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Abstract—Automatic facial expression recognition systems are
usually trained from target labels that model each example as
belonging unambiguously to a single class (e.g., “non-engaged”,
“very engaged”, etc.). However, in some settings, ground-truth
labels can be more aptly modeled as probability distributions (e.g.,
[0.1, 0.1, 0.5, 0.3] over 4 engagement categories) that capture the
uncertainty that can arise during the annotation process. In this
paper, we explore how harnessing the full probability distribution
of each label (“soft labels”), rather than just a scalar summary
statistic (“hard labels”, e.g., majority class or mean), can yield
better recognition accuracy when training automated detectors.
Our results on a face image dataset (10698 faces over 20 subjects)
labeled for perceived student engagement suggest that training
on soft labels can deliver engagement detectors that fit the data
stat. sig. more accurately (lower cross-entropy for classification,
higher Pearson correlation for regression) than when training on
hard labels. Moreover, we explore possible reasons for this effect
and provide evidence that it is due to implicit regularization
that the soft labels enact on the trained engagement detector.
This effect is similar to, but empirically seems stronger than, the
“label smoothing” approach proposed by Szegedy, et al. [1].

Keywords—data annotation, label regularization, automatic fa-
cial expression recognition, student engagement recognition

I. INTRODUCTION

In automatic facial expression recognition and other affec-
tive computing applications, the predominant machine learning
paradigm is to assign every example (e.g., an image or video
of a person’s face) a single, unambiguous ground-truth label
representing the quantity that an automatic detector should
predict. For an emotion recognition system, the label might
be an element of a set of mutually exclusive basic emotions
(anger, fear, joy, etc.); for a smile detector, it might simply be
1 or 0 to signify smile versus non-smile. These labels, along
with the features constituting the examples themselves (e.g.,
image pixels), are then fed to an optimization algorithm (e.g.,
stochastic gradient descent) to train an automated detector.

Multiple annotations per example: When collecting train-
ing and testing data, machine learning practitioners often
collect multiple labels for each example, either from in-
house annotators or using crowdsourcing, in order to improve
labeling accuracy. The resulting distribution of labels for each
example is then usually distilled into a single summary statistic
that becomes the ground-truth for that image/video [2], [3], [4].
The summary statistic can be computed using a simple function
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such as majority vote or a more sophisticated consensus algo-
rithm [5], [6], [7], [8]. Though the resulting label is aggregated
from multiple, possibly differing opinions, it is treated as an
unambiguous ground-truth label. For example, an image that is
labeled by 4 labelers as “smile” and 1 labeler as “non-smile”
might be assigned a ground-truth of 1 (smile). This ground-
truth value could then be encoded in a 2-dimensional 1-hot
vector (e.g., [0, 1]) and then used for training a neural network.

While simple and appropriate for certain problem domains,
the “unambiguous label” paradigm misses an opportunity to
model the uncertainty of each example’s ground-truth label.
Such uncertainty can arise due to inherent ambiguity in the
perceptual process: for example, partial occlusion of the face
might make it impossible for any external observer, no matter
how skilled, to distinguish between two or more facial expres-
sion classes. It can also arise due to subjective interpretation:
for example, annotators who are asked to rate how physically
attractive they find a person portrayed in an image may
disagree significantly. Some psychologists [9] argue that even
the basic emotions [10] can be interpreted differently based
on the context in which they are shown. The existence of
label uncertainty raises the question: might training on the full
probability distribution representing each label be better, in
terms of downstream recognition accuracy, compared to the
standard approach of training on only a summary statistic?

Student engagement recognition: As a motivating exam-
ple, as well as the application focus of this paper, suppose we
are training a detector that can analyze a frontal image of a
student’s face and estimate how engaged the student appears to
be to an external observer (see Fig. 1 (top)). In this scenario
(from [11]), there are four engagement categories, where 1
is least engaged and 4 is most engaged. Suppose that, when
labeling a particular face image, one labeler assigns a label of
E=1 and another labeler assigns a label of E=3. This could
happen, for example, if the face image had one attribute (e.g.,
eye closure) that was associated with E=1, but also another
attribute (e.g., in-plane rotation of the face) that was associated
with E=3, and each labeler attended to only one of these two
attributes. In this case, the probability distribution of ground-
truth could be represented as [0.5, 0, 0.5, 0]. Is it reasonable in
this case to summarize these two labels with their mean, i.e.,
E=2, and to train a classifier using this label (which would be
1-hot encoded as [0, 1, 0, 0])? What if most faces in the E=2
category actually look quite different and possess neither of
the properties in E=1 and E=3 images?

The hypothesis that summarizing a label distribution for
a particular image could result in a ground-truth value that



(a) E=1 (b) E=2 (c) E=3 (d) E=4

Fig. 1: Top: Samples from the HBCU dataset [11], along with
the levels of perceived student engagement, as rated by external
coders. E=1 is the lowest engagement; E=4 is the highest.
Bottom: Linear Discriminant Analysis of the HBCU faces.
The average of the centroids of classes E=1 and E=3 in latent
space does not correspond to the centroid of E=2.

fundamentally mischaracterizes the example and leads the
classifier astray during training, is supported by a linear
discriminant analysis we conducted on the faces in the HBCU
student engagement dataset [11]: In Fig. 1 (bottom), we
projected each face image into the two dimensions in which the
four engagement levels can best be discriminated. It is evident
that the average of the centroid of E=1 faces (red dots) and the
centroid of the E=3 faces (blue dots) in the latent space does
not correspond to the centroid of E=2 faces (green dots). This
suggests that it might be better, when building an automatic
engagement recognition system, to train on target values that
capture the entire distribution of labels for each example, rather
than summarizing it with a single value.

Contributions: In this paper we investigate the potential
benefits, in terms of recognition accuracy, of training a facial
expression recognition system using “soft” labels that capture
the uncertainty of an image’s ground-truth label, compared
to the standard approach of using “hard” labels that distill
each label distribution into a summary statistic. The context of
our investigation is automatic student engagement recognition,
which has garnered significant attention within the affective
computing and intelligent tutoring systems communities in
recent years [12], [11], [13], [14]. We present empirical results
suggesting that soft labels deliver more accurate detectors, and
we provide evidence that this accuracy improvement is due to
a regularization effect implicitly induced by the soft labels.

II. RELATED WORK

The issue of label uncertainty, how to model it, and how the
label representation affects the recognition accuracy of trained
classifiers has garnered a modest amount of research attention
during the past 10 years. One of the two main approaches to
dealing with multiple annotations per example is to employ
a statistical consensus algorithm (e.g., [5], [6], [7], [8]) to
aggregate multiple annotations into a single ground-truth label
prior to classifier training. The other is to use a learning
framework that can directly harness the entire distribution

of labels collected from multiple labelers for each example;
examples of such frameworks include probabilistic graphical
models [15], fuzzy support vector machines [16], deep neural
networks [17], and multi-score learning methods [18].

In terms of direct empirical comparison between soft and
hard labels for classifier training, we are aware of only a few
prior works: Scherer, et al. [16] found that fuzzy-input, fuzzy-
output (F 2) support vector machines (SVMs) [19] trained on
soft labels outperformed a standard RBF SVM trained on
hard labels in a task on automatic speech analysis for voice
attributes. Guan, et al. [17], in a study on automatic diagnosis
of diabetic eye disease from retinopathy images, compared
several neural network architectures designed to capture ei-
ther the consensus label or the full distribution of labels;
recognition accuracy of the best network trained to predict
the full label distribution was slightly higher (AUC=0.9745)
compared to a network to predict only the consensus label
(AUC=0.9711). Nguyen, et al. [20] showed that using binary
classification models enriched by auxiliary soft-label informa-
tion outperforms traditional binary classifiers for predicting
which patients are at risk for Heparin Induced Thrombocy-
topenia. To our knowledge, the only prior work that explicitly
compared soft labels to hard labels for automatic face analysis
was by Wang & Jinbo [21]: They trained a face classifier to
discriminate joy from non-joy by formulating the optimization
as a bi-convex program, based on a hinge loss between the
model’s predictions and the ground-truth labels. The classifier
is binary and assumed to be linear, and it is not clear how
their work could be extended to handle > 2 classes or non-
linear classifiers. Moreover, their approach tries to assess the
reliability of each labeler, and then to estimate the label of each
image as a weighted combination of the labelers’ opinions. In
contrast, our paper explores the advantage of harnessing label
uncertainty without inferring labelers’ reliabilities.

III. DEFINITIONS

We define the soft label of an example (e.g., an image
or video) to be the entire probability distribution of labels
assigned to the example by a set of labelers. We define the
hard label to be a scalar summary statistic – specifically, the
rounded mean – of the soft label distribution.

Example: Suppose some face image has been labeled by
two labelers as engagement level 3 and by three labelers label
as engagement level 4. Then the soft label of that face image
would be represented by vector ls = [0, 0, 0.4, 0.6], where the
ith component of ls represents the probability (over all labelers
for the image) that the image is labeled with engagement level
i. The hard label for the image, on the other hand, would be the
mean of this distribution (3.6) rounded to the nearest integer
(4), and expressed as a 1-hot vector lh = [0, 0, 0, 1].

IV. EXPERIMENT I: CLASSIFICATION

We assessed how the type of the training labels (hard or
soft) impacts the accuracy of an automatic student engagement
classifier (over 4 engagement classes) trained with those labels.

A. Dataset

We used 10698 faces from the HBCU dataset [11] to run
experiments. This dataset contains face images of 20 different



ls = [1, 0, 0, 0] ls = [0, 0, 0.6, 0.4] ls = [0.57, 0, 0.14, 0.29]
lh = [1, 0, 0, 0] lh = [0, 0, 1, 0] lh = [0, 1, 0, 0]

Fig. 2: Example faces and their soft (ls) and hard (lh) engage-
ment labels, computed over the set of labelers who labeled
each face.

African-American undergraduate students engaged in an edu-
cational game, along with labels of perceived “engagement”
assigned to each face by multiple labelers. Each engagement
label ranges from 1 to 4 (see Fig. 1 (top)). There were 7 unique
labelers in total, such that: < 1% of images are labeled by 2
labelers; 56% by 3 labelers; 16% by 4 labelers; 24% by 5
labelers; 2% by 6 labelers and < 1% by 7 labelers. From each
image, an automatic face detector [22] was used to crop the
face and scale it to 48× 48 face pixels (grayscale). See Fig. 2
for examples of the cropped faces and associated labels.

B. Architecture

We adopted the same Gabor + LogisticRegression ar-
chitecture that was used for automatic student engagement
recognition in [11]. The classifier is equivalent to a 3-layer
neural network: The input layer consists of 48× 48 grayscale
pixel values. The first hidden layer is convolutional (40 feature
maps with 48× 48 kernels) and uses pre-computed, complex-
valued weights (i.e., they are not trained) to compute Gabor
Energy Filter [23] response values (5 spatial frequencies and
8 orientations spaced at π/8 radians). The non-linear acti-
vation function of this layer computes the absolute value of
the complex-valued filter responses. The final layer is fully
connected with 4 softmax outputs (one for each engagement
level). Although the network’s output is probabilistic, it can be
converted into a “hard” label by taking the rounded mean of
the predictive distribution. All network weights were initialized
using the Xavier method [24] and optimized using the Adam
optimizer with a learning rate of 0.001 for 45 training epochs.

Gabor-based face representations were, until the renais-
sance of deep neural networks, considered state-of-the-art for
automatic facial expression recognition [23], [22], [25]. Inter-
estingly, we found that, on the HBCU dataset, the Gabor-based
network delivered higher performance and lower variance than
the deeper architectures that we tried. Our hypothesis is that
this is due to the small number of subjects in the HBCU dataset
(only 20). See Supplementary Materials for more details.

C. Methods

We partitioned the faces from the HBCU dataset into 4
subject-independent cross-validation folds (the same used in
[11]), where each fold contained 5 subjects. For each fold,
we re-initialized the weights and trained the network in 25
different trials, and then averaged the results across these trials
for each fold. We assessed accuracy using two metrics: cross-
entropy loss, and percent-correct (equal to 1 minus the error
rate). Moreover, we measure the accuracy of the classifier’s
predictions both w.r.t. both hard and soft validation labels.

Training
Labels

Validation Labels
Hard Soft

Hard CE: 1.173
PC: 56.41%

CE: 1.587
PC: –

Soft CE: 0.943
PC: 57.522%

CE: 1.103
PC: –

TABLE I: Results showing cross-entropy (CE) loss and
percent-correct (PC) classification accuracy of facial engage-
ment classifiers trained on either “hard” or “soft” labels, and
evaluated on either “hard” or “soft” labels. Trend: Training
on soft labels outperforms training on hard labels, both when
validating on hard and on soft labels.

D. Results & Discussion

Results are shown in Table I. Cross-entropy (CE) loss:
For all four folds (averaged over the 25 trials), training on
soft labels resulted in lower (better) cross-entropy compared
to training on hard labels; the difference was statistically
significant and persisted both when validating on soft labels
(t(3) = 6.537, p = 0.007, 2-tailed) and when validating
on hard labels (t(3) = 3.592, p = 0.037, 2-tailed). Since
cross-entropy is equivalent to the negative log-likelihood of
the model predictions given the validation labels, this result
indicates that training with soft labels results in a better
model-fit (higher likelihood) on validation data. Percent-
correct (PC) classification accuracy: PC was calculated by
taking the rounded mean of each predictive distribution. (One
could alternatively use the argmax, but empirically we found
the results were worse, both for soft and hard labels.) A
slight improvement in classification accuracy is observed when
trained on soft labels, but the improvement was not statistically
significantly different (t(3) = −1.318, p = 0.279, 2-tailed).

V. EXPERIMENT II: REGRESSION

In the experiment above, a student’s engagement was clas-
sified into the set {1, 2, 3, 4}. Alternatively, it can be regressed
into a real number (e.g., 3.2). In this section we measure the
impact of soft versus hard labels on regression accuracy.

A. Architecture

After training a 4-way engagement classifier as described
above, we constructed a regressor by appending to the neural
network a fourth layer with fixed (not optimized) weights that
computes the inner product between the softmax engagement
class probabilities {pi} and the vector [1, 2, 3, 4]; the result
(
∑4

i=1 ipi) is the expected engagement level given the input
image. We created regressors in this way for each of the
two training label types (soft and hard). In addition, we
also implemented the regression method used in [11], which
directly estimates the engagement value from the Gabor layer
without an intermediate softmax layer; we call this method
“Gabor Direct”. We trained this regressor by minimizing the
squared-error loss w.r.t. the rounded mean engagement labels.

B. Methods

We used the same cross-validation methodology and folds
as in Experiment I. To measure regression accuracy, we used
Pearson’s correlation of the regressor’s prediction with respect
to the rounded mean engagement level for each image.



Training Approach
Hard Soft Gabor Direct [11] Smoothed [1]

Pearson r 0.539 0.584 0.528 0.552

TABLE II: Pearson correlation coefficients, using different
training approaches, of the predicted versus ground-truth
(rounded mean) engagement labels.
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Fig. 3: Training (blue dashed) & validation (orange solid)
cross-entropy values over the 45 training epochs, when training
on hard, soft, or smoothed (Sec. VI-A) labels. All validation
losses are computed w.r.t. hard labels.

C. Results & Discussion

Results are shown in Table II. The Pearson correlation
when training on soft labels (r = 0.584) is statistically
significantly higher compared to training on hard labels (r =
0.539) (t(3) = −3.661, p = 0.0352, 2-tailed). It is also
higher than the Gabor Direct method from [11], though the
difference is not statistically significant (t(3) = −1.359, p =
0.267, 2-tailed). This suggests the better model-fit described
in Sec. IV-D can also result in better regression accuracy.

VI. GENERAL DISCUSSION

Why does training on soft labels result in higher accuracy?
One possible reason is that modeling each example with the
full distribution avoids mischaracterizing the data using a
summary statistic (see Sec. I and Fig. 1 (bottom)). Another
reason, which we investigate in this section, is that training on
soft labels has a regularization effect: Optimizing the detector
to emulate a probability distribution over all 4 engagement cat-
egories, rather than just a single unambiguous label (i.e., delta
distribution), might encourage the classifier not to become too
confident on training data and thus to avoid overfitting. Indeed,
we find significant evidence to support this hypothesis in (1)
the trajectories of cross-entropy values during training; and (2)
the entropy of the detector’s outputs on validation data.

Cross-entropy trajectories: Fig. 3 (a) shows the trajectory,
over the 45 training epochs, of the average (over 4 folds and
25 trials/fold) cross-entropy loss values on training data (blue
dashed line) and validation data (orange solid line), when
training on hard labels. Fig. 3 (b) shows the analogous curves
when training on soft labels. (All of the subplots in Fig. 3
show validation costs w.r.t. hard labels, but results are similar
for the validation costs w.r.t. soft labels.) The plots show that,
when training on hard labels, the training loss is lower than
when training on soft labels, but the validation loss is higher.
Moreover, the validation loss begins to increase around 20
epochs using hard labels, whereas it continues to decrease
throughout the 45 training epochs using soft labels. Finally,

the difference between training and validation curves is larger
when training with hard labels than with soft labels.

Entropy of predictions: One of the symptoms of overfit-
ting is that the classifier is too confident in its predictions,
i.e., the average entropy of the output distributions is low.
We found that the average entropy, on validation data, of the
classifier that was trained on hard labels was 0.5578, whereas
the entropy of the classifier trained on soft labels was higher:
0.8985. These results are all consistent with the hypothesis that
soft labels provide a form of regularization.

A. Comparison to label smoothing

Szegedy, et al. [1] introduced a form of regularization that
operates by “smoothing” the input labels: in particular, the
original training label distribution for each example is replaced
with a mixture model consisting of the original ground-truth
(delta distribution) label (with weight 1 − ε) and the uniform
distribution (weight ε). Might this have a similar effect as soft
labels? To explore this question, we trained an engagement
classifier using smoothed labels where the ε was optimized
using a grid search (over the interval [0.02, 0.2]). To give
the smoothed labels approach the best chance of succeeding,
we chose ε to minimize the cross-entropy directly on the
validation set (with hard test labels). Even for the best ε value
(which was 0.06), the cross-entropy at the end of 45 training
epochs was higher (worse) using smoothed labels than with
soft labels (see Fig. 3 (c)). We do observe that smoothed labels
have a regularization effect, i.e., smaller gap between training
and validation cross-entropy losses compared to training on
hard labels; however, the effect is less pronounced than when
training on soft labels. The average entropy on validation data
of the estimated class probabilities {pi} for each example is
higher using smoothed labels (0.7259) than with hard labels
(0.5578), but smaller than with soft labels (0.8985). Altogether,
these results suggest that soft and smoothed labels have a
similar effect, but soft labels have a more pronounced effect.
A possible explanation for this difference is that soft labels
capture the actual label distribution rather than adding an
artificial distribution as in label smoothing.

As a final comparison between smoothed and soft labels,
we created a regressor (as described in Sec. V-A) by appending
an inner-product layer with fixed weights [1, 2, 3, 4] to the clas-
sifier trained using smoothed labels. The Pearson correlation of
the predicted engagement scores w.r.t. rounded mean ground-
truth labels was higher (0.552) than using hard labels (0.539),
but lower than with soft labels (0.584).

VII. CONCLUSION

We have provided evidence that training on “soft” labels
can deliver more accurate automatic student engagement de-
tectors, both in terms of classification and regression accuracy.
Moreover, we have shown evidence that this improvement is
due to regularization induced by soft labels. Future work:
Our focus was on modeling uncertainty induced by differing
opinions across multiple labelers. However, as mentioned in
the introduction, uncertainty can also arise when examples
are inherently ambiguous. In such cases, each label might
consist of a probability distribution that expresses an individual
labeler’s uncertainty. It would be interesting to explore whether
the advantage of soft labels persists in this setting.
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