Project Notes :

Project Title: Name: Jessica Froment

<u>Note Well:</u> There are NO SHORT-cuts to reading journal articles and taking notes from them. Comprehension is paramount. You will most likely need to read it several times, so set aside enough time in your schedule.

Knowledge Gaps :

This list provides a brief overview of the major knowledge gaps for this project, how they were resolved and where to find the information.

Knowledge Gap	Resolved By	Information is located	Date resolved
How do tree networks send info	You tube video	https://www.youtub e.com/watch?v=_tjt8 WT5mRs	9/1/24
Difference between arbuscular MN and common MN	Journal Article	https://nph.onlinelibr ary.wiley.com/doi/10 .1111/nph.15775	10/1

Literature Search Parameters:

These searches were performed between (08/14/2024) and 09/27/2024. List of keywords and databases used during this project.

Database/search engine	Keywords	Summary of search
Brain cancer	Mylin sheaths Brain tumors	Brain cancer is most common within Mylin sheaths as neurons replicate slowly
Mycorrhizal fungi	Tree networks Fungi Comon Mycorrhizal networks Signaling molecules	Plants are able to send signaling molecules through Mycorrhizal fungi. This is pretty understudied and would be a good area of research d

Tags:

Tag N	lame
#RASprotien #microbiology #biology #cancer #probability #forcasting #weather # chemistry #globalwarming #environment #geneediting #mycorrhizal networks	
#mycorrhizal networks #Carbon #CMNmodel	
#MN #farming #genetransfer #HGT #DNA #bacteria #Symbioses #nutientstransfer #AMF #nutrients #Crispr #herbideresistance #Glomalin #CO2 #CO2change #N #P #boreal	

Article #1 Notes: RAS mutations in cancer

Article notes should be on separate sheets

KEEP THIS BLANK AND USE AS A TEMPLATE

Source Title	A comprehensive survey of Ras mutations in cancer
Source citation (APA Format)	Prior, I. A., Lewis, P. D., & Mattos, C. (2012). A comprehensive survey of Ras mutations in cancer. <i>Cancer Res 72</i> (10), 2457–2467. Doi: <u>https://doi.org/10.1158/0008-5472.CAN-</u> 11-2612
Original URL	https://doi.org/10.1158/0008-5472.CAN-11-2612
Source type	Article
Keywords	RAS protein
#Tags	#RAS protein #microbiology #biology #cancer
Summary of key points + notes (include methodology)	This article from PubMed Central discusses RAS mutations in cancer and how the mutations in isoforms vary among themselves and different types of cancers. The RAS proteins promote cell signaling and growth, and when mutated and activated they promote oncogenesis with unregulated cell division. Understanding RAS genes and proteins is essential towards future methods of battling cancer with cancer research. RAS proteins are encoded with three closely related genes: HRAS, KRAS and NRAS. These proteins are GTP-ases that when activated by GTP create the proteins in signaling pathways that control cell growth. When the GTP binding site is mutated the GTPase-activating proteins (GAP) that inactivated the gene cannot properly bind. This leads to the RAS gene being constantly active, leading to unregulated cell division and creating a tumor.
	RAS isoforms experience different coupling to specific cancers, as well as the codons and substitutions generating the mutations. For example, KRAS mutations experience 43% G-A mutations at the second base of codon 12 or 13, resulting in G12D or G13D mutations. Almost the rest of the mutations are G-T to produce G12V mutations. NRAS exhibits this at a significantly lower rate. However, HRAS favors mutations at codon 12 to form G12V mutations at a significantly higher rate then both KRAS and NRAS. Also, 80% of all KRAS mutations occur at codon 12, whereas 60% of NRAS are at codon 61, and 50% codon 12 and 40% codon 61 split for HRAS. Even more interestingly are the different percentages of mutations for specific cancers. 90% of pancreatic cancer tumors have KRAS mutations, while hematopoietic tumors are primarily NRAS mutations. One of the reasons for this are the genotoxic agents causing the RAS

	mutations. For example, methylnitrosourea (MNU) targets the second base of codon 12 of HRAS and KRAS in many cancers and UV radiation targets pyrimidine dimers resulting in RAS Q61 mutations. The exposure to the particular mutagens results in the specific mutation patterns shown between the isoforms across the different types of cancers. This, however, doesn't explain the differences between RAS isoforms found within the same mutation. There is little experimental analysis on the potential reasons; however, it is speculated from collective data that the differences in the DNA primary sequence, the secondary to quaternary structural effects, and the position of the genes improve or limit the mutagens or repair enzymes access to the isoform. The RAS isoforms also code for different phenotypic responses, supporting the growth of cancer in various ways. KRAS is the most capable of sustaining cancer growth and development, which leads to greater pressure for cancer mutations of this particular isoform.
Research Question/Problem/ Need	What mutations create cancer, and how do they do so?
Important Figures	This figure shows the percentages of RAS mutations in difference cancers and the percent of where mutations happen in each RAS gene

VOCAB: (w/definition)	Isoforms: gene products that are similar but different in function or form
Cited references to follow up on	Gorfe AA, Grant BJ, McCammon JA. Mapping the nucleotide and isoform- dependent structural and dynamical features of Ras proteins. Structure. 2008;16(6):885–96.
Follow up Questions	Can RAS mutations be reversed in order to stop cancer? How do RAS proteins interact in cells? How do RAS proteins vary in structure? What are the different phenotypic responses, and how do they result in different cancers?

Article #2 Notes: Probability in forecasting

Source Title	Probabilistic forecasting - A Primer
Source citation (APA Format)	Doswell, C., & Brooks, H. (n.d.). Probabilistic forecasting - A Primer.Doi: https://www.nssl.noaa.gov/users/brooks/public_html/prob/Probability.html
Original URL	https://www.nssl.noaa.gov/users/brooks/public_html/prob/Probability. html
Source type	Online source
Keywords	Percent of precipitation
#Tags	#probability #forcasting #weather
Summary of key points + notes (include methodology)	This article describes how probability can be used to create polychotomous forecasts, more than two possible outcomes, and accurately predict dangerous weather: severe thunderstorms, tornados,

	etc. The website explains Bayes' theorem and how to forecast mutually
	related events: one event occurring depends on a certain event
	happening first. The article also mentions the importance of verifying
	the predictions made, which proves to be troublesome as it raises a lot
	of questions due to probabilistic forecasts having significantly more
	outcomes compared to dichotomous forecasts. Another issue that
	arrives when forecasting is the area and time period being forecasted. A
	large area with a large time period will have a near 100% forecast, while
	a small area and time period will be close to zero. Therefore, it is
	important to take into consideration the time and area of your forecast.
	For large amounts it should be attempted to pinpoint areas of high
	probability within our forecast area and period. If this is impossible, it is
	best to spread lower probabilities over a wide area. For small amounts
	climatology frequencies can be used. Climatology frequency uses past
	events for forecasting when there is little knowledge available. Finally,
	the article explains how to find the average probability of an event in the
	area we are forecasting, as events often don't happen in the entirety of
	the area. This is accomplished by splitting the forecast area into sub-
	areas, and averaging the probability of the event happening in the area.
	This also makes it easier to validate the forecast after the event
	happens. In summary, the article shows how mathematics can be used
	to predict seemingly unpredictable events, furthering our understanding
	of how mathematics and the world constantly interact.
Research	How can we use probability to predict seemingly unpredictable things
Question/Problem/ Need	like nature?

Important Figures	Forecast Area, A
	Diagram shows how events span across the forecasted area, showing a realistic description of how forecasting looks
VOCAB: (w/definition)	PoP- percent of precipitation Polychotomous – more than two possible outcomes Dichotomous – two outcomes
Cited references to follow up on	N/A
Follow up Questions	Can technology, like AI be used to make more accurate forecasts than humans? Can the forecasting reading technology be improved? Can we use forecasting to prevent human casualties before natural disastors?

Article #3 Notes: the Quantum Origin of the Greenhouse Effect With Carbon Dioxide

Source Title	Physicists Pinpoint the Quantum Origin of the Greenhouse Effect
Source citation (APA Format)	Howlett, J., Levin, J., Wolchover, N., & Savitsky, Z. (2024b, August 7). <i>Physicists pinpoint the quantum origin of the</i> <i>greenhouse effect</i> . Quanta Magazine. <u>https://www.quantamagazine.org/physicists-pinpoint-the-</u> <u>quantum-origin-of-the-greenhouse-effect-20240807/</u>
Original URL	https://www.quantamagazine.org/physicists-pinpoint-the-quantum- origin-of-the-greenhouse-effect-20240807/
Source type	News Article
Keywords	Carbon dioxide, greenhouse effect
#Tags	#chemistry #globalwarming #environment
Summary of key points + notes (include methodology)	This article talks about how carbon dioxide's quantum structure elevates carbon dioxide's ability to drive the greenhouse effect. The phenomenon in which carbon dioxide traps heat in Earth's atmosphere was discovered by Swedish physicist Svante Arrhenius in 1896. However, the physical reason why carbon dioxide behaves this way would remain unknown until recently. Carbon dioxide can absorb wavelengths slightly shorter or longer than 15 microns, though not as effectively as 15 microns. This range is atypical to other molecules in our atmosphere. When light gets absorbed, the molecule of carbon dioxide can either send it back to Earth or into space. The greenhouse effect is experienced when carbon dioxide sends absorbed light to Earth. Creating a logarithmic scale, as the number of molecules of carbon dioxide doubles, a two to five

	degree temperature rise of the Earth's temperature occurs. Carbon dioxide's unique contribution to global warming is due to its ability to absorb light within a range. A unique phenomenon called Fermi resonance explains that when a photon of 15-micron light is absorbed by carbon dioxide, the light sends the carbon atom swirling at the center point. When this energy of the first motion is doubled, another motion is formed where the two oxygen atoms bob towards and away from the carbon atom. When energy slightly more or less of the first motion is absorbed, hence the importance of carbon dioxide's ability to absorb wavelengths marginally shorter or longer of 15 microns, a new combined motion is created. When carbon dioxide experiences this combined motion, it releases the energy, creating the greenhouse effect. This explains the quantum mechanics behind carbon dioxide's contribution to global warming.
Research Question/Problem/ Need	How does Carbon dioxide contribute to the global warming effect?
Important Figures	N/A
VOCAB: (w/definition)	Microns: unit of measurement used for small molecules
Cited references to follow up on	N/A
Follow up Questions	Can energy be stopped from being absorbed by carbon dioxide? Can carbon dioxide be removed from the environment? Can carbon dioxide be binded with another molecule to prevent the movement mentioned in the article

Article #4 Notes:

Source Title	Genome-Editing Technologies: Principles and Applications
Source citation (APA Format)	Prior, I. A., Lewis, P. D., & Mattos, C. (2012). A comprehensive survey of RAS mutations in cancer. <i>Cancer Research</i> , 72(10), 2457– 2467. <u>https://doi.org/10.1158/0008-5472.can-11-2612</u>
Original URL	https://doi.org/10.1158/0008-5472.CAN-11-2612
Source type	Journal article
Keywords	Genome
#Tags	#biology #geneediting
Summary of key points + notes (include methodology)	Gene editing, the ability to modify genomic sequences, has expanded scientists' ability to conduct experiments and studies and promoted the possibility of gene therapy. This article studies three technologies that laid the foundation of gene editing: CRISPR-Cas9, TALE nucleases, and zinc-finger nucleases. This article contrasts these three methods and discusses the benefits and disadvantages of using each one. They do this by pulling data from failures and successes of the different types to identify their differences. Overall, CRISPR-Cas9 seemed to be the best as it had the lowest failing rate, best overall success, and the least amount of risk of harming the organism being edited on.
Research Question/Problem/ Need	How are gene editing technologies able to function?
Important Figures	Diagram showing how gene editing works on the molecular level with targeted nucleases

	Homing endonuclease 3' 2Inc-finger DNA-binding domain 5'-GNN-3' 5'-GNN-5' 6'-GNN-5' 6'-GNN-5
VOCAB: (w/definition)	Targeted nucleases – allows the editor to target specific areas
Cited references to follow up on	Burt A. 2003. Site-specific selfish genes as tools for the control and genetic engineering of natural populations. Proc Biol Sci 270: 921–928. [PMC free article] [PubMed] [Google Scholar] Chakraborty S, Ji H, Kabadi AM, Gersbach CA, Christoforou N, Leong KW. 2014. A CRISPR/Cas9-based system for reprogramming cell lineage specification. Stem Cell Rep 3: 940–947. [PMC free article] [PubMed] [Google Scholar]
Follow up Questions	How can these technologies be expanded upon to limit potential unwanted mutations? Is it ethical to use gene editing on humans even if it prevents deadly diseases? Can gene editing be used to fix mutations in cancerous cells?

Article #5 Notes: mycorrhizal networks communication

Source Title	Inter-plant communication through mycorrhizal networks mediates complex adaptive behaviour in plant communities
Source citation (APA Format)	Gorzelak, M. A., Asay, A. K., Pickles, B. J., & Gorzelak, S. W. (2015). Inter-plant communication through mycorrhizal networks mediates complex adaptive behaviour in plant communities . <i>AoB PLANTS, 7</i> . <u>https://doi.org/https://doi.org/10.1093/aobpla/plv050</u>
Original URL	https://doi.org/10.1093%2Faobpla%2Fplv050
Source type	Journal article
Keywords	Complex adaptive systems, ectomycorrhiza, forests, mycorrhizal networks, plant behaviour, plant communication
#Tags	#mycorrhizal networks
Summary of key points + notes (include methodology)	This article reviews how plants reaction to different stimuli effect the plants within its network. When plants experience stimuli such as nutrient enrichment, stress, etc., it will send out signaling molecules. These signalling molecules are received by connected plants, allowing them to react accordingly. This is important because it shows how plants rely on their relationships with other plants to survive. They did this by comparing data between different previous research to draw large conclusions about these networks. This is done with a fungi called Mycorrhizae, and these fungi have different classes that are preferred. For example, AMF or Arbuscular mycorrhizal fungi is dominate in temperate grasslands, tropical forests and agricultural systems.
Research Question/Problem/ Need	How do environmental stimuli effect signaling in mycorrhizal networks
Important Figures	This diagram shows the different reactions of plants to different stimuli

	This table provides data proving that the plants are reacting to the stimuli received in the network
VOCAB: (w/definition)	hub trees: central of the forest network allelochemical: chemical released by an organism that affects the growth and development of other organisms foliar : relating to leaves
Cited references to follow up on	Baleshta KE, Simard SW, Guy RD, Chanway CP. 2005. Reducing paper birch density increases Douglas-fir growth rate and Armillaria root disease incidence in southern interior British Columbia. <i>Forest Ecology</i> <i>and Management</i> 208:1–13. 10.1016/j.foreco.2004.07.076 Deslippe JR, Simard SW. 2011. Below-ground carbon transfer among <i>Betula nana</i> may increase with warming in Arctic tundra. <i>New</i> <i>Phytologist</i> 192:689–698. 10.1111/j.1469-8137.2011.03835.x
Follow up Questions	What are the best ways to model a mycorrhizal network? How do different environmental changes effect the rate at which the networks function? Is it possible for plants to send DNA through these networks?

Article #6 Notes: Carbon's effect on mycorrhizal networks

Source Title	Fungal nutrient allocation in common mycorrhizal networks is regulated by the carbon source strength of individual host plants
Source citation (APA Format)	Fellbaum, C., Mensah, J., Cloos, A., Strahan, G., Pfeffer, P., Kier, T., & Beucking, H. (2014). Fungal nutrient allocation in common mycorrhizal networks is regulated by the carbon source strength of individual host plants. <i>New Phytologist, 203,</i> 646–656. doi: 10.1111/nph.12827
Original URL	<u>10.1111/nph.12827</u>
Source type	Journal article
Keywords	arbuscular mycorrhizal, mutualism, fungus, Carbon
#Tags	#mycorrhizal networks #Carbon #CMNmodel
Summary of key points + notes (include methodology)	This article shows how carbon effects the symbiosis of plant networks. The used a chamber with mesh to prevent roots from moving, and they then gave 33p and 15n and measured their movements. Using isotopic analyses, they found that the result was that the plants with more carbon had more of the isotopes found.

Research Question/Problem/	How does the symbiosis of mycorrhizal networks change as the
Need	Plant's Carbon varies?
Need Important Figures	Plant s Carbon varies?Plant shade treatments1. NS 2. S 3. S2. S
VOCAB: (w/definition)	Symbiosis: when two plants benefit each other's survival Ammonium: modified form of ammonia that has an extra hydrogen atom Putative: generally considered or reputed to be
Cited references to follow up on	St-Arnaud M, Hamel C, Vimard B, Caron M, Fortin JA. 1996. Enhancedhyphal growth and spore production of the arbuscular mycorrhizal fungusGlomus intraradices in an in vitro system in the absence of host roots.Mycological Research 100: 328–332.Takanishi I, Ohtomo R, Hayatsu M, Saito M. 2009. Short-chain polyphosphatein arbuscular mycorrhizal roots colonized by Glomus spp.: a possible phosphatepool for host plants. Soil Biology & Biochemistry 41: 1571–1573.Tanaka Y, Yano K. 2005. Nitrogen delivery to maize via mycorrhizal hyphaedepends on the form of N supplied. Plant, Cell & Environment 28: 1247–1254.

How would this change as CO2 in the air changes? What is the rate that this occurs? Is this true for other fungi?

Patent #1 Notes: Using Networks in widescale farming.

Source Title	Application method of arbuscular mycorrhizal fungus in large-scale tobacco cultivation
Source citation (APA Format)	郭涛, 习向银. (2013). Application method of arbuscular mycorrhizal fungus in large-scale tobacco cultivation (China Patent No. CN103125251B). China Patent Agency. https://patents.google.com/patent/CN103125251B/en?q =(Mycorrhizal+fungi)&oq=Mycorrhizal+fungi
	https://patents.google.com/patent/CN103125251B/en?q=(Mycorrhizal+fungi)&oq=M ycorrhizal+fungi
Source type	patent
Keywords	Mycorrhizal networks, tobacco, farming cultivation
#Tags	#MN #farming #biology
Summary of key points + notes (include methodolo gy)	This patent is for a method where they took a MN and used it to improve tobacco to coerce environment adaptability, improve tobacco leaf middle and upper part ratio. The idea is that this would make farming easier and more efficient. They grew the fungi separately, then introduced it to the plants. One network was given a fungicide as the control. When they introduced different diseases, they found the plants with the MN had greater success in their desired categories listed above due to the plants with the MN always having greater nutrients with the diseases than without.

Research Question/P roblem/ Need	Can MN be u	ised in widesca	le farming to	improve th	ne cultivatio	n of plants.
Important	-			品质指标。		4
Figures	实施例。	接种处理-	施木克值。	糖碱比	钾氯比。	
	10	0.5:1:1e	1.89 ¢	13.19@	8.51÷	4
	20	0.8:1:10	1.960	13.26¢	9.26e	4
	3 e	1:1:1e	2.06¢	13.5 7 <i>e</i>	9.13	-
	: 4 e	不接种菌剂。	1.78+2	10.21.0	6 .57 <i>•</i>	This figure sows the
VOCAB: (w/definiti on)	*Chinese tra	0.5:1:1# 1 0.8:1:1# 1 1:1:1# 2 No inoculation 3 1 sows the quality included to MN anslation rhizal network	s		/here the fu	Ingi goes directly into the
		the action of i terial, microor	-	-	-	ease by introducing
Cited	王 发园, 石兆勇	勇, 徐晓锋, 常会房	ਞ, 苗艳芳 . (20	10). Metho	d for	
references		g heavy metal		•	-	
to follow		lar mycorrhiza).	
up on		47808B). China	-	-	700001 -	
	-	/patents.googl	-			
	q=(IVIyc	orrhizal+fungi)	&oq=iViycori	rnizai+tung	I	
	disease CN1026 https://p	义, 詹振寿, 王军. resistance of tol 13054A). China patents.google.c nizal+fungi)&oq:	bacco (China I Patent Agenc com/patent/C	Patent NO. y. N102613054	-	1

Follow up	Is using MN in farming ethical? Will it not potentially give benefits to weeds? Will this
Questions	ever be widely implicated with wide fear of GMOs. Can DNA be passed with a AMN

Article #7 Notes: Different horizontal gene transfer (HGT) methods plants use

Source Title	Horizontal gene transfer in the photosphere
Source citation (APA Format)	Van Elsas, J. D., Turner, S., & Bailey, M. J. (2003). Horizontal gene transfer in the phytosphere. <i>New Phytologist,</i> <i>157</i> (3), 525–537. <u>https://doi.org/10.1046/j.1469-</u> <u>8137.2003.00697.x</u>
Original url	https://doi.org/10.1046/j.1469-8137.2003.00697.x
Source type	Journal article
Keywords	Gene transfer, HGT, DNA, Bacteria, plant cells

#Tags	#genetransfer #HGT #DNA #biology				
Summary of key points + notes (include methodology)	This article went over the different ways that plants have been identified to perform HGT. Bacteria are able to form a mating pair formation with Plant cells. This conjugation gene transfer would allow bacteria to intake plant cell DNA, which could then be inserted into another cell. There are different factors that drive HGT: the environment must be good for bacteria colonization and mixing, otherwise the bacteria will be unable to transfer. They used evidence from other experiments to reach this conclusion.				
Research Question/Problem/ Need	What are the diffe DNA?	rent ways pla	int cells	s hori	izontally transfer
Important Figures	Species	Genomic component	Size (Mbp)	%GC	Accession number
important right co	Mesorhizobium loti MAFF 303099	Chromosome	7.0	62.7 ¹	NC_002678
	West mice with the with the second	pMLa	0.35	59.3	NC_002679
		pMLb	0.21	59.9	NC_002682
	Sinorhizobium meliloti 1021	Chromosome	3.7	62.7	- NC_003047
		pSymA	1.4	60.4	NC_003037
		pSymB ²	1.7	62.4	NC_003078
	Agrobacterium tumefaciens C58	Chromosome	2.8	59.4	NC_003062
		Linear chromosome	2.1	59.3	NC_003063
		pATC58	0.54	57.3	NC_003064
		pTiC58	0.21	56.7	NC_003065
	Brucella melitensis	Chromosome I	2.1	57	NC_003317
		Chromosome II	1.2	57	NC_003318
	Brucella suis	Chromosome I	2.1	57.2	NC_004310
		Chromosome II	1.2	57.3	NC_004311
	Ralstonia solanearum	Chromosome	3.7	67.0	NC_003295
	Summary of fu	Illy sequen	ced ge	eno	mes of plant-
	associated and	l other bac	teria		
VOCAB: (w/definition) Cited references to follow up on	HGT – horizonal g Conjugation - the unicellular organis enterobacteria - la Bailey ML Lilley A	temporary un sms for the ex arge family or	xchang f Gram	e of g -nega	genetic material.
cited references to follow up of					environment. In: JM

	Bullock, RE Kenward, RS Hail, eds. Dispersal ecology. Oxford, UK: Blackwell Publishing Ltd. Bale MJ, Fry JC, Day MJ. 1988. Novel method for studying plasmid transfer in undisturbed river epilithon. Applied and Environmental Microbiology 54: 2756 – 2758.
Follow up Questions	Can the bacteria then transfer that DNA back to a chosen plant cell? How can I control when the transfer happens? How can I control what is being transferred.

Patent #2 Notes: Different horizontal gene transfer (HGT) methods plants use

Source Title	USE OF SYNERGISTIC MICROORGANISMS AND NUTRIENTS TO PRODUCE SIGNALS THAT FACILITATE THE GERMINATION AND PLANT ROOT COLONIZATION OF MYCORRHIZAL FUNG IN PHOSPHORUS RICH ENVIRONMENTS
Source citation (APA Format)	Johnson, T. D. (2015). Use of synergistic microorganisms and nutrients to produce signals that facilitate the germination and plant root colonization of mycorrhizal fungi in phosphorus rich environments (U.S. Patent No. US9416061B2). U.S.

	Patent and Trademark Office. https://patents.google.com/patent/US 416061B2/en?q=(%22Mycor rhizal+fungi%22)&oq=%22Mycorrhizal +fungi%22 <u>https://patents.google.com/patent/US9416061B2/en?q=(%22Mycorrhizal+fungi%22</u>								
Source type	Patent	t							
Keywords	MN, m	nicroorganisms, bac	teria, J	ohos	phoru	s, nutrie	nts, s	synerg	ism
#Tags	#MN #	bacteria #biology							
Summary of key points + notes (include methodology)) Research Question/Pro	This project focuses on combining synergistic microorganisms to create signals that facilitate germination and plant root colonization of mycorrhizae fungi. The method patented, combinging phytate and microorganisms, trichoderma veriens fungus,bacillus amyloliquefaciens bacterium, and different mycorrhizae fungi placed so they colonize plant root, creates an effective association of MF with roots in phosphorous rich environments, improving soil aggregation and quality. They tested this invention with different Mycorrhizae propagules, to prove its effectiveness. (figure below) and found that their invention increased plant yield as they plants had more yield with it than without. <i>Arbuscular mycorrhizal fungi also have chemotaxic abilities which enable hyphal</i> <i>growth toward the roots of a potential host plant important info for project</i> How does the change in mycorrhizal fungi composition affect plant yield?								
blem/ Need			1						1
Figures	No.	Name	No Sta	rter	Rank	10-34-	0	Rank	
	1	СНК	121.05		7	135.37	cde	4]
	2	Myco IF	132.72	f	4	133.39	ef	5	
	3	Myco+T.V.+B.A. IF	129.22		6	127.77	g	7	
	4	Phytate IF	130.96		5	136.24	cde	3	
	5	Phytate+Myco IF	137.39		3	132.11	ef	6	
	6	Phytate+T.V.+B.A. IF	144.57		2	137.73	bcd	2	
	7	Phytate+Myco+T.V.+B.A. IF	147.44		1	146.39	a 2.475	1	
	LSD (P=			4.274			3.475		
		rd Deviation		4.822			3.921		
		cv 3.59 2.92 Shows what mycorrhizal fungi composition creates the biggest yield							

VOCAB: (w/definition)	Presymbiosis - the development of arbuscular mycorrhizal fungi prior to root colonization Synergistic - the microbial interaction in which both or all the microbial population involved gets benefitted, by supporting each other's growth and proliferation
Cited references to follow up on	Afek et al. Mycorrhizal species.root age-position of Mycorrhizal inoculum influence colonization of cotton.onion, pepper seedlings. J.Amer.Soc. Hort.Sci. 1990.938-942. 115(6).
Follow up Questions	How should I change my mycorrhizal fungi composition to get the best rate of transfer? What mycorrhizal fungi composition would be able to transfer DNA? In what other ways does the mycorrhizal fungi composition affect a plant?

Article #8 Notes: Nitrogen allocation effects on MN

Source Title	Greater carbon allocation to mycorrhizal fungi reduces tree nitrogen uptake in a boreal forest
Source citation (APA Format)	Hasselquist, N. J., Metcalfe, D. B., Inselsbacher, E., Stangl, Z., Oren, R., Näsholm, T., & Högberg, P. (2016). Greater carbon allocation to mycorrhizal fungi reduces tree nitrogen uptake in a boreal forest. <i>Ecology</i> , <i>97</i> (4), 1012– 1022. <u>https://doi.org/10.1890/15-1222.1</u>
Original url	https://doi.org/10.1890/15-1222.1

Source type	Journal article					
Keywords	ectomycorrhizal, symbioses, MN, nutrients transfer, EM					
#Tags	#MN #Symbioses #nutientstransfer					
Summary of key points + notes (include methodology)	It is commonly assumed that MN gives N based on the amount of carbon that the host gives to the fungi. This study used large- scale shading treatment to reduce C supply, and gave 3 different levels of N with ${}^{15}NO_{3}$ - to see how the different N amounts would affect the transfer of N. They found that the amount of Nitrogen given to the MF effected the amount of Nitrogen transferred to the plant, as the isotopic analysis showed a greater amount of N when the N nutrients given was greater.					
Research Question/Problem/ Need	Does the transfer of nitrogen depend on the amount of carbon and nitrogen available to the MN?					
Important Figures	This figure shows how the amount given to the fungichanges the amount of nitrogen transferred.					
VOCAB: (w/definition)	MN – Mycorrhizal network EM - ectomycorrhizal symbioses					

	Ectomycorrhizal symbioses - a ubiquitous plant-fungus interaction in forests, evolved in parallel in fungi mor-layer - forest humus that forms a layer of largely organic matter distinct from the mineral soil beneath Perfusate - a fluid used in perfusion. MF - Mycorrhizal fungi
Cited references to follow up on	Albarracin, M. V., J. Six, B. Z. Houlton, and C. S. Bledsoe. 2013. A nitrogen fertilization field study of carbon-13 and nitrogen-15 transfers in ectomycorrhizas of <i>Pinus</i> <i>sabiniana</i> . <i>Oecologia</i> 173 : 1439–1450. Bahr, A., M. Ellström, C. Akselsson, A. Ekblad, A. Mikusinska, and H. Wallander. 2013. Growth of ectomycorrhizal fungal mycelium along a Norway spruce forest nitrogen deposition gradient and its effect on nitrogen leakage. <i>Soil Biology & Biochemistry</i> 59 : 38–48 Alberton, O., and T. W. Kuyper. 2009. Ectomycorrhizal fungi associated with Pinus sylvestris seedlings respond differently to increased carbon and nitrogen availability: implications for ecosystem responses to global change. Global Change Biology 15: 166–175.
Follow up Questions	Would this explain the insignificantly different data found in the article 'Fungal nutrient allocation in common mycorrhizal networks is regulated by the carbon source strength of individual host plants'? How would this work for other nutrients? Does the amount of nitrogen effect other plants in the network?

Article #9 Notes: Using MN networks in farming

Source Title	Is there a role for arbuscular mycorrhizal fungi in production agriculture?
Source citation (APA Format)	Ryan, M. H., & Graham, J. H. (2002). Is there a role for arbuscular mycorrhizal fungi in production agriculture? <i>Plant and Soil, 244</i> (1/2), 263–271. <u>https://doi.org/10.1023/a:1020207631893</u>
Original url	https://doi.org/10.1023/a:1020207631893
Source type	Journal article

Keywords	AMF, plant growth, nutrients, AM colonisation, farming		ing					
#Tags	#AMF #	#AMF #MN #farming #nutrients						
Summary of key points + notes (include methodology)	This article argues that AMF does not greatly affect nutrition and growth of plants in production-orientated agricultural systems. They did this by taking different studies drawn that have proven high AMF effect, and stated different reasons that would have lead to this conclusion. They then went over the structure of AMF and why it wouldn't work within the context of the experiment, and they generally hypothesized that nutrients levels effect nutrients intake much more than AMF. They also generally hypothesized that AMF effects are being over estimated due to use of field-based case studies, which would result in environment effecting results. They concluded that while AMF effect nutrients and growth, it is not to the degree that has been previously though.			tural on that sons that ver the context nat in AMF. being which included				
Research Question/Problem/ Need	Does arbuscular mycorrhizal fungi effect the nutrition and growth of plants in production-orientated agricultural systems?							
Important Figures		Pre-treatment	Fertiliser P (kg ha ⁻¹)	AMF* (%)	Shoot biomass* (t ha ⁻¹)	Shoot P* (kg ha ⁻¹)	Yield (t ha ⁻¹)	Grain Zn (mg kg ⁻¹)
	Wheat	Long fallow Linola	None None	46 65	0.95 0.94	2.0 2.1	3.3 2.9	21 28
		Long fallow Linola	20 20	12 25	2.42 1.98	6.6 6.6	4.8 4.9	14 18
			LSD _{0.05}	13	0.40	1.4	0.5	2
	Field pea	Long fallow Linola	None None	18 41	0.40 0.45	1.1 1.3	2.1 2.0	26 35
		Long fallow Linola	20 20	5 10	0.80 0.80	3.9 3.2	3.0 3.4	20 24
			LSD _{0.05}	14	0.14	0.6	0.6	2
	This fig	gure sho	ws the e	effect	that per	cent of	AMF h	nas on
VOCAB: (w/definition)	AMF - arbuscular mycorrhizal fungi CMN – common mycorrhizal fungi dazomet fumigant - soil fumigant that acts as a herbicide, fungicide, slimicide, and nematicide Colonization- fungi growth							
Cited references to follow up on	Thompson J P 1987 Decline of vesicular-arbuscular mycorrhizas in long fallow disorder of field crops and its expression in phosphorus deficiency in sunflower. Aust. J. Agric. Res. 38, 847– 867.							

Follow up Questions	Are there any studies proving this to be true via experiments? If true, how will this effect my experiment? Is this also true of CMN?
	Miller R M and Jastrow J D 2000 Mycorrhizal fungi influence soil structure. In Arbuscular Mycorrhizas: Physiology and Function. Eds. Y Kapulnik and D D Douds. pp. 3–18. Kluwer, Dordrecht.
	Thingstrup I, Rubæk G, Sibbesen E and Jakobsen I 1998 Flax (Linum usitatissimum L.) depends on arbuscular mycorrhizal fungi for growth and P uptake at intermediate but not high soil P levels in the field. Plant Soil 203, 37–46.

Article #10 Notes: CRISPR use in plants

Source Title	Application of CRISPR/Cas9-mediated gene editing for the development of herbicide-resistant plants
Source citation (APA Format)	Han, YJ., & Kim, JI. (2019). Application of CRISPR/Cas9- mediated gene editing for the development of herbicide- resistant plants. <i>Plant Biotechnology Reports, 13</i> (5), 447– 457. <u>https://doi.org/10.1007/s11816-019-00575-8</u>
Original url	https://doi.org/10.1007/s11816-019-00575-8
Source type	Journal article
Keywords	CRISPR/Cas9 Gene editing Genome engineering Herbicide tolerance Crop improvement
#Tags	#geneediting #Crispr #farming #herbideresistance
Summary of key points + notes (include methodology)	This article went through the different benefits of using genetically engineering. By genetically engineering farm plants to be resistant to the herbicide, it allows farmers to kill the weeds while allowing the plants to live. This article hypothesized several potential gene editing, CESA3 and SF3B1, that could be used to kill weeds. They tested this out by editing these genes in the plants (to make them HR) and then giving a non edited and an edited one herbicides. They found their hypothesis to be proven to be correct as the HR plants survived while the weeds died.

	Can herbicide resistance be used to increase farming						
Need	productiv						
Important Figures	Herbicide	Gene	Gene product	Сгор			
	2,4-D ^b	AAD-1	Aryloxyalkanoate dioxygenase-1 from Delftia acidovorans	Maize, soybean			
	Dicamba ^c DMO		Dicamba monooxygenase from Stenotrophomonas maltophilia strain DI-6	Soybean			
	Glufosinate	BAR	Bialaphos resistance gene from Streptomyces hygroscopicus	Canola, chicory, cotton, maize, rice, soybean			
		PAT	Phosphinothricin N-acetyltransferase from Streptomyces viridochromogenes	Canola, cotton, maize, soybean, sugar beet			
	Oxynil	BXN	Bromoxynil nitrilase from Klebsiella pneumoniae subsp. ozaenae	Canola, cotton, tobacco			
	Glyphosate	GAT4601	Glyphosate N-acetyltransferase from Bacillus licheniformis	Canola, Maize			
		CP4EPSPS	An herbicide tolerant form of 5- enolpyruvylshikimate-3-phosphate synthase (EPSPS) from Agrobacterium tumefaciens strain CP4	Alfalfa, canola, cotton, creeping bentgrass, maize, potato, soybean, sugar beet, wheat			
		2MEPSPS	A double mutant version (T102I/P106S) of EPSPS from Zea mays	Cotton, maize, soybean			
		MEPSPS	A modified EPSPS (two amino acid substitutions) from Zea mays	Maize			
	Isoxaflutole	HPPDPF W336	A modified (G336W) p- hydroxyphenylpyruvate dioxygenase (HPPD) from Pseudomonas fluorescens strain A32	Cotton, soybean			
	Mesotrione	AvHPPD- 03	An HPPD isozyme (missing A111) from Avena sativa (AvHPPD)	Soybean			
	Sulfonylurea	SURB	A mutant (P196A/W573L) of Acetolactate synthase (ALS) on locus SuRB from Nicotiana tabacum	Carnation			
	Currently known HR plants						
	HR- herbicide-resistant deregulation - the removal of regulations or restrictions, especially in a particular industry.						
	Ma X, Zhu Q, Chen Y, Liu YG (2016) CRISPR/Cas9 platforms for genome editing in plants: developments and applications. Mo Plant 9:961–974						
	Li J, Meng XB, Zong Y, Chen KL, Zhang HW, Liu JX, Li JY, Gao CX (2016) Gene replacements and insertions in rice by intron targeting using CRISPR-Cas9. Nat Plants 2:16139 Li Z, Liu ZB, Xing A, Moon BP, Koellhoffer JP, Huang L, Ward RT, Clifton E, Falco SC, Cigan AM (2015) Cas9-guide RNA directed genome editing in soybean. Plant Physiol 169:960–970						
	What are the potential risks of using gene editing? Would people want to use GMO's? Could I relate my project to farming benefits?						

Article #11 Notes: Mycorrhizal responses to nitrogen fertilization in boreal ecosystems

Source Title	Mycorrhizal responses to nitrogen fertilization in boreal ecosystems: potential consequences for soil carbon storage
Source citation (APA Format)	Treseder, K. K., Turner, K. M., & Mack, M. C. (2006). Mycorrhizal responses to nitrogen fertilization in boreal ecosystems: Potential consequences for Soil Carbon Storage. <i>Global</i> <i>Change Biology</i> , <i>13</i> (1), 78–88. <u>https://doi.org/10.1111/j.1365-2486.2006.01279.x</u>
Original url	https://doi.org/10.1111/j.1365-2486.2006.01279.x
Source type	Article
Keywords	Mycorrhizal Fungi Nitrogen Fertilization Boreal Ecosystems Soil Carbon Storage Carbon Cycling Arbuscular Mycorrhizal Fungi (AMF)
#Tags	#AMF #MN #boreal #nutrients #moleculetrasfer
Summary of key points + notes (include methodology)	 They used several boreal forest sites on Alaska and treated them to N fertilization, some left without as controls Findings Increase glomalin levels lead to reduction of 50 g C m⁻² in total mycorrhizal carbon pools

	 Increased the abundance of root AM structures across all sites, with large increase ECM structures, however no effect on soil AM hyphae Carbon sequestering was modest compared to that in glomalin> glomalin significant in soil carbon storage
Research Question/Problem/ Need	How will the abundance of mycorrhizal fungi and glomalin change under N fertilization in boreal ecosystems.
Important Figures	The second set up)
VOCAB: (w/definition)	hyphal - filamentous structures that make up fungi glomalin - glycoprotein, or sugar-protein compound, that's produced by arbuscular mycorrhizal fungi in soil and plant roots boreal ecosystems - a large, northern forest biome
Cited references to follow up on	Driver, J. D., Holben, W. E., & Rillig, M. C. (2005). Characterization of glomalin as a hyphal wall component of arbuscular mycorrhizal fungi. <i>Soil Biology and</i>

	 Biochemistry, 37(1), 101–106. https://doi.org/10.1016/j.soilbio.2004.06.011 Friese, C. F., & Allen, M. F. (1991). The spread of VA mycorrhizal fungal hyphae in the soil: Inoculum types and external hyphal architecture. <i>Mycologia, 83</i>(4), 409–418. https://doi.org/10.1080/00275514.1991.12026030 Klironomos, J., Rillig, M., Allen, M., Zak, D., Kubiske, M., & Pregitzer, K. (1997a). Soil fungal-arthropod responses to populus tremuloides grown under enriched atmospheric CO2 under field conditions. <i>Global Change Biology, 3</i>(6), 473–478. <u>https://doi.org/10.1046/j.1365-2486.1997.00085.x</u>
Follow up Questions	How would Glomalin work on plants not within a boreal forest? Would nitrogen fertilization improve this with all types of AM fungi? Was there any change in the structures of the fungi across the stages or site conditions

Article #12 Notes: Populus tremuloides with CO 2 under field conditions

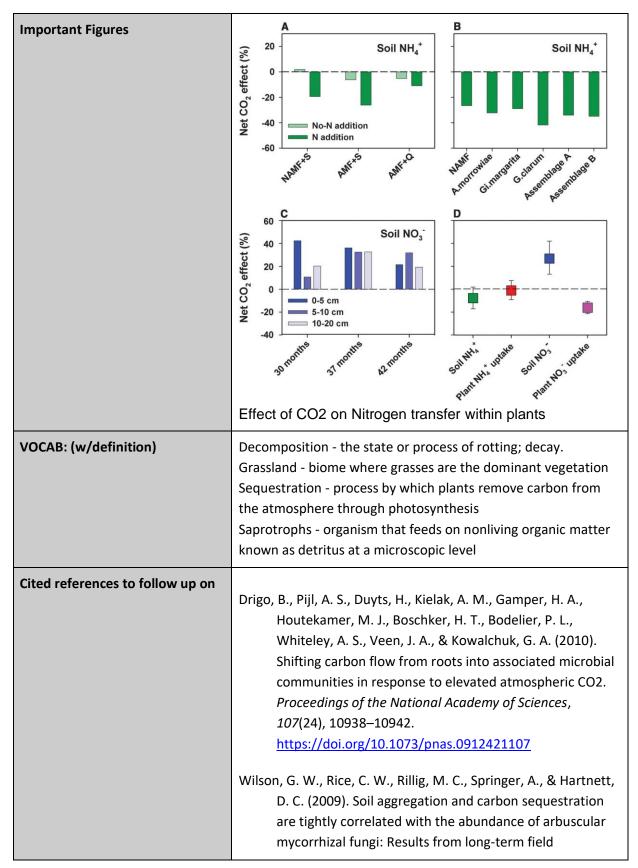
Source Title	Soil fungal-arthropod responses to Populus tremuloides grown under enriched atmospheric CO 2 under field conditions
Source citation (APA Format)	Klironomos, J., Rillig, M., Allen, M., Zak, D., Kubiske, M., & Pregitzer, K. (1997a). Soil fungal-arthropod responses to populus tremuloides grown under enriched atmospheric CO2 under field conditions. <i>Global Change Biology</i> , <i>3</i> (6), 473–478. <u>https://doi.org/10.1046/j.1365-</u> 2486.1997.00085.x

Original url	https://doi.org/10.1046/j.1365-2486.1997.00085.x
Source type	Article
Keywords	Soil Fungi Arthropod Communities Elevated CO₂ Field Conditions Fungal Hyphae Soil Respiration
#Tags	#mycorrhizal networks #Carbon #CMNmodel
Summary of key points + notes (include methodology)	 Took populus tremuloides and grew under two conditions ambient CO2 and elevated CO2. They then put in two different N treatments (limited N and enriched N) into the soil. They measured nutrient levels as well as plant and fungi growth. Findings Low N Elevated CO2 increased hyphal length by 77% for AM fungi High N Reduced AMF by 71%, but more research found that they opposite relationship was true for non mycorrhizal fungi
Research Question/Problem/ Need	What is the influence of elevated CO2 and soil N availability on the growth of arbuscular mycorrhizal and non-mycorrhizal fungi, and on the number of mycophagoussoil microarthropods associated with the roots of Populus tremuloides?
Important Figures	$ \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$

	Effect of CO2 and N amount on the hyphae length of fungi
VOCAB: (w/definition)	 Arbuscular Mycorrhizal Fungi: A type of symbiotic fungi that form associations with plant roots, facilitating nutrient exchange (e.g., phosphorus) and receiving carbon from the host plant. Hyphal Length: A measure of the total length of fungal filaments (hyphae) in a given volume of soil, reflecting fungal growth and activity. Priming Effect: A phenomenon where increased microbial or fungal activity accelerates the decomposition of soil organic matter, potentially releasing stored carbon.
Cited references to follow up on	 Oves, M., Hussain, F. M., Ismail, I. M. I., Felemban, N. M., & Qari, H. A. (2017). Microbiological carbon sequestration. Advances in Environmental Engineering and Green Technologies, 108–133. https://doi.org/10.4018/978-1-5225-2325-3.ch005 Bonito, G., Hameed, K., Ventura, R., Krishnan, J., Schadt, C. W., & Vilgalys, R. (2016). Isolating a functionally relevant guild of fungi from the root microbiome of populus. Fungal Ecology, 22, 35–42. https://doi.org/10.1016/j.funeco.2016.04.007 Reddy, P. P. (2014). Impacts on plant pathogens. Climate Resilient Agriculture for Ensuring Food Security, 151–177. https://doi.org/10.1007/978-81-322-2199- <u>9_8</u>
Follow up Questions	Why did AM increase hyphal length under low N and high CO2? What drives this relationship? How does the reduction of the hyphal length affect the rest of the system? How does it affect the livelihood of the fungi?

Article #13 Notes: Mycorrhizae with quantity of carbon allocated below ground changing

Source Title	Mycorrhizae alter quality and quantity of carbon allocated below ground
Source citation (APA Format)	Rygiewicz, P. T., & Andersen, C. P. (1994). Mycorrhizae alter quality and quantity of carbon allocated below ground. <i>Nature, 369</i> (6475), 58–60. <u>https://doi.org/10.1038/369058a0</u>
Original url	https://doi.org/10.1038/369058a0
Source type	Article
Keywords	Mycorrhizae Carbon Allocation Below-Ground Carbon Fungal Hyphae Carbon Quality Root-Fungal Symbiosis Soil Organic Carbon Glomalin
#Tags	#mycorrhizal networks #Carbon #CMNmodel #Glomalin
Summary of key points + notes (include methodology)	 Used colonized and non-colonized plants exposed to CO2 with 13C and then measured the carbon in above ground biomass and below ground Findings Plants have more C allocation to below ground biomass (especially the roots and fungal hyphae) Leads to increase below ground respiration and reduction of C above ground


Research Question/Problem/ Need	ra sc o N al st	bil) Nycorrhizal in Iocation belo corage Nycorrhizae a zal associatio	rates (effe fluence qu ow ground re influenc	ects reten antity of o impacting ced by CO2	tion time C in carbon g soil carbon 2
Important Figures	Fraction Total plant Above ground Total Bud and stem Needles Below ground Total Roots (host) Active hyphae† Coarse roots Fine roots (host) Active hyphae Values are means of data of ¹⁴ C allocation individual seedling rel radiosotope assimilat n.p., Not present. † See Fig. 2 legend Fraction of dry w carbon in the ne	to fractions and ative activity valu on by needles. A for estimates of h veights and	ht (mg) 1,878* 868* 238 630 1,010 910*** 100*** 741** 169 100*** 100*** were calculate the respective was then still statistical com-	(Bq ¹⁴) Resp 50.0 27.0 Rem 15.3 15.3 15.3 n.p. 14.6 16.9 n.p. d using indivi re fraction dr andardized to priventions are n ectomycorrh	y weight. The 10 ⁵ Bq total e as in Fig. 2. izal root tips.
VOCAB: (w/definition)	Hyphae - each of mycelium of a fun Allocation - the ac Assimilation - mov Respiration - cher	gus. ction or proce vement of dig	ess of distr gested foo	ibuting so d into cell	mething. s
Cited references to follow up on	global fores	non, A. M., B sniewski, J. (: st ecosystems org/10.1126	1994). Carl s. <i>Science</i> ,	bon Pools <i>263</i> (5144)	and flux of), 185–190.

	 Paul, E. A., & Kucey, R. M. (1981). Carbon flow in plant microbial associations. <i>Science</i>, <i>213</i>(4506), 473–474. <u>https://doi.org/10.1126/science.213.4506.473</u> Rygiewicz, P. T., Miller, S. L., & Durall, D. M. (1988). A root-mycocosm for growing ectomycorrhizal hyphae apart from host roots while maintaining symbiotic integrity. <i>Plant and Soil</i>, <i>109</i>(2), 281–284. <u>https://doi.org/10.1007/bf02202096</u>
Follow up Questions	Is there a CO2 level where this relationship because worse for the relationship? How does this relationship affect the environment indirectly (outside of the plants and fungi)? Are specific types of Mycorrhizal fungi more responsive to CO2?

Article #14 Notes: How arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2

Source Title	Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2
Source citation (APA Format)	Cheng, L., Booker, F. L., Tu, C., Burkey, K. O., Zhou, L., Shew, H. D., Rufty, T. W., & Hu, S. (2012). Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2. <i>Science</i> , <i>337</i> (6098), 1084–1087. <u>https://doi.org/10.1126/science.1224304</u>

Original url Source type	https://doi.org/10.1126/science.1224304 Article
Keywords	Arbuscular Mycorrhizal Fungi (AMF) Elevated CO₂ Organic Carbon Decomposition Soil Carbon Dynamics Priming Effect Carbon Allocation Photosynthate Transfer
#Tags	#mycorrhizal networks #CO2
Summary of key points + notes (include methodology)	 Control experiment with or without AM fungi inoculation. Plants were in growth chambers, one at ambient CO2 and one at elevated CO2, isotope 13C used). They measured Root colonization + hyphal length, soil respiration, and microbial biomass of soil carbon Findings Elevated CO2 levels increased the activity of AM, leading to more colonization of plant roots and hyphal network expansion Elevated CO2 levels resulted in more soil carbon losses
Research Question/Problem/ Need	How does elevated CO2 affect AM fungi in relation to soil carbon decomposition.

	experiments. <i>Ecology Letters, 12</i> (5), 452–461. <u>https://doi.org/10.1111/j.1461-0248.2009.01303.x</u>
	 Hodge, A., & Fitter, A. H. (2010). Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N Cycling. <i>Proceedings of</i> <i>the National Academy of Sciences</i>, 107(31), 13754– 13759. <u>https://doi.org/10.1073/pnas.1005874107</u>
Follow up Questions	Does C exchange benefit the plant or the fungi greater? How can soil carbon decomposition be elevated? What mechanism in AM lead to this happening?

Article #15 Notes: mycorrhizal fungi and transferring carbon between plants.

Source Title	The fungus does not transfer carbon to or between roots in an arbuscular mycorrhizal symbiosis
Source citation (APA Format)	Pfeffer, P. E., Douds, D. D., Bücking, H., Schwartz, D. P., & Shachar-Hill, Y. (2004). The fungus does not transfer carbon to or between roots in an arbuscular mycorrhizal symbiosis. <i>New Phytologist</i> , <i>163</i> (3), 617–627. <u>https://doi.org/10.1111/j.1469-8137.2004.01152.x</u>
Original url	https://doi.org/10.1111/j.1469-8137.2004.01152.x
Source type	Article
Keywords	Arbuscular Mycorrhizal Fungi (AMF) Carbon Allocation Plant-Fungal Symbiosis Root Colonization Fungal Networks Carbon Flow

#Tags	#mycorrhizal networks #Carbon #CMNmodel #CO2	
Summary of key points + notes (include methodology)	 Plants grown with or without fungi, connected two plants with AM relationship, plants were then given 13C and isotopic analysis was used to identify carbon in fungi, soil, or plants Findings They were unable to find significant movement of the C between the two plants, or the fungi and the neighboring plant They were unable to detect any 13C in the neighboring plants, but did in the fungi This shows that AM symbiosis does not do carbon transfer between plants, just uptakes for itself 	
Research Question/Problem/ Need	Does AM f symbiosis facilitate transferring carbon between connected plants	
Important Figures	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	
	C content after roots receive glucose	
VOCAB: (w/definition)	Medium - a substance that can transmit energy or light from one place to another fatty acids - chain-like molecules that make up fat in the body and food Biosynthetic metabolic pools - collective term for all of the substances involved in the metabolic process in a biological system	

Cited references to follow up on	 Bago, B., Pfeffer, P. E., Abubaker, J., Jun, J., Allen, J. W., Brouillette, J., Douds, D. D., Lammers, P. J., & Shachar- Hill, Y. (2003). Carbon export from arbuscular mycorrhizal roots involves the translocation of carbohydrate as well as lipid. <i>Plant Physiology</i>, <i>131</i>(3), 1496–1507. <u>https://doi.org/10.1104/pp.102.007765</u> Bago, B., Pfeffer, P. E., Douds, D. D., Brouillette, J., Bécard, G., & Shachar-Hill, Y. (1999). Carbon metabolism in spores of the arbuscular mycorrhizal fungus glomus intraradices as
	revealed by nuclear magnetic resonance spectroscopy. <i>Plant Physiology</i> , <i>121</i> (1), 263–272. <u>https://doi.org/10.1104/pp.121.1.263</u> Bidartondo, M. I., Redecker, D., Hijri, I., Wiemken, A., Bruns, T. D., Domínguez, L., Sérsic, A., Leake, J. R., & Read, D. J. (2002). Epiparasitic plants specialized on arbuscular mycorrhizal fungi. <i>Nature</i> , <i>419</i> (6905), 389–392. <u>https://doi.org/10.1038/nature01054</u>
Follow up Questions	How does this affect the carbon symbiosis hypothesis I am researching? Does this carbon flow vary with fungi type? Could environmental conditions play a role in whether carbon is transferred or not?

Article #16 Notes: Transfer of carbon between plants connected with AM

Source Title	Direct transfer of carbon between plants connected by vesicular–arbuscular mycorrhizal mycelium.
Source citation (APA Format)	Francis, R., & Read, D. J. (1984). Direct transfer of carbon between plants connected by vesicular—arbuscular

	mycorrhizal mycelium. <mark>Nature, 307</mark> (5946), 53–56. https://doi.org/10.1038/307053a0
Original url	https://doi.org/10.1038/307053a0
Source type	Article
Keywords	Carbon Transfer Mycorrhizal Networks Root Interconnections Plant-Fungal Symbiosis Photosynthate Allocation Isotope Labeling Common Mycorrhizal Networks (CMNs)
#Tags	#mycorrhizal networks #Carbon #CMNmodel #CO2
Summary of key points + notes (include methodology)	 Two plants (donor and recipient) grown in same pots and colonized with fungi; control same expect no fungi. The Donor plant was given 14C through CO2. Isotopic radiation was used to see how much caron transferred Findings 14C was detected in the receiving plants in the experimental not in the control This shows that carbon can be transfer between plans in a network
Research Question/Problem/ Need	Can carbon be transferred between plants in a mycorrhizal relationship?
Important Figures	EP An PP PR

	Picture of fungi connecting with the roots of a plant
VOCAB: (w/definition)	Irradiation - the apparent extension of the edges of an illuminated object seen against a dark background. source-sink - location where resources are taken up or synthesized and used Inoculum - a substance used for inoculation. Autoradiographs - image on an X-ray film or nuclear emulsion produced by the pattern of decay emissions from a distribution of a radioactive substance
Cited references to follow up on	 Heap, A. J., & Newman, E. I. (1980). The influence of vesicular- arbuscular mycorrhizas on phosphorus transfer between plants. <i>New Phytologist</i>, <i>85</i>(2), 173–179. https://doi.org/10.1111/j.1469-8137.1980.tb04458.x Chiariello, N., Hickman, J. C., & Mooney, H. A. (1982). Endomycorrhizal role for interspecific transfer of phosphorus in a community of annual plants. <i>Science</i>, <i>217</i>(4563), 941–943. https://doi.org/10.1126/science.217.4563.941 Cavagnaro, T., Gao, L., Smith, F., & Smith, S. (2001). Morphology of arbuscular mycorrhizas is influenced by fungal identity. <i>New Phytologist</i>, <i>151</i>(2), 469–475. https://doi.org/10.1046/j.0028-646x.2001.00191.x
Follow up Questions	What factors affect the magnitude and direction of the transfer? Does carbon affect the recipient plant? How does carbon transfer differ from other molecular transfer?

Article #17 Notes: effects of CO2 on mycorrhizal colonization

Source Title	Effect of elevated atmospheric CO2 on mycorrhizal colonization, external mycorrhizal hyphal production and phosphorus inflow in Plantago lanceolata and Trifolium repens in association with the arbuscular mycorrhizal fungus Glomus mosseae
Source citation (APA Format)	Staddon, P. L., Fitter, A. H., & Graves, J. D. (1999). Effect of elevated atmospheric CO2 on mycorrhizal colonization, external mycorrhizal hyphal production and phosphorus inflow in plantago lanceolata and trifolium repens in association with the arbuscular mycorrhizal fungus Glomus Mosseae. <i>Global Change Biology</i> , <i>5</i> (3), 347–358. <u>https://doi.org/10.1046/j.1365-2486.1999.00230.x</u>
Original url	https://doi.org/10.1046/j.1365-2486.1999.00230.x
Source type	Article
Keywords	Elevated CO₂ Arbuscular Mycorrhizal Fungi (AMF) Glomus mosseae
	Mycorrhizal Colonization External Hyphal Production Phosphorus Inflow
#Tags	Mycorrhizal Colonization External Hyphal Production

Research Question/Problem/ Need	 find this data to be insignificant and do to plant size then direct CO2 effect Root phosphorous remained unchanged CO2 promotes plant growth but does not affect the relationship between the fungi and the plants. 			
Important Figures				
	elevated CO ₂ treatment effect			_
		Covariate	<i>p</i> -value	Direction
	Total plant DW	age	**	increase
	Shoot DW	age	**	increase
	Root DW	age	***	increase
	Root length	age	**	increase
	Specific root length (SRL)	age	NS	NA
	SRL	total plant DW	NS	NA
	Root DW	shoot DW	NS	NA
	Root DW	total plant DW	NS	NA
	CO2 effect on plant g	growth		
VOCAB: (w/definition)	Covariate - a variable that is related to a dependent variable and can be used to predict or explain it Nonparametric - a type of statistical analysis that makes few or no assumptions about the distribution of the data being studied Sequential - forming or following in a logical order or sequence air turbulence - when air flows in a chaotic or random way, rather than smoothly in one direction gas analyzer - scientific devices that measure the concentration of a particular gas in a mixture of multiple gases			
Cited references to follow up on	Emery, S. M., Bell-Dereske, L., Stahlheber, K. A., & Gross, K. L. (2022a). Arbuscular mycorrhizal fungal community responses to drought and nitrogen fertilization in switchgrass stands. <i>Applied Soil Ecology</i> , <i>169</i> , 104218. <u>https://doi.org/10.1016/j.apsoil.2021.104218</u>			

Follow up Questions	What was the difference identified between the two plant
	types? What would account for this? What plants are best
	when experimenting on nutrient transfer with AM fungi?

Article #18 Notes: Mycorrhizal response to nutrients and CO2 variation

Source Title Source citation (APA Format)	A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies Treseder, K. K. (2004). A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. <i>New Phytologist</i> , <i>164</i> (2), 347–355. <u>https://doi.org/10.1111/j.1469-8137.2004.01159.x</u>
Original url	https://doi.org/10.1111/j.1469-8137.2004.01159.x
Source type	Article
Keywords	Meta-Analysis Mycorrhizal Fungi Nitrogen Deposition Phosphorus Addition Elevated CO₂ Field Studies Nutrient Cycling Plant-Fungal Symbiosis
#Tags	#mycorrhizal networks #Carbon #CMNmodel #CO2 #N #P
Summary of key points + notes (include methodology)	 Conducted literary search and analysis to examine the effects of N and P additions as well as elevated CO2 on the AM fungi Findings Nitrogen additions

	 Fungi abundance decreased by 15% following nitrogen addition Suggests increasing nitrogen availability may reduce plants reliance on mycorrhizal relationship for nutrients Phosphorus audients No significant effect found Not a limiting factor on fungi Elevated CO2 Average increase of 47% in abundance for elevated CO2 May enhance plant carbon allocations, strengthening symbiotic relationships. 	
Research Question/Problem/ Need	How do different factors (N, P, and elevated CO2) affect mycorrhizal abundance?	
Important Figures	Responce of plants in relationship compared to that with CO2 and ones without	
VOCAB: (w/definition)	Sporocarps - structures that produce and release spores in a variety of organisms, including fungi, aquatic ferns, and amoebozoans Abundance - a very large quantity of something meta-analyses - a statistical method that combines data from multiple studies to draw conclusions about a common research question	

	Omitted - leave out or exclude (someone or something), either intentionally or forgetfully Nitrate - a compound of nitrogen and oxygen naturally found in air, soil, water, and some food
Cited references to follow up on	 Cornwell, W. K., Bedford, B. L., & Chapin, C. T. (2001). Occurrence of arbuscular mycorrhizal fungi in a phosphorus-poor wetland and mycorrhizal response to phosphorus fertilization. <i>American Journal of Botany</i>, <i>88</i>(10), 1824–1829. <u>https://doi.org/10.2307/3558359</u> Lukac, M., Caleapietra, C., & Godbold, D. L. (2003). Production, turnover and mycorrhizal colonization of root systems of three populus species grown under elevated co2 . <i>Global Change Biology</i>, <i>9</i>(6), 838–848. <u>https://doi.org/10.1046/j.1365-2486.2003.00582.x</u> Poorter, H. (1993). Interspecific variation in the growth response of plants to an elevated ambient CO2 concentration. <i>CO2 and Biosphere</i>, 77–98. <u>https://doi.org/10.1007/978-94-011-1797-5_6</u>
Follow up Questions	Why does N reduce abundance? Is it only do to plants having access to N on its own? Why is this effect not

Article #19 Notes: Fungi and plant response to CO2 increase

Source Title	Taking mycocentrism seriously: Mycorrhizal fungal and plant responses to elevated co2
Source citation (APA Format)	Alberton, O., Kuyper, T. W., & Gorissen, A. (2005). Taking mycocentrism seriously: Mycorrhizal fungal and plant

	responses to elevated co2. <i>New Phytologist, 167</i> (3), 859– 868. <u>https://doi.org/10.1111/j.1469-8137.2005.01458.x</u>	
Original url	https://doi.org/10.1111/j.1469-8137.2005.01458.x	
Source type	Article	
Keywords	Mycocentrism Arbuscular Mycorrhizal Fungi (AMF) Ectomycorrhizal Fungi (ECM) Elevated CO₂ Carbon Allocation Fungal Abundance Plant-Fungal Symbiosis	
#Tags	#mycorrhizal networks #Carbon #CMNmodel #CO2 #CO2change	
Summary of key points + notes (include methodology)	Plant-Fungal Symbiosis	
Research Question/Problem/ Need	How do AM fungi and ECM fungi react to elevated CO2 with abundance and activity?	

Important Figures		_			_
	Categories	R	95% CI	n	P
	AM plants	1.25	1.19–1.31	74	
	ECM fungi	1.34	1.25–1.45	65	0.17
	ECM plants	1.26	1.19–1.34	65	
	AM fungi	1.21	1.12–1.32	77	0.32
	AM plants	1.25	1.19–1.31	74	
	ECM extraradical	1.45	1.30–1.65	38	< 0.01
	ECM colonization percentage	1.19	1.09–1.28	31	
	AM extraradical	1.23	1.07–1.40	46	0.65
	AM colonization percentage	1.17	1.06–1.30	30	
	ECM extraradical	1.45	1.30–1.65	38	0.04
	AM extraradical	1.23	1.07–1.40	46	
	ECM extraradical	1.45	1.30–1.65	38	0.03
	ECM plants	1.26	1.19–1.34	65	
	AM plants	1.25	1.19–1.31	74	0.55
	AM extraradical	1.23	1.07–1.40	46	
	Meta-analysis of the effe mycorrhizal systems			on	
VOCAB: (w/definition)	meta-analysis - a statistical process that combines data from multiple studies to draw conclusions about a topic Ozone - gas made up of three oxygen atoms PLFA - phospholipid fatty acids extraradical mycelium - a network of fungal hyphae that extends from the roots of plants into the soil				
Cited references to follow up on	Gavito, M. E. (2000). Atmos on biomass allocatio pea (Pisum sativum I <i>Botany, 51</i> (352), 193 <u>https://doi.org/10.10</u> Hu, S., Wu, J., Burkey, K. O. Microbial N acquisiti in two mesocosm ex <i>Global Change Biolog</i> <u>https://doi.org/10.11</u>	n and nutr) plants 1–1938. 093/jexbor , & Firesto on under e periments gy, 11(2), 2	ient uptake <i>Journal of E</i> t/51.352.19 one, M. K. (2 elevated atr with annua 213–223.	e of no <i>xperin</i> <u>31</u> 2005). nosph Il grass	dulated nental Plant and eric CO2 ses.

	Lussenhop, J., Treonis, A., Curtis, P. S., Teeri, J. A., & Vogel, C. S. (1998). Response of soil biota to elevated atmospheric CO 2 in Poplar Model Systems. <i>Oecologia</i> , <i>113</i> (2), 247– 251. <u>https://doi.org/10.1007/s004420050375</u>
Follow up Questions	Why do ECM fungi have a stronger response to elevated CO2? How does increased fungal abundance under the elevated CO2 affect the fungi's nutrient uptake? Is using ECM more beneficial than AM?

Article #20 Notes: plants associated with working with mycorrhizal fungi and CO2 icnrease

Source Title	Species of plants and associated arbuscular mycorrhizal fungi mediate mycorrhizal responses to CO2 enrichment	
Source citation (APA Format)	Johnson, N. C., Wolf, J., Reyes, M. A., Panter, A., Koch, G. W., & Redman, A. (2005). Species of plants and associated arbuscular mycorrhizal fungi mediate mycorrhizal responses to CO2 enrichment. <i>Global Change Biology</i> , <i>11</i> (7), 1156–1166. <u>https://doi.org/10.1111/j.1365-</u> <u>2486.2005.00967.x</u>	
Original url	https://doi.org/10.1111/j.1365-2486.2005.00967.x	
Source type	Article	
Keywords	Arbuscular Mycorrhizal Fungi (AMF) Symbiotic Relationships Elevated CO ₂ Plant-Fungal Interactions Carbon Allocation	

	Nutrient Uptake
#Tags	#mycorrhizal networks #Carbon #CMNmodel #CO2 #CO2change
Summary of key points + notes (include methodology)	 Plants were inoculated in paring, with multiple different species used. They were then grown under ambient CO2 (current atmospheric levels) and elevated CO2 (predicted levels) They ten measured plant growth and 13C allocation between test and control Findings Different plants exhibited different responses to the fungi This shows that plant chosen matters CO2 increased the nutrient uptake amounts (it therefore enhances mutualistic benefits of the fungi)
Research Question/Problem/ Need	How do specific plants react to AM fungal relationism?
Important Figures	AFF G3 G1 HF G3 G1 HF AMF G3 G2 G1 HF G1 HT State G1 G1 HF G1 HT G2 G1 Root length of plants grown with different fungi in different G1 HF G1 HF G1 HF
VOCAB: (w/definition)	 CO2 conditions Species-Specific Effects: The unique responses and interactions that occur based on the identity of plant and fungal species in a symbiotic relationship. Symbiotic Specificity: The degree to which a particular plant and fungal species form an exclusive or preferential symbiotic relationship.

	 Hyphal Network: The extensive web of fungal filaments (hyphae) in the soil that connects plant roots and facilitates the transfer of nutrients and carbon. Mutualism-Dependency Gradient: A continuum describing the degree to which plants rely on mycorrhizal fungi for nutrient acquisition, ranging from high mutualism (mutually beneficial) to low dependency (minimal reliance).
Cited references to follow up on	 Diaz, S. (1995). Elevated co 2 responsiveness, interactions at the community level and plant functional types. Journal of Biogeography, 22(2/3), 289. https://doi.org/10.2307/2845923 Fitter, A. H., Heinemeyer, A., & Staddon, P. L. (2000). The impact of Elevated Co2 and global climate change on Arbuscular Mycorrhizas: A mycocentric approach. <i>New Phytologist</i>, <i>147</i>(1), 179–187. https://doi.org/10.1046/j.1469-8137.2000.00680.x Gavito, Mayra E, Schweiger, P., & Jakobsen, I. (2002). P uptake by arbuscular mycorrhizal hyphae: Effect of soil temperature and atmospheric CO2 enrichment. <i>Global Change Biology</i>, <i>9</i>(1), 106–116. https://doi.org/10.1046/j.1365-2486.2003.00560.x
Follow up Questions	Why do different plants react differently in the network? How do the fungi specifically benefit from receiving more carbon? Could environmental factors influence the relationship in this study?