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Abstract— In this paper, we propose a sampling-based policy
iteration for optimal planning under temporal logic constraints.
The method integrates approximate optimal control, impor-
tance sampling, and formal methods. For a subclass of linear
temporal logic, the planning problem is transformed to an
optimal control problem for a hybrid system where discrete
transitions are triggered by linear time events in temporal logic.
Instead of solving the Hamilton-Jacobi-Bellman equation, we
use policy function approximation to reduce the problem into a
search of an optimal weight vector that parametrizes the near-
optimal policy for given bases. Then, we incorporate Model
Reference Adaptive Search — an importance sampling-based
optimization algorithm to perform a sample-efficient search
within the parameter space of policy function approximations.
Facing the discontinuity in cost function introduced by temporal
logic constraints and system dynamics, we introduce 1) a
rank function in formal logic specifications to enable sample-
efficient search; 2) specification-guided basis selection. Under
mild technical assumptions, the proposed algorithm converges,
with probability one, to a global approximate optimal policy
that ensures the satisfaction of temporal logic constraints. The
correctness and efficiency of the method are demonstrated
through numerical experiments including temporal logic plan-
ning for a linear system and a nonlinear mobile robot.

I. INTRODUCTION

In this work, we propose a novel sampling-based planning

algorithm for nonlinear systems subject to a subclass of

temporal logic constraints, i.e. co-safe linear temporal logic

(LTL) [19]. LTL is an expressive language that allows one to

specify system specifications, including traditional reaching-

a-goal, stability, obstacle avoidance, sequentially visiting

interesting regions, periodic surveillance, and conditional

reactive behaviors. Given a specification in temporal logic,

control and planning for continuous and nonlinear systems

are generally performed by first computing a discrete tran-

sition system that abstracts the system dynamics, and then

performs temporal logic planning in the discrete state space

computed from a product of the transition system and the

automaton representing the LTL constraints. The abstraction-

based synthesis methods have been studied extensively for

continuous linear and nonlinear systems [15], [7], [8], [21],

[1], [26], [30].

The class of abstraction-based methods suffer from the

issue of scalability and the procedure of abstraction can

be computationally expensive. Temporal logic specifications

introduce additional complexity because planning is per-

formed in the product of the system states and the automaton
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states, which correspond to subformulas that characterize

different stages in satisfying the temporal logic specifica-

tions. Comparing to discretiziation-based methods, such as

A* [9], D* [27], and their variants, sampling-based meth-

ods are promising in solving high-dimensional planning.

Algorithms in this class include Rapidly-exploring random

tree(RRT) [20] and Probabilistic roadmaps(PRM) [14] with

their variants, including CBiRRT [4] and RRT* [13]. These

methods have been extended to solve temporal logic planning

problems [12], [29]. Sampling-based methods are probabilis-

tically complete in the sense that they calculate a solution

given infinite samples in the configuration space. Moreover,

RRT* ensures the asymptotic convergence to the optimal

solution. However, the assumption on Lipschitz continuous

cost function of RRT* is hard to satisfy under sensitive and

stringent temporal logic constraints, for that two trajectories

that are close to each other may satisfy different temporal

logic specifications.

In this paper, a sampling-based algorithm is presented to

perform sampling not in the state or configuration space

but in a space of weight vectors that parametrize the policy

function approximation. The main motivation is to remove,

or at least weaken, the dependency of planning complexity

on the dimensionality of the system. In recent work [25],

the authors exploit the idea that continuous time systems

constrained by LTL can be formulated as a hybrid dynamical

system by augmenting the continuous state space with the

discrete states. For the class of linear quadratic systems

subject to co-safe LTL formulas, the optimal control problem

is soluble through solving a sum-of-square program.

Here, we consider policy function approximations instead

of value function approximation for temporal logic planning

for nonlinear systems and propose a novel sampling-based

policy iteration algorithm. The key idea is to regard planning

as a problem to infer, from sampled trajectories, a weight

vector that parametrizes the optimal feedback policy function

approximation for given bases. Under this consideration, we

integrate Model Reference Adaptive Search (MRAS) [11],

an importance sampling-based global optimization algorithm,

to search the optimal weight vector through simulated runs.

Previously, the Cross entropy (CE) method has been used

for trajectory planning [16], [22], where the objective is

to find a sequence of motion primitives or a sequence of

states for interpolation-based planning. In stochastic policy

optimization [17], CE is used for computing linear feedback

policies.

This paper is the first to systematically integrate impor-

tance sampling, temporal logic planning, and approximate

optimal control. The main contributions include the follow-
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ing: 1) We develop a sampling-based planning algorithm

for nonlinear systems subject to co-safe LTL constraints.

The algorithm generates provably correct policies quickly

and continues to improve the optimality through iterative

sampling while adapting the sample distribution. 2) We

employ rank functions in the specification to guide sample-

efficient planning. We introduce specifications dependent

bases selection to reduce the complexity of the policy func-

tion approximation. Based on the experimental evaluations,

we discuss the advantages and limitations of the proposed

method and propose the future directions.

II. PRELIMINARIES

Notations: For a finite alphabet Σ, Σ∗ is the set of

finite words generated using symbols in Σ. The product

between two vectors u, v are given by uᵀv or 〈u, v〉. Given

a symmetric matrix R, ‖x‖R = xᵀRx is the weighted norm.

For a real number r, ceiling of r denotes as �r�, where r ∈ R.

A. System model

We consider continuous-time nonlinear systems of the

form

Σ : ẋ(t) = f(x(t), u(t)),

x(t) ∈ X,u(t) ∈ U.
(1)

where x ∈ X is the state, u ∈ U is the control input, x0 ∈ X
is the initial state, and f(x, u) is a vector field. We assume

that X and U are compact. Given a finite time interval [0, T ],
a controller u : [0, T ] → U is a continuous function that

maps time t to control input in u(t) ∈ U for t ∈ [0, T ].
Traj(x0, [0, T ], u) refers to the trajectory of the continuous

system with initial condition x0 under the control input u(t)
over the time interval [0, T ].

B. System specification: Temporal logic

The system (1) is constrained to satisfy a specification on

the discrete behavior obtained from its continuous trajectory.

First, let AP be a set of atomic propositions evaluated

over the state space X . Given a proposition p ∈ AP and

a state x ∈ X , the value of p at x, denoted val(p, x), is a

Boolean indicating whether p is evaluated true (1) or false

(0) at x. Then, we define a labeling function L : X → 2AP ,

which maps a continuous state x ∈ X to a finite set in 2AP

of atomic propositions that evaluate to be true at x. This

function partitions the continuous space X into regions that

share the same truth values in AP . The labeling function

also links the continuous system with its discrete behavior.

Definition 1: Let t0, t1, . . . , tN be times of discrete tran-
sitions, that satisfy

• 0 = t0 < t1 < · · · < tN = T ,

• L(x(t)) = L(x(tk)), tk ≤ t < tk+1, k = 0, . . . , N ,

• L(x(t−k )) 
= L(x(t+k )), k = 0, . . . , N .

A discrete behavior, denoted as B(Traj(x0, [0, T ], u)), is

defined to be a discrete word σ0σ1 . . . σN ∈ (2AP)∗, where

σk = L(x(tk)).

A specification on a discrete behavior can be written as a

co-safe LTL formula over the finite set of atomic propositions

(for a comprehensive description of the syntax and semantics

of LTL, readers can refer to [23], [2]). A co-safe LTL

formula is an LTL formula where every satisfying word has

a finite good prefix 1 [18]. We restrict to such formulas

to take advantages of the expressiveness of temporal logic

for specifying optimal control problems without imposing

infinite Büchi acceptance conditions. Essentially, co-safe

LTL formula describes tasks that can be completed in a finite

time. It allows us to specify tasks such as reaching a goal,

safety until reaching the goal, coverage task with or without

an sequential ordering of regions to be visited, etc. In the

example section, we provide several examples of co-safe LTL

specifications.

Given a co-safe LTL specification ϕ over the set of atomic

propositions AP , there exists a corresponding determinis-

tic finite-state automaton (DFA) Aϕ = 〈Q, 2AP , δ, q0, F 〉,
where Q is a finite set of states (modes), 2AP is a finite

alphabet, δ : Q × 2AP → Q is a deterministic transition

function such that when the symbol σ ∈ 2AP is read

at state q, the automaton makes a deterministic transition:

δ(q, σ) = q′, q0 ∈ Q is the initial state, and F ⊆ Q is a set of

final, or accepting states. The transition function is extended

to a sequence of symbols, or a word w = σ0σ1 . . . σn ∈ Σ∗,
n ∈ N , in the usual way: δ(q, σ0v) = δ(δ(q, σ0), v) for

σ0 ∈ Σ and v ∈ Σ∗. We say that the finite word w satisfies

ϕ if and only if δ(q0, w) ∈ F . The set of words satisfying

ϕ is the language of the automaton Aϕ, denoted by L(Aϕ).
The construction of Aϕ for a given co-safe LTL formula ϕ
can be automated using the tool in [24].

The discrete behavior encodes the sequence of labels

visited by the state as it moves along its continuous trajectory.

Specifically, the atomic propositions are evaluated only at

the times when the label changes value. Thus, a trajectory

Traj(x0, [0, T ], u) satisfies an LTL specification ϕ, denoted

as Traj(x0, [0, T ], u) |= ϕ if and only if its discrete behavior

is in the language L(Aϕ).
Problem 1: Given a system in (1) and a co-safe LTL

formula ϕ, computing a controller u that solves the following

constrained optimal planning problem:

min
u:[0,T ]→U

J(x0, u) =

∫ T

0

�(x(t), u(t))dt+ g(x(T ), u(T ))

subject to: ẋ(t) = f(x(t), u(t)),

Traj(x0, [0, T ], u) |= ϕ;

x(t) ∈ X, u(t) ∈ U, x(0) = x0.
(2)

where T is the stopping time, � : X × U → R
+ defines the

running cost when the state trajectory traverses through x and

the control input u is applied, and g : X ×U → R
+ defines

the terminal cost. As an example, a running cost function

can be a quadratic cost: �(x, u) = ‖x‖R + ‖u‖Q for some

1Given a word w ∈ Σ∗ and v ∈ Σ∗, v is a prefix of w if and only if
w = vu for some u ∈ Σ∗. The word u is called the suffix of w.
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positive semi-definite matrices R and Q, and a terminal cost

can be g(x, u) = ‖x− xf‖R, where xf is a goal state.

C. Preliminary: Model Reference Adaptive Search

MRAS algorithm [11] aims to solve the following prob-

lem:

z∗ ∈ argmax
z∈Z

H(z), z ∈ R
n

where Z is the solution space and H : R
n → R is a

deterministic function that is bounded from below. It assumes

that the optimization problem has a unique solution, i.e.,

z∗ ∈ Z and for all z 
= z∗, H(z) < H(z∗).
The following regularity conditions need to be met for the

applicability of MRAS.

Assumption 1: For any given constant ξ < H(z∗), the set

{z | H(z) ≥ ξ} ∩ Z has a strictly positive Lebesgue or

discrete measure.

This condition ensures that any neighborhood of the optimal

solution z∗ will have a positive probability to be sampled.

Assumption 2: For any constant δ > 0, supz∈Aδ
H(z) <

H(z∗), where Aδ := {z | ‖z− z∗‖ ≥ δ}∩Z, and we define

the supremum over the empty set to be −∞.

Next, we present the MRAS algorithm which has the fol-

lowing key steps:

• Select a sequence of reference distributions {gk(·)}
with desired convergence properties. Specifically, the

sequence {gk(·)} will converge to a distribution that

concentrates only on the optimal solution z∗.
• Select a parametrized family of distribution f(·, θ) over

Z with parameter θ ∈ Θ.

• Optimize the parameters {θk} iteratively by minimizing

the following KL distance between f(·, θk) and gk(·).

d(gk, f(·, θ)) :=
∫
Z
ln

gk(z)

f(z, θ)
gk(z)ν(dz).

where ν(·) is the Lebesgue measure defined over X .

The sample distributions {f(·, θk)} can be regarded as

compact approximations of the reference distributions

and will converge to an approximate optimal solution

as {gk(·)} converges provided with certain properties

of {gk(·)} which is retained in f(·, θk).
Note that the reference distribution {gk(·)} is unknown

beforehand as the optimal solution is unknown. Thus, the

MRAS algorithm employs the estimation of distribution

algorithms [10] to estimate a reference distribution from elite

samples (similar to CE) that guides the search. It is shown

[11] that MRAS has better convergence rates and stronger

guarantees than CE over several benchmark examples. To

make the paper self-contained, we will cover some details

of MRAS in the development of the planning algorithm.

III. MAIN RESULTS

A. Problem formulation

Given a DFA Aϕ = 〈Q, 2AP , δ, q0, F 〉 representing the co-

safe LTL formula, it can be shown that the optimal controller

for infinite horizon is a hybrid feedback policy u : X×Q →
U that takes the current continuous state x and specification

state q, outputs a control input u(x, q). In other words, the

control input is based on the feedback from both continuous

state and discrete specification state. We denote the set of

hybrid feedback policies to be Π.

For finite time horizon, the feedback controller can be

dependent on time. In the scope of this work, we only

consider controllers that do not depend on time explicitly by

planning for a long horizon [0, T ] [5]. Extensions to time-

varying controller will be discussed.

The temporal logic planning problem in (2) can be ex-

pressed as

min
u∈Π

J(x0, u)

=

∫ T

0

�(x(t), u(t))dt+ g(x(T ), u(T ))

subject to: ẋ(t) = f(x(t), u(t)),

q(tk)
+ = δ(q(tk)

−, L(x(tk))),
0 ≤ t0 < t1 < . . . < tH = T, for some H ∈ N,

x(t) ∈ X, u(t) ∈ U,

x(0) = x0, q(t0) = δ(q0, L(x(0))), q(T ) ∈ F,
(3)

where ti, i = 0, . . . , H are times of discrete transitions, q(t)−

(resp., q(t)+) is the specification state before (resp., after) a

discrete transition at time t.
Problem (3) is indeed an optimal planning problem in

a hybrid system over the hybrid state space X × Q. A

subsystem at discrete state q evolves according to the system

dynamics in (1), and stays within the same discrete state as

long as the label of the state does not change. When the

label changes at time tk, for some k ≥ 0, the system takes

a discrete transition to a discrete mode q′ = δ(q, L(x(tk)))
and continue to evolve given the system dynamics in (1).

A formal construction of this hybrid system is given in our

previous work [25].

B. Approximate optimal planning with policy function ap-
proximations

Definition 2: Given an automaton state q of Aϕ, a local,
time-invariant feedback policy is a function u(·, q) : X →
U that maps a continuous state x ∈ X to a control input

u ∈ U . Let φq = [φ1,q, φ2,q, . . . , φNq,q]
ᵀ be a vector of total

Nq ∈ N basis functions, a local policy approximation is a

weighted sum of bases, denoted as 〈wq, φq〉, where wq =
[w1,q, w2,q, . . . , wNq,q]

ᵀ are a vector of weights and wi,q is

the weight of the basis φi,q .

An example of basis functions can be a polynomial basis

vector φ = [1, x, x2, x3, . . . , xN ]ᵀ. A commonly used class

of basis functions is radial basis function (RBF). It can be

constructed by determining a set of centers c1, . . . , cN ∈ X ,

and then constructing RBFs φi = exp(−‖x−ci‖2
2σ2 ), for each

center ci, where σ is a pre-defined parameter.

Suppose the set of specification states is Q =
{q0, q1, . . . , qN}, we have w = [wq0 ; . . . ;wqN ] and φ =
[φq0 ; . . . ;φqN ], then u(·, q) = 〈wq, φq〉 is the q-th entry in
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the vector wᵀφ = [wᵀ
q0φq0 , . . . , w

ᵀ
qNφqN ]ᵀ. For simplicity,

we call w as the weight vector and the vector φ of bases

as the basis vector2 and the vector φ of bases as the basis
vector2. We can write a controller compactly as u = 〈w, φ〉.

Given the domain W of the weight vector, when the basis

vector φ is pre-defined, the search space for control policies

is then restricted to Πφ = {〈w, φ〉 | w ∈ W, 〈w, φ〉 ∈ Π}.

For input constraints, for example, input saturation, we will

project the computed control input at time t on the con-

strained input space U during the simulation-based planning.

The projection operation is defined to be ProjU : Rm → U
where m is the dimensionality of the input space.

Clearly, for any weight vector w, J(x0, 〈w, φ〉) ≥
minu∈Π J(x0, u). Thus, we aim to solve for a controller

within Πφ that minimizes the total cost while satisfying the

system constraints, so as to minimize the error in the optimal

cost introduced by policy function approximation.

Definition 3 (Approximate optimal feedback policy):
Given a basis vector φ, a weight vector w∗ with respect to

φ is optimal if and only if for all w ∈ W such that 〈w, φ〉 ∈
Πφ, J(x0, 〈w∗, φ〉) ≤ J(x0, 〈w, φ〉). The approximate

optimal feedback policy is 〈w∗, φ〉.
It is straightforward to show the optimal weight w∗ gives rise

to a controller 〈w∗, φ〉 that minimizes the error introduced

by policy function approximation, i.e., the error between the

global optimal cost and the optimal cost that can be achieved

with a controller in Πφ.

For clarity in notation, we denote J(x0, 〈w, φ〉) by

J(x0;w) as φ is a fixed basis vector throughout the devel-

opment of the proposed method.

The optimal weight vector w∗ w.r.t. φ is the solution to

the following problem:

min
w∈W

J(x0;w)

subject to: ẋ(t) = f(x(t), u(t)),

q(t+k ) = δ(q(t−k ), L(x(t
−
k ))),

0 ≤ t0 < t1 < . . . < tH = T, for some H ∈ N,

x(t) ∈ X, u(t) = ProjU (〈wq(t), φq(t)(x(t))〉),
x(0) = x0, q(t0) = δ(q0, L(x(0))), q(T ) ∈ F,

(4)

where the constraints are the same in (3).

Moreover, if the actual optimal policy u can be represented

by a linear combination of selected basis functions and a

weight vector, then we obtain the optimal policy u∗ by

solving (4) and obtain the optimal weight vector, i.e., u∗ =
〈w∗, φ〉.

To prevent Zeno, i.e., infinite transitions in the specifi-

cation automaton for any finite time, we add an additional

transition cost in the cost function such that a Zeno behavior

will be penalized for infinite cost. The total cost function is

J(x0, u) =
∫ T

t=0
�(x, u)dt + g(x(T ), u(T )) +∑H

k=1 s(q(tk)
−, q(tk)+) , where s : Q × Q → R is a

nonzero discrete transition cost that is incurred at the

discrete transition times.

2w ( φ) is indeed a vector of vectors, i.e., matrix

C. Importance sampling-based temporal logic planning

The key idea of MRAS is based on updating the sampling

distribution so as to have much mass concentrating on

the elite samples, i.e., a set of controllers that satisfy the

specification with lower costs.

First, we select multivariate Gaussian as the probability

distribution which is used to sample in the weight vector

space. Recall that the probability density of a multivariate

Gaussian distribution is defined by

p(w; θ) =
1√

(2π)N |Σ| exp(−
1

2
(x− μ)ᵀΣ−1(x− μ)),

θ = (μ,Σ), ∀w ∈ W,

where μ is the mean vector and Σ is the covariance matrix,

N is the dimension of weight vector w ∈ W , and |Σ| is the

determinant of Σ.

The main algorithm is described as follows:

1) Initialization: We select an initial distribution over

weight vectors W , denoted p(·, θ0), for some θ0 ∈ Θ.

We specify a quantile parameter ρ ∈ (0, 1], a small

real ε ∈ R
+ called improvement parameter, an initial

sample size N0, a sample increment parameter α, a

smoothing coefficient λ ∈ (0, 1], and a strictly decreasing

and positive function S : R → R
+ if the objective is to

minimize the cost 3. We select an initial distribution μ1

and Σ1 that allows the sampling to have a near uniform

coverage of the sample space. Let k = 1 and move to

step 2).

2) Sampling: At each iteration k, given the current distri-

bution p(·, θk), we generate a set of Nk samples W .

For each w ∈ W in the sample set, we evaluate the

cost J(x0;w) from the initial state x0 by simulating the

controller u = 〈w, φ〉 with system model in (1). The cost

is determined because the system is deterministic and has

a unique solution.

3) Rejecting unsatisfiable policies: Next, we eliminate any

trajectory that violates the temporal logic constraints by

directly rejecting its corresponding weight vector. The

remaining set is Wsat.

4) Select Elite samples and threshold: Next, the set

{J(x0;w) | w ∈ Wsat} is ordered from largest (worst)

to smallest (best) among given samples:

Jk,(0) ≥ . . . ≥ Jk,(Nsat) ,where Nsat = |Wsat|.
We denote κ to be the estimated (1− ρ)-quantile of cost

J(·;w), i.e., κ = Jk,�(1−ρ)Nsat�.
The following cases are distinguished.

• If k = 0, we introduce a threshold γ = κ.

• If k 
= 0, the following cases are further distinguished:

– κ ≤ γ − ε, i.e., the estimated (1 − ρ)-quantile of

cost has been reduced by the amount of ε from

the last iteration, then γ is updated to equal κ. Let

Nk+1 = Nk and continue to step 5).

3Possible choices can be S(x) = exp(−x) or S(x) = 1
x

if x is strictly
positive.

1331



– Otherwise, if κ > γ − ε, we find the largest ρ′, if

it exists, such that the estimated (1 − ρ′)-quantile

of cost κ′ = Jk,�(1−ρ′)Nsat� satisfies κ′ ≤ γ − ε.

Then we update γ with κ′ and also set ρ to be ρ′.
Let Nk+1 = Nk and continue to step 5). However,

if no such ρ′ exists, then there is no updating on

the threshold γ and the sample size is increased by

α-percentile, i.e., for the next iteration, we obtain

Nk+1 = �(1+α)Nk� samples from the distribution,

where α ∈ [0, 1). In the end, let θk+1 = θk, k =
k + 1 and continue to step 2).

5) Parameter update: We update parameter θk+1 for iter-

ation k + 1. First, we define a set E = {w | J(x0;w) ≤
γ,w ∈ Wsat} of elite samples. Note that the parameter

update in θ is to ensure a higher probability for elite

samples. To achieve that, for each elite sample w ∈
E, we associated a weight S(J(x0;w))

k/p(w, θk). By

doing so, a higher weight is associated with a weight

vector with a lower cost and a lower probability in the

current distribution. The next parameter θk+1 is selected

to maximize the weighted sum of probabilities of elite

samples. To this end, we have

θ∗k+1 = argmax
θ∈Θ

Eθk

(
S(J(x0;w))

k

p(w, θk)
Iw∈E · p(w, θ)

)

(5)

The solution θ∗k+1 is used in step 2) for next sampling

iteration.

For parameter update, we implement the Monte-Carlo

version of (5),i.e., θ∗k+1 ≈ (μk+1,Σk+1) where

μk+1 =
Eθk [S(J(x0, w))

k/p(w, θk)]Iw∈Ew
Eθk [S(J(x0, w))k/p(w, θk)]Iw∈E

≈
∑

w∈W [S(J(x0, w))
k/p(w, θk)]Iw∈Ew∑

w∈W [S(J(x0, w))k/p(w, θk)]Iw∈E
,

and Σk+1 =

Eθk [S(J(x0, w))
k/p(w, θk)]Iw∈E(w − μ)(w − μ)ᵀ

Eθk [S(J(x0, w))k/p(w, θk)]Iw∈E

≈
∑

w∈W [S(J(x0, w))
k/p(w, θk)]Iw∈E(w − μ)(w − μ)ᵀ∑

w∈W [S(J(x0, w))k/p(w, θk)]Iw∈E
,

where we approximate Eθk(h(w)) with its estimate
1
Nk

∑
w∈W h(w) for w ∼ p(·, θk), and Iw∈E is the

indicator function which equals 1 if w ∈ E and 0
otherwise.

Further, we use a smoothing update and let θk+1 = λθk+
(1− λ)θ∗k+1.

6) Stopping criterion: We stop the iteration if the covari-

ance matrix Σk becomes near-singular.

Next, we show the global convergence of the algorithm is

ensured by the property of MRAS.

Theorem 1 (Theorem 1 [11]): Under assumption 1,2, for

continuous optimization problem in R
n, if multivariate nor-

mal p.d.f.’s are used in MRAS, i.e., θk = (μk,Σk), with

probability one,

lim
k→∞

μk = w∗ and lim
k→∞

Σk = 0n×n.

provided that (5) is solved exactly.

Using the multivariate Gaussian, we ensure that the algorithm

converges to the global optimal solution provided with infi-

nite number of samples. However, in practice, only finitely

many samples are used. Similar to CE method, the algorithm

may converge to sub-optimal solution.

The choice for the sample size N and the parameters in

the algorithm depends on the size of the problem and the

number of parameters. The reader is referred to [6], [11] for

more details about the choice of sample size and parameters.

D. Rank-guided adaptive policy search

Under complex temporal logic constraints and large state

space, a high-dimensional weight vector must be used to

achieve near-optimal approximation of the policy function.

In such a case, it is hard to find a policy that satisfies the

temporal logic constraint, which can be considered as a rare

event in the sampling-based approach.

To address this issue, we propose a rank-guided adaptive

policy search which incorporates additional terminal cost

associated with the rank of the specification states. Then,

for a policy that does not satisfy the constraint, instead of

rejecting its corresponding weight vector, we penalize the

weight by adding a terminal cost, depending on a minimal

number of transitions that remain to be triggered in order to

satisfy the specification.

Formally, we introduce a rank function rank : Q → N that

maps each automaton state q ∈ Q to a non-negative integer

and is defined iteratively by

1) rank(q) = 0 for all q ∈ F where F is the set of

accepting states.

2) rank(q) = minq′∈Q{rank(q′) + 1 | ∃A ∈
2AP , δ(q, A) = q′}. Intuitively, the rank function cor-

responds to the minimum number of actions needed to

make to reach the accepting states.

Given a weight w, using simulation we obtain a finite-

time trajectory Traj(x0, [0, T ], u) where u = 〈w, φ〉 such

that δ(q0, L(Traj(x0, [0, T ], u)) = q(T ) = q /∈ F , we add

the total cost under this controller with a terminal cost h(q)
where h : Q → R is defined by

h(q) =

{
0 for all q ∈ F.
rank(q)× c otherwise.

where c is a constant. We select a constant c that is greater

or equal to an estimated upper bound of the cost that can be

incurred when the system trajectory triggers a transition in

the specification automaton.

Next, we introduce a method of basis selection that

explicitly accounts for the temporal logic specification ϕ.

Definition 4: Given a basis vector φq , two state x and x′

are φq-equivalent if and only if they have the same evaluation

for the bases, i.e., φq(x) = φq(x
′).

For φq-equivalent states, the controller wᵀ
qφq : X → U will

not distinguish these states during its execution. This leads

to an insight that the choice of bases must distinguish two

states whose labels lead to different automaton state.
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To this end, for each label σ ⊆ AP , we associate a finite

vector of bases φσ such that for any x, x′ ∈ X , if val(p, x) 
=
val(p, x′), then φσ(x) 
= φσ(x

′). Finally, given an automaton

state q ∈ Q, the basis vector φq must include all elements

in φσ , for any σ such that δ(q, σ) 
= q. We say that such a

choice of bases is specification-dependent. Besides, we need

to include a set of basic bases in φq for all q ∈ Q to have a

good approximation of the optimal control policy.

In the special case, when each atomic proposition pi :=
cix ≤ bi is a linear inequality and states satisfies pi constitute

a half-space of RN . A subset σ ⊆ AP of atomic propositions

may describe a polytope Pσ . A specification-dependent basis

vector for Pσ of k-dimension can be computed by including

at least k − 1 basis vectors φi,σ = f(x − vi) where f(·) is

a surjective function and vi, i = 1, . . . , k − 1 of different

vertices’s of the polytope, because any two states differ in at

least one value of basis φi,σ for some i = 1, . . . , k − 1.

Remark: To reduce sample complexity, it is critical to

select basis vectors of reasonable sizes in order to achieve

a trade-off between minimizing approximation error and

improving efficiency of the planning algorithm. In general,

basis selection problem is important and challenging in

function approximation and has been studied in different

problem domains [31], [28]. A rigorous analysis of basis

selection for approximate-optimal temporal logic planning

subjects to future research.

Complexity analysis: The rate of convergence for

MRAS is hard to quantify. However, since the samples

are continuous controllers, the complexity of generating a

continuous trajectory is time linear in the length of the

trajectory. Checking if a trajectory satisfies the specification

is done by simultaneously computing the discrete transitions

in the specification automaton. Overall the complexity of

each iteration is linear in the product of sample size, the size

of Aϕ, and the length of the trajectory. It is worthy to mention

that the trajectory evaluation can be performed in parallel,

and thus allow linear speedup with parallel computing.

IV. SIMULATION EXPERIMENTS

In this section, we experimentally evaluate the correctness

and efficiency of the proposed algorithm over two examples.

The first one is a linear system, for which temporal logic

planning is usually performed with a finite-state transition

system that abstracts the linear system dynamics [3]. The

other one is temporal logic planning for a Dubins car. All

experiments are running in MATLAB on Ubuntu 14.04. The

critical specifications of the desktop are the following: CPU:

Intel Xeon E5 @ 3.10GHz; System Memory: 16 GB.

A. Case study: Optimal Control of Linear systems under LTL
constraints

Consider a linear system’s dynamics: ẋ = Ax + Bu,

where x ∈ X , A =

[
0 −1
0 0

]
, B = [0, 1]ᵀ. The cost

function includes the running cost:
∫ T

0
‖x‖R+‖u‖Qdt, where

R = Q =

[
0.1 0
0 0.1

]
and T = 15, the terminal cost:

g(x(T ), u(T )) = 102 × ‖x(T ) − xf‖, where xf = (0, 0)
is the goal position. The initial position of this system is

set as x0 = (10, 0), and the main goal is to stabilize this

system to the origin (0, 0) while satisfying the specifications:

♦(A ∧ ♦(B ∧ ♦C)) ∨ ♦(C ∧ ♦(B ∧ ♦A)) ∧ �¬obs 4, i.e.,

eventually visit A and C regions and visit region B at some

point between these two visits (see labels in Fig. 2), while

avoiding the static obstacle marked in blue. The correspond-

ing automaton is shown in Figure 1, where the transitions

to a sink & non-accepting state with label obs are omitted.

Using the computation of rank function, we have Q0 = {5},

Q1 = {2, 4}, Q3 = {1, 3} and Q4 = {0}. Let c = 104, we

determine terminal cost function h(q) = rank(q)× c.

0start

1 2

3 4

5

C

A

B

A

B

C

C,E B,C,E

A,E A,B,E

A,B,C,E

Fig. 1. Automaton ♦(A∧ ♦(B ∧ ♦C))∨ ♦(C ∧ ♦(B ∧ ♦A))∧�¬obs,
where E denote everything else, including hitting the obstacle.

For basis selection, two class of bases are used: basic

ones and specification-dependent bases. Here, we choose

linear basis φbasic = [1, x(1), x(2)] for basic ones. Then,

we select a point inside each polygon region A, B, C,

and the obstacle obs, denoted xA, xB , xC , xobs and let

φσ = [x(1) − xσ(1), x(2) − xσ(2)] for σ = A,B,C, obs.

Next, for state q ∈ Q of the automaton, we select φq =
[φᵀ

basic, φ
ᵀ
σ1
, . . . , φᵀ

σnq
]ᵀ for each σ1, . . . , σnq

that labels the

outgoing transitions from state q to state q′ 
= q. For

example, in state 0 where the outgoing transitions are labeled

A,C, obs, we include φ0 = [φᵀ
basic, φ

ᵀ
A, φ

ᵀ
C , φ

ᵀ
obs]

ᵀ as a set of

linear bases. Similar choice of bases is performed for other

specification states. The total number of weights is 78.

The following parameters are used: Initial sample size

N0 = 1000, improvement parameter ε = 0.1, smoothing

parameter λ = 0.2, sample increment percentage α = 0.1,

the estimated (1−ρ)-quantile of cost κ = 1000, and quantile

parameter ρ = 0.1. Figure 2(a) trajectory is obtained after

the algorithm converges, which satisfies the LTL formula.

Figure 2(b) shows the performance of obtained controllers

during each iteration. The algorithm obtains a satisfying

trajectory after 10 iterations within 2 minutes. It takes around

20 iterations to converge, and each iteration takes around 10

seconds. Out of 100 repeated runs of the algorithm, the mean

of the optimal cost obtained with the controllers is 42.01 and

the standard deviation is 2.77.

4The temporal operators are: ♦ - eventuality, � - always.
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Fig. 2. (a) The trajectory for the linear system calculated by the computed
controller after the algorithm converges. (b) The mean cost achieved over
iterations.

B. Case study: Approximate optimal control of a Dubins car
under LTL constraints

0start

1

2

3 4

A
C

B

B

A

C

A,C

B,C

A,B �

Fig. 3. Automaton Aϕ2 for ♦(♦(A ∧ ♦B) ∨ ♦(B ∧ ♦A) ∧ ♦C) ∧
�¬obs where � is universally true. The self-loops with labels other than
A,B,C, obs are omitted.

Given the Dubins car’s Dynamics: ẋ = u cos(θ), ẏ =
u sin(θ), θ̇ = v, where x = (x, y, θ) ∈ R

2 × S
1 is the

state and u ∈ [−10, 10], v ∈ [−5, 5] are the inputs to the

system and linear and angular velocities. We consider a LTL

formula: ♦(♦(A ∧ ♦B) ∨ ♦(B ∧ ♦A) ∧ ♦C) ∧�¬obs. The

corresponding specification automaton is shown in Fig. 3.

In this case, the system needs to traverse regions A and B,

and eventually reach region C while avoiding collisions with

a static obstacle. The running cost function is defined by

x2 + y2 + ‖u‖Q for the same Q matrix as in the previous

example. The terminal cost is 0. We define a rank cost:

x
-5 0 5 10 15 20

y
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C
obstacle
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B

(a)

Iterations
0 20 40 60 80 100 120

C
os

t
102

103

104

105

(b)

Fig. 4. (a) The trajectory for Dubins car calculated with the computed
controller after the algorithm converges. (b) The optimal cost achieved over
iterations.

h(q) = rank(q) × 104, where rank(q) is the minimum

number of transitions required to reach accepting states from

q(T ).
We switch different basis functions based on the current

state. In Dubins car’s case, we select RBFs and define φrbf =
[φ1, . . . , φN ] where φi is a RBF with its center being one

of the points picked from uniform grids in x-y coordinates

with step sizes δx = 5 and δy = 5 with bounded state

space −5 ≤ x ≤ 20 and −5 ≤ y ≤ 20. The σ parameter

of each RBF is 2. Combining these points with the linear

basis function φlinear = [x− xf ], the basic basis vector can

be represented as φbasic = [φᵀ
rbf , φ

ᵀ
linear]

ᵀ. Additional RBF

bases are determined by picking their centers as the vertexes

of regions A, B, and C. For example, in the state 2, since

the region B has been visited, the vertexes of region A are

taken into the consideration, so the basis function with the

respect to the state 2 is described as the following: φ2 =
[φᵀ

basic, φ
ᵀ
A]

ᵀ where φA is the vector of RBFs with centers

on the vertexes of A and a RBF parameter σ. The dimension

of the weight vector is 179.

Let N0 = 200 5, the other parameters are the same as

the ones for the linear system. The trajectory shown in the

Figure 4(a) is the result of 118 iterations, each iteration takes

5Due to the adaptive sampling, MRAS increases the sample size if less
elite samples are generated. We pick a small initial sample size to reduce
time for each iteration. Considerably, the total time of iterations increases.
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14 seconds. The optimal cost under such LTL constraints is

207.13. Although it takes a large number of iterations for the

algorithm to converge and it computes a satisfying trajectory

within 20 iterations, this indicates the potential of using this

algorithm for anytime planning.

V. CONCLUSION

This paper presents a novel sampling-based planning

method for nonlinear systems under temporal logic con-

straints. The optimal motion plan is given as a feedback pol-

icy that takes into consideration of the specification satisfied

at runtime. Such a policy is approximated by a linear combi-

nation of basis functions whose weights are solved through

importance sampling-based global optimization method. The

method is probabilistically complete and has empirical good

result for being able to generate a feasible trajectory and

keep improving the solution when more time is allowed.

Besides the anytime computation feature, it is noted that

the algorithm is highly parallelizable and can be improved

significantly in GPU-computing enabled systems.

For temporal logic constraints, we introduce the rank

function to improve the sample efficiency without rejecting

unsatisfied trajectories. The current limitation is that for

complex specifications, the dimensionality of weight vectors

grows polynomials in the size of the automaton and high-

dimensional weight vectors requires a large sample size. For

future work, we will exam different sample distributions and

distributed synthesis method to improve the scalability of the

algorithm. Additionally, in our future extension of this work,

we would like to focus on the integration of the selection

of initial guess and this planning algorithm, which helps to

accelerate the speed of the convergence.
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