): # x, y are numpy arrays
  return x.dot(y) # Much faster!
```

Vectorization

Similarly, we can vectorize the MSE computation:

$$f_{\text{MSE}}(\mathbf{y}, \hat{\mathbf{y}}) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{n} (\mathbf{y} - \hat{\mathbf{y}})^\top (\mathbf{y} - \hat{\mathbf{y}})$$

Age estimation accuracy

• Show wisdom.py

Age estimation accuracy

- Show wisdom.py
- The MSE of the average predictor tends to be lower (better) than the average MSE over all predictors.
- This is an instance of the "wisdom of the crowd".
- Averaging together multiple predictor is sometimes called an ensemble.

Who is smiling?

Which of these people are smiling?

Who is smiling?

Which of these people are smiling?



Defining ground-truth

- Does the person look like they're smiling?
- Does the person her/himself report that they're smiling?
- Is the person's lip-corner-puller muscle activated?

- Sometimes the ground-truth value is unclear.
- To express a "soft" belief about the ground-truth, we can use probabilities.
- There are a couple of ways we could do this...

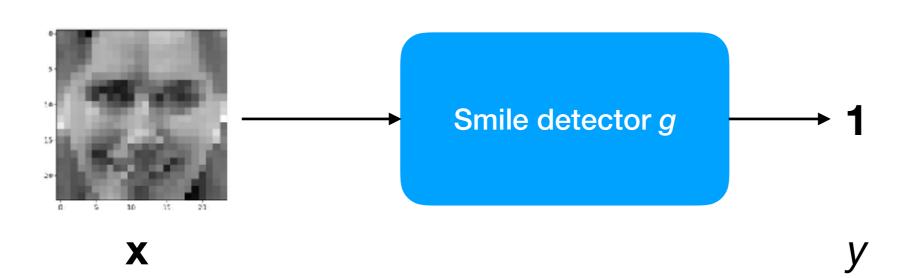
- Frequentist probabilities:
 - Ask a large group of randomly selected people to label the face as smiling or not.
 - Count the number of labels for "smile" and divide by the total number of labels.
 - The ratio is the probability of "smile" for that face image.

- Bayesian probabilities ("beliefs"):
 - Ask one person how much she/he believes the image is smiling, quantified as a number between 0 and 1.
 - The "belief" score is the probability of "smile" for that face image.

- Many a debate has been waged about the validity of Bayesian versus frequentist probabilities.
- For the most part we will steer clear of these debates and use both tools when they are useful.

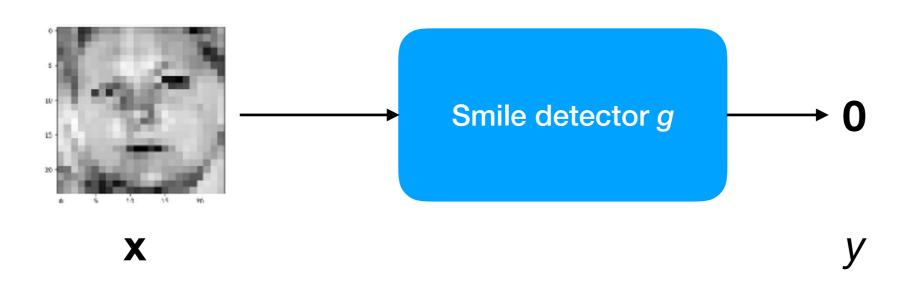
Automatic smile detection

- Suppose we want to build an automatic smile detector that analyzes a grayscale face image (24x24 pixels) and reports whether the face is smiling.
- We can represent the detector as a function g that takes an image \mathbf{x} as an input and produces a guess \hat{y} as output, where $\mathbf{x} \in \mathbb{R}^{24 \times 24}, \hat{y} \in \{0, 1\}$.
- Abstractly, g can be considered a "machine":



Automatic smile detection

- Suppose we want to build an automatic smile detector that analyzes a grayscale face image (24x24 pixels) and reports whether the face is smiling.
- We can represent the detector as a function g that takes an image \mathbf{x} as an input and produces a guess \hat{y} as output, where $\mathbf{x} \in \mathbb{R}^{24 \times 24}, \hat{y} \in \{0, 1\}$.
- Abstractly, g can be considered a "machine":

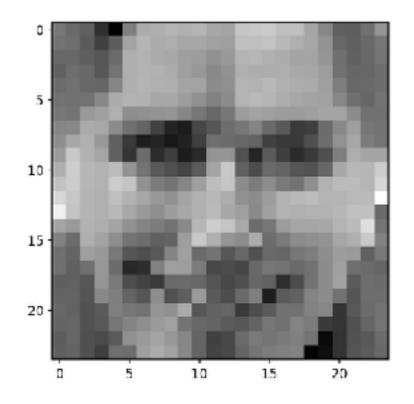


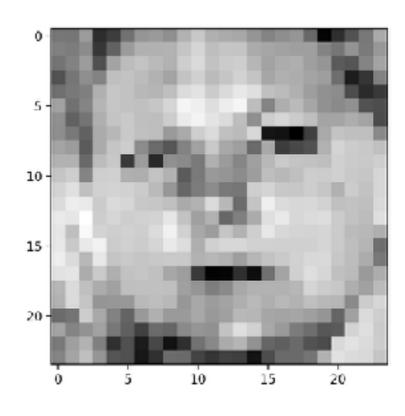
Automatic smile detection

 Suppose we build g so that its output depends on only a single pair of pixels within the input face:

$$g(\mathbf{x}) = \mathbb{I}[\mathbf{x}_{r_1,c_1} > \mathbf{x}_{r_2,c_2}]$$

- Which pairs (r_1, c_1) , (r_2, c_2) would you choose?
- How good is it?





Accuracy measurement

- To evaluate the simple "smile detector" g, we need a **test** set $\mathcal{D}^{test} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$ consisting of:
 - Images { x_i } of both classes (smile/1, non-smile/0)
 - Corresponding labels { y_i }.
- The exact composition (ratio of positive/negative examples) is flexible but may impact the way we interpret the machine's accuracy.

Accuracy measurement

- Let's try a few examples by hand in smile_demo.py
- What accuracy did we achieve with a single predictor?
- Is this "good"?

Selecting a baseline

- In addition to defining an accuracy function, it's important to choose a "baseline" to which to compare your machine.
- The baseline is often the "leading brand" the best machine that anyone has ever created before for the same problem.
- For a new ML problem, we might just compare to (1) random guessing or (2) selecting the most probable class based on the statistics of the dataset.

Selecting a baseline

- What fraction of faces in $\mathcal{D}^{\text{test}}$ are smiling faces? 54.6%
- How accurate (f_{PC}) would a predictor be that just always output 1 no matter what the image looked like?

Selecting a baseline

- What fraction of faces in $\mathcal{D}^{\text{test}}$ are smiling faces? 54.6%
- How accurate (f_{PC}) would a predictor be that just always output 1 no matter what the image looked like?
 - 54.6%
- Note that there are other accuracy functions (e.g., f_{AUC}) that are invariant to the proportion of each class aka the **prior probabilities** of each class in the test set.