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Preface

This document offers an introduction to the design and analysis of sample surveys. It assumes a basic
knowledge of surveys, sampling, and statistical inference, as found, for example, in chapters 1-6 of
Petruccelli, Nandram and Chen, Applied Statistics for Engineers and Scientists, 1999, Prentice Hall.
Knowledge of simple linear regression, as found in chapter 7 of that text, is needed in the discussion of
regression estimation. The reader will note that reference is made to these chapters in the narrative.
This is because the material presented here consists of material omitted from the Petruccelli, Nandram
and Chen book. In keeping with its origins, we present this material as chapter 16 of that text, complete
with exercises, labs, and a mini-project. We also present it in the hopes it will be useful to those
contemplating conduct of a sample survey.
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Chapter 16

The Conduct and Analysis of
Sample Surveys

“I am monarch of all I survey.”

-William Cowper

16.1 Introduction

In Chapter 3 you learned the difference between a sampling study and an experiment. You also learned
about some of the issues in sampling studies, and some of the terminology used to describe these issues.
Before beginning this chapter, you should review the material on sampling studies from Chapter 3.

Sampling studies are used in many fields. Probably the most familiar examples of sampling studies
are opinion polls, such as the Gallup poll. Sampling studies also occur frequently in industry. For
example, a type of sampling called acceptance sampling is used to check the quality of incoming parts
or materials, or of outgoing shipments of completed products.

In this chapter we present both theory and practical aspects of the design and conduct of sampling
studies and of the analysis of data obtained from such studies. In particular, we consider a number
of sampling designs, including simple random sampling, stratified random sampling, cluster sampling,
systematic sampling, and double sampling. We describe simple random sampling and stratified random
sampling in detail. Finally, details of how to plan and conduct a sampling study are presented.

In terms of the analysis of data obtained from a sampling study, we present basic results on unbi-
ased estimation for a finite population total, mean and proportion under simple random sampling and
stratified random sampling designs. We also present ratio and regression estimation.

When you complete this chapter, you will be able to plan, conduct and analyze a number of basic
kinds of sampling studies.

Knowledge and Skills

By successfully completing this chapter, you will acquire the following knowledge and skills:
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CHAPTER 16. THE CONDUCT AND ANALYSIS OF SAMPLE SURVEYS

KNOWLEDGE

. Various sampling schemes: simple

random sampling with and with-
out replacement, stratified random
sampling, cluster sampling, multi-

SKILLS

. The ability to plan, conduct and

analyze a sampling study based
on simple random sampling, strat-
ified random sampling or single-

stage sampling, systematic sam- stage cluster sampling.

pling, and double sampling.

2. The ability to perform unbiased, ra-
2. Unbiased estimation for population tio, and regression estimation.

total, mean and proportion.
3. Ratio and regression estimation.

4. The steps in planning, conducting
and analyzing a sampling study.

16.2 Some Terminology

In this chapter we will address the problem of obtaining accurate information about a finite population:
a population consisting of a finite number of units.

DEFINITIONS: e Each element in a finite population will be called a population unit.

e The population of interest is called the target population.

EXAMPLE 16.1

For illustration, we consider a small target population: the population of all the automobile engines
of a specified model manufactured on a particular day at a certain factory. To keep computations
manageable, this population has size 8: it’s a small factory! Before being shipped for installation in
cars, the engines are test run. The quantity of interest for our purposes is the level of hydrocarbon
emissions. The data for all eight engines in the target population are displayed in Table 16.1, where the
hydrocarbon emissions are expressed as a percentage of the maximum value allowed under California
law, the most stringent in the nation. A third variable that is included in the data set is a compliance
variable. This variable indicates whether the engine is in compliance with the emission law. It takes on
two values: 0 and 1. A ’0’ indicates the engine is not in compliance with the law; a '1’ indicates that it
is in compliance. Such a 0 — 1 variable is called an indicator variable.

Hydrocarbon Emissions for a Population of Engines
Engine Number Emissions Compliance
90 1
78
101
95
92
121
89
99

O ~J O U i W N —
=l e =

Table 16.1: Hydrocarbon emission data
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16.3 Population Parameters

Let N denote the number of units in the target population. The units in the population are identified by
labels. People are usually identified by their names or social security numbers but in sampling theory
we identify them by the numbers 1, 2, 3, ..., N, which are the labels. The numbers 1-8 are the labels
which identify the engines in the population in Table 16.1.

With each unit in the population is associated a value of interest for that unit. This value may be a
measurement, such as the percentage of maximum legal hydrocarbon emissions from the engine example,
or a categorical variable, such as the variable indicating whether the engine is in compliance with the
emission standards. We will denote these values by subscripted upper case letters: for example, Y; is
the value corresponding to the i** unit in the population. The entire sequence Y1, Y3, ..., Yy of Y-values
in the population is considered a fixed parameter of the population.

There are several quantities in a finite population that may be of interest for an investigator. We
will consider four of these:

SOME FINITE POPULATION PARAMETERS

e The population mean is
N
DY
_ =1
F="N
e The population variance is
N
>_(¥i—wy”
2 i=1
R

The population standard deviation is

o = +vVo2.

The population total is

N
Y =) Y;=Np
i=1

The population proportion is the proportion of units in the population
having a certain characteristic. If each value Y; is an indicator variable which
takes on the value ‘1’ when the i** unit has that characteristic and 0 otherwise.
then the sum

counts the number of units in the population having the characteristic. In
this case the population mean

ylvi_c

is the proportion of units in the population having the characteristic, and
hence is the population proportion.
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EXAMPLE 16.1, CONTINUED

To illustrate, consider the population data in Table 16.1. The population parameters for the emission
measurements are:

p=(90+78+...+ 89 +99)/8 = 95.625,
o? = ((90 — 95.625)% + (78 — 95.625)2 + ... + (89 — 95.625)2 + (99 — 95.625)2)/7 = 154.839,

and

o = ++/154.839 = 12.443.

The population proportion of engines in compliance is
p=(1+1+04+14+14+0+1+1)/8=0.75.
2

Sampling studies are conducted to learn about the target population. In particular, we will assume
that the desired information consists of one or more of the population parameters described above. In
practice, a researcher will have two ways to obtain the desired information: a census or a sample.

DEFINITIONS: e A census consists of obtaining data from every unit in the target
population.

e A sample is a subset of the population units. Judgment samples
are selected by subjective decision of the planners of the sampling
study. Probability samples are selected by some random mecha-
nism.

e The sample is obtained from a listing or enumeration, called a frame,
of the population units.

e A sampling study is an activity in which we obtain information
about a population by obtaining information from a sample taken
from that population. Sampling studies are also referred to as sample
surveys.

Of course, a census will give the most complete information about a population. However, investiga-
tors often do not have the resources or time to conduct a census, so any information they obtain about
the target population usually must come from a sample. Since it is selected by non-scientific methods,
there is no scientific way to judge the accuracy or precision of information obtained from a judgment
sample. On the other hand, we can use probability theory to judge both accuracy and precision of
a probability sample. For this reason, we will consider only probability samples in this chapter. You
should be skeptical of the results of any sampling study which does not use a probability sample.

EXAMPLE 16.1, CONTINUED

For the hydrocarbon emission example, the target population is the eight engines produced on the
day in question. Let’s assume that the quantities of interest are u, the population mean emissions as a
percent of the maximum allowed value, and p, the population proportion of engines in compliance with
the emissions standards.

Investigators might take measurements on all eight engines, which would constitute a census. From
the census measurements they can obtain u and p exactly.

However, perhaps they can’t afford to take measurements on all eight engines. Then their only option
is to take a sample of the engines and obtain measurements on those engines in the sample. They will
use those measurements to estimate p and p.

To see how this works, we begin with the simplest probability sampling scheme, called appropriately
enough, simple random sampling. 2
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16.4 Simple Random Sampling

DEFINITION: e Simple random sampling (SRS), also known as random sampling
without replacement, is the sampling design in which n distinct
units are selected from the N units in the population in such a way
that every possible combination of n units is equally likely to be in
the sample selected. Note that “distinct” means that no unit can
appear more than once in a sample.

e The quantity f = n/N is called the sampling fraction or sampling
proportion of the SRS scheme.

e The quantity 1 — f = 1 — n/N is called the finite population cor-
rection (FPC).

In a SRS, the chance that the i** unit in the population is included in the sample is the sampling
fraction, f = n/N. This chance is the same for each unit in the population. Some other designs can
give equal chance to the selection of a unit, but only with simple random sampling does each possible
sample of n units have the same chance of being in the sample.

Selecting a Simple Random Sample

When we take a simple random sample, we are really sampling the labels, not the Y-values. In principle,
a SRS may be selected by writing the numbers 1 through N on N pieces of paper, putting the pieces
of paper in a hat, stirring them thoroughly, and, without looking, selecting n pieces of paper without
replacing any. The sample consists of the set of population units whose labels correspond to the numbers
selected. Alternatively, the labor of the selection process can be reduced by using a table of random
numbers or a computer random number generator.

We can write down a formula for the number of possible SRSs drawn from a finite population
consisting of N individuals. Using the factorial notation!, the number of samples is

(%)= aw=mr

Thus, for our example n=2, N=8, and the number of possible samples is 28. For simple random sampling
each sample of size n has the same chance of being taken. That is, each sample has chance of

N\l
n
of being selected.

Estimation of a Population Mean and Variance

In this section, we will discuss estimation of the finite population mean and variance using sample data.
You may want to review the material on normal theory estimation in Chapter 5 before continuing.
Suppose the sample data are the values yi1,¥2,...,¥n.2 Then a natural estimator of the population

mean g is the sample mean y = E?:l yi/n, and a natural estimator of the population variance o2 is

s2 =30 1(v —9)?/(n—1).

DEFINITION: An estimator is unbiased if its mean taken over all possible samples equals
the population quantity being estimated.

1Recall that n factorial, denoted n!, is defined as the product n x (n — 1) x (n —2) X --- X 2 x 1.
2Notice that we use upper case letters to denote population values and lower case letters to denote sample values.
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Both 7 and s? are unbiased estimators of u and o2, respectively, since if we compute ¥ and s? for each
N . . .
of the ( " ) possible samples of size n, and then take the mean of these (i.e. just average them), the

results will equal x4 and o2, respectively.

The variance of g is 0'5 = (1— f)o?/n, where 1 — f, you will recall, is the finite population correction.

Compare this with the value o2 /n for the variance of an infinite population. The variance is smaller in
the finite population case because there are fewer possible samples to select. What do you think happens
to f as the size of the population becomes infinite?

: : 2052 2
An unbiased estimator of o7 is 67 = (1 — f)s*/n.

For large n, a level L confidence interval for u is given by
(¥—65- 2140, Y+ 65 2141),

where 2141 is the # quantile of the N(0, 1) distribution.
2

These confidence intervals are what are being talked about in news reports with statements like “We
are 95% confident that to within £250 calories the mean daily food consumption of American poodles
is 2100 calories per day.”

Estimation of a Population Total

An unbiased estimate of the population total Y is
. N &
Y=Ny="— 2; Yi.
i

The variance of ¥ is N(N — n)o?/n, which is N? times the variance of ¥.

For large n, a level L confidence interval for Y is given by
(f’ —+/N(N —n)s?/n - 2141, Y+ VN(N —n)s?/n-zi41).

Note that a level L confidence interval for Y can be obtained from a level L confidence interval for u by
multiplying the endpoints of the latter interval by N.

Estimation of a Population Proportion

Let C be the number of units in the population having a certain characteristic. Then p = C/N is
the population proportion with that characteristic. Now suppose a sample of size n is taken and that
¢ of the n units in the sample have the characteristic. Then the sample proportion p = ¢/n is an
unbiased estimator of p. The variance of p is 0123 = (1 — f)p(1 — p)/n. The estimated variance of p is

6’12; = (1 — f)p(1 — p)/n. For large n, a level L confidence interval for p is given by

(ﬁ—a'ﬁ-ZHz-L, 13+6'ﬁ‘21+2L).
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RECAP: LARGE SAMPLE CONFIDENCE INTERVAL FORMULAS
FOR SIMPLE RANDOM SAMPLING

e A large sample level L confidence interval for a population mean p is
(y—&g-z#,y—}—&g-z#).
e A large sample level L confidence interval for a population total Y is
(v — N(N—n)sz/n-z#, Y+ \/mz#)
e A large sample level L confidence interval for a population proportion p is

(ﬁ—&ﬁ‘ZI-}z—L, ﬁ—}-a'ﬁ-ZHz-L).

EXAMPLE 16.1, CONTINUED

We now use the data from Table 16.1 to illustrate the computation and interpretation of these estima-
tors and confidence intervals. Note that the sample sizes are too small to use the normal approximation
we use here, so these computations are for illustration only.

Suppose we choose a SRS of size 3 consisting of engines 3, 7 and 8 from the population. The emission
values are 90, 101 and 89 and the compliance values are 1, 0 and 1, respectively. We then compute the
following quantities:

] = (99 + 101 +89)/3 = 289/3
52 = ((99 - 96.33)2 + (101 — 96.33)2 + (89 — 96.33)2)/2 = 124/3
b = (1+0+1)/3 = 2/3
1-f = (1-3/8) = 5/8

We use these quantities now to compute the following:

e Estimates of p: The point estimate is ¥ = 289/3 = 96.33. Noting that z 025 = 1.96, a 95%
confidence interval for p is

289/3 + 1.96 - \/(5/8)(124/3)/3 = (90.58, 102.08).

The interpretation is that in repeated sampling form this population, 95% of all intervals computed
in this way will actually contain p. Note that this particular interval covers the true population

mean 95.635.
e Estimates of Y: The point estimate is
Ny =8-289/3 = 770.64,
and a 95% confidence interval is

(8 -90.58, 8- 102.08) = (724.64, 816.64).

e Estimates of p: A point estimate of the proportion of complying engines in the population is
p=2/3. A 95% normal theory confidence interval for the proportion of complying engines is

2/3 +1.96+/(5/8)(2/3)(1 — 2/3)/3 = (0.25,1.09) = (0.25, 1.00),

where the upper limit of 1.09 is rounded to the nearest value that makes sense.
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Determination of Sample Size

One consideration in designing a sampling study is the precision desired.

DEFINITION: Precision of an estimator is a measure of how variable that estimator
is. Another equivalent way of expressing precision is the width of a level
L confidence interval. For a given population and sampling method (e.g
SRS), precision is a function of the size of the sample: the larger the sample,
the greater the precision.

Usually in designing a sampling study, the desired precision is specified first, and the sample size
needed to attain that precision computed. As an example, suppose a simple random sample will be used
and it is desired to estimate a population proportion p to within d units with confidence level at least
L. If we assume a large enough sample size (so the normal approximation can be used in computing
the confidence interval), and that the number in the sample n is small relative to the number in the
population N, then an estimate of sample size is

no = (p(1 — p) - 2341 )/d? (16.1)

2

If ng/N is small, use n = ng (note that this is the usual formula for an infinite population). If not,
use n = ng/(1 + no/N).

Of course, all this supposes we know p. If we don’t, we can get an estimate from a pilot study (see
Section 16.9). Or, since

p(1 —p) < 0.25, we can use 0.25 in place of p(1 — p) in the above formulas to get a conservative (i.e.
too large) sample size estimate.

There is an analogous formula when a simple random sample will be used and it is desired to estimate
a population mean p to within d units with confidence level at least L. If we assume a large enough
sample size (so the normal approximation can be used in computing the confidence interval), and that
the number in the sample n is small relative to the number in the population N, then an estimate of
sample size is

no = (o2 -z%#)/dz. (16.2)
If ng/N is small, use n = no (note that this is the usual formula for an infinite population). If not, use

n=no/(1+ no/N). (16.3)
Again, this supposes we know o2. If we don’t, we can get an estimate from a pilot study (see Section 16.9).
EXAMPLE 16.2

As an example of sample size calculations, consider the sample size necessary to estimate the pro-
portion of Americans who prefer that Federal government cutbacks be returned to taxpayers through
lower taxes instead of being used to reduce the Federal deficit. Assume that there are two hundred
million adult Americans and that we will take a SRS (despite the fact that a SRS is not really practical).
Suppose we want the estimate to be accurate to within 3 percentage points with 90% confidence. Finally,
assume that we have no idea what the true population proportion p is.

Since we have no idea what the true population proportion p is, we will use the upper bound 0.25 in
place of p(1 — p) in equation 16.1. The result is a first estimate (zo.05 = 1.645) of

no = (0.25)(1.645)%/(0.03)? = 752,

rounded upward. Since ng is small relative to n = 200, 000, 000, we may use 752 as the sample size.

If p is of moderate size, say between 0.3 and 0.7, the ng estimated using 0.25 for p(1 — p) will be
reasonably close to the true ny. However, it can overestimate appreciably if p is near 0 or 1. For example,
suppose in the previous example we know that p is near 0.95. Then equation 16.1 yields

ngo = (0.95)(0.05)(1.645)%/(0.03) = 143.
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EXAMPLE 16.3

As a second example, suppose we are measuring the diameters of ball bearings in a shipment of 2500.
We know that the variance of these measurements is always near 0.1 mm. We would like our estimate
of mean diameter to be within 0.025 mm with 99% confidence. From equation 16.2 we see that

no = (0.1)(2.58)%/(0.025)% = 1066.
Since this is a substantial proportion of the population size of 2500, we use equation 16.3 to compute
n = 1066/(1+ 1066,/2500) = 748.

Thus, the fact that we have a finite population means we need take a sample of only 748 ball bearings
instead of 1066, a savings of 30%. 2

16.5 Stratified Sampling

DEFINITION: e A stratum is a subgroup of the population.

e In stratified sampling, the population is divided into strata (the
plural of stratum), and from each stratum a separate sample is drawn.

EXAMPLE 16.4

As an example of a population where stratification would be useful, consider the data set FIRMS,
which contains the numbers of employees of 115 multinational corporations. The firms are arranged
in two strata, the first containing the 21 firms with more than 100,000 employees, and the second the
remaining 94 firms. These data are similar to populations of many types, in that some firms contribute
a great deal to the total and display much greater variability than the remainder. These data will be
investigated further in Lab 16.2. 2

Reasons for Stratifying

There are several reasons for choosing stratified sampling instead of a SRS:

1. If measurements on certain strata within the population are of particular interest, and a SRS will
likely contain too few data points to obtain good results from these strata, stratification can ensure
adequate sample sizes for the strata of interest.

2. If there is large variability between strata compared to the variability within strata, stratification
will give more precise estimators.

3. Administrative convenience may dictate the use of strata. For example, national data may be best
sampled by region if the data are collected by regional offices. In this case the regions are natural
strata.

4. Conditions in a population may make different sampling methods appropriate for different strata.
For example, in surveying businesses, it is not uncommon to sample the largest firms, of which
there are a small number with high variability, at a higher rate and to sample the smaller firms,
of which there are many with low variability, at a lower rate.

In this chapter, we will concentrate on the simplest kind of stratified sampling: that in which a
simple random sample is taken in each stratum separately. Such a sampling scheme is called stratified
random sampling.
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Notation

Assume the population of N units is divided into K strata. We will consider stratified random sampling,
in which a SRS is taken separately in each of the K strata. Table 16.2 displays the formulas used in
describing stratified random sampling. Though the notation is messy, most formulas follow easily from
those for SRS. The messiness comes from the subscript j that is used to keep track of the different strata.

From the formulas in Table 16.2, it follows that N = Zle Nj, (the number of units in the population
equals the sum of the units in the K strata), that n = Ef{zl n; (the total number of units in the sample

equals the sum of the numbers of sample units in all the strata), and that g = Zle N;pi/N (the overall
population mean is a weighted average of the strata means).

Notation for Stratified Sampling: Population Quantities

Notation Meaning

N; The number of population units in the j** stratum.
Yi1,Y2, .-, YN, Population measurements in the j** stratum.

My = Zi\,:]l Y;i/N; Population mean of measurements in the j** stratum.

of =32 (Vi — uj)?/(Nj — 1) Population variance of measurements from the jt* stratum.
C; Population number of units in the j** stratum

having a certain characteristic.
p; = Cj/N; Population proportion of units in the j** stratum
having a certain characteristic.

Notation for Stratified Sampling: Sample Quantities

Notation Meaning
n; The number of sample units from the j** stratum.
1—-f; =1—mn;/N; The FPC in the j** stratum.
Yi1rYj2y - - -1 Yjm; Sample measurements from the j** stratum.
y; = S yji/n; Sample mean of measurements from the j** stratum.
5]2- =:21(%5i —¥;)?/(nj — 1)  Sample variance of measurements from the §t* stratum.
&%j = (1— f;)s3/n; The estimated variance of ;.
cj Number of sample units from the j** stratum
having a certain characteristic.
B =cj/nj Proportion of sample units from the j** stratum

having a certain characteristic.

Table 16.2: Notation for stratified sampling

Estimation from a Stratified Sample
Estimation of the Population Mean

An unbiased estimator of p is
K
Yor = Y N;¥;/N.
j=1
An unbiased estimator of its variance is

K
~2 E 242 2
Uﬂst - N]'o-ﬂj/N :

j=1
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For large n, a level L confidence interval for u is given by

(Use — 07, " 214 Yst + 03,, " Z14L )-

Estimation of the Population Total

An unbiased estimator of the population total Y is

~

Kit = Ny.st‘

An unbiased estimator of the variance of Y is
K
~2 2~2 242
Uf’n =N o-yst - ZN] ij'
j=1

For large n, a level L confidence interval for Y is given by

~

(Ygt —0y, " ZHZ.L , Yer + Gy, zHZ;L).

Estimation of the Population Proportion

An unbiased estimator of the proportion p in the population having a certain characteristic is

K
P = _ N;p;/N.

j=1
An unbiased estimator of its variance is
K
A2 242 2
63..= > Njei /N,
j=1

where 6'12;], = (1 — f;)p; (1 — pj)/n;. For large n, a level L confidence interval for p is given by

(Bst — 3., "Z1tL, Pst + 0p,, 'Z#)-

RECAP: LARGE SAMPLE CONFIDENCE INTERVAL FORMULAS
STRATIFIED RANDOM SAMPLING

e A large sample level L confidence interval for a population mean p is
(Use — 63, - 2142, Yye + Gy, - 2342)-
e A large sample level L confidence interval for a population total Y is

(Yst — 0'?“ . ZHZ.L ’ Yst + 0'17” . ZHZ.L )

e A large sample level L confidence interval for a population proportion p is

(Bst — 63, "Z1tL, Pst +0p,, '2#)-

EXAMPLE 16.4, CONTINUED

Refer again to the data set FIRMS on multinational corporations described in Section 16.5. The
quantity being measured is the number of employees. Suppose for these data we take a stratified
random sample of 5 large and 10 small corporations. The data obtained are:



18 CHAPTER 16. THE CONDUCT AND ANALYSIS OF SAMPLE SURVEYS

Stratum 1 Stratum 2
5206 102423
15524 129434
16835 138326
22354 284000
64604 332700
15982
25198
28535
4304
35000

y;: 23354.2  197376.6
sj 17380.8  103604.3

We want to estimate the total number of employees in the population of 115 firms. Notice the large
difference in means and standard deviations which suggests that stratification may be effective.

From this population, we will need the quantities N = 115, N; = 94 and N; = 21. From this
sampling scheme, we need 1 — f; =1 —10/94=0.89, and 1 — f; = 1 —5/21 = 0.76. From this sample,
we will need the quantities

62 = (1— f1)s}/n1 = (0.89)(17380.8%)/10 = 26886207,

and
62 = (1— f2)s3/na = (0.76)(103604.3%)/5 = 1631545349.
Then R
Yy = N1y, + Nog, = (94)(23354.2) + (21)(197376.6) = 6340203,
and

&y., = 1/(947)(26886207) + (212)(1631545349) = 978303.

So (assuming the normal approximation is valid for so small a sample) a 95% confidence interval for
the population total is
6340203 + (1.96)(978303) = (4422728, 8257679).

Compare this with the true value of 7315991. 2

Sample Allocation

How to allocate the n observations in the strata is an important issue.

Optimal Allocation

It can be shown mathematically that when the cost of sampling is equal in each stratum, the allocation
which minimizes the variance of 7,, takes the sample size in the j** stratum as close to
Njoj
St N
as possible. This formula also holds for estimating a population total.

However, if the cost of sampling is greatly different in the different strata, this optimal allocation is
different. For example, if the cost per unit is ¢; in stratum j, the optimal number in the 7P stratum is

Njo;/\/ej "
K
Y me1 Nmom/\/Cm

as possible. Similar formulas hold for estimating a population proportion.
The message is that in a given stratum, take a larger sample if:

as close to
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1. the stratum is larger,
2. the stratum is more variable internally,
3. sampling is cheaper in the stratum.

Of course, the total number of units in the sample, n, must also be chosen. The choice of n will
depend on such factors as the total available resources, and the desired precision of the estimator, either
overall or within each stratum or both.

While it is good to know the formulas for optimal allocation, it is often difficult or impossible to
use them in practice. For one thing, in order to use the formulas, we need to know each 0']2-, which
almost never happens. One solution to this problem is to do an initial pilot study (see Section 16.9),
estimate the o? from that study, and then sample according to the optimal allocation formulas using
the estimated values.

But even if we do manage to estimate the 0']2-, the optimal allocation formula applies only to a single
measurement. Most sampling studies have many measurements, and each will have its own optimal
allocation. When these conflict, it is not clear how to proceed.

For this reason optimal allocation is used less frequently than proportional allocation.

Proportional Allocation

In proportional allocation, the proportion of sample units from the j** stratum is the same as the
proportion of population units in the j** stratum. That is, the number sampled from the j** stratum is
as close to (Nj/N)n as possible.

It can be shown mathematically, that proportional allocation produces estimators with greater pre-
cision than a SRS, but less precision than optimal allocation.

Other Allocations

Other kinds of allocation may depend on the requirements of the study. For example, different precisions
may be required for estimators in different strata individually, with yet another precision for estimators
of population totals. These considerations will dictate the allocation of sample sizes to the different
strata.

When Stratification Produces Large Gains in Precision
Stratification will yield large gains in precision when the following three conditions hold:
1. The population is composed of units varying widely in size.
2. The variables to be measured are closely related to the sizes of the units.

3. A good measure of size is available for setting up the strata.

Double Sampling

When a frame giving strata is not available, a technique called double sampling can be used. In
double sampling for strata, units in an initial sample are classified into strata. The second sample is
then selected from this initial sample by stratified sampling.

Post-Stratification

Sometimes a sample would benefit from stratification, but we are unable to come up with a frame for
each stratum, and so are unable to perform stratified sampling. For example, we may want each stratum
in a survey to consist of one type of religious affiliation, which is information we wouldn’t know before
an interview.
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If we know how many units are in each stratum in the population, we can take a SRS of the entire
population and stratify later, when we learn the stratum to which each unit belongs. In the example of
religious affiliation, we would know the religion of a person after the interview.

This kind of stratification is called post-stratification. Post-stratified samples are analyzed in
exactly the same way as stratified samples, and the estimators have the same properties (e.g. unbi-
asedness) provided all strata are represented in the sample. The difference between stratification and
post-stratification is in how the sample is selected.

One final point: In order to use post-stratification we do not have to have planned to use it in the
first place. If stratification was initially not done, by oversight or for whatever reason, and later it is
found that stratification is useful, post-stratification can still be used.

16.6 Ratio and Regression Estimation

As a general rule, when solving a problem it is good practice to incorporate all the knowledge available
about that problem into its solution. In statistical problems such knowledge often takes the form of
observations on other variables related to the variable of interest.

EXAMPLE 16.6

Suppose we want to estimate the volume of lumber in harvestable trees in a certain forest. One
approach would be to take a sample of the trees in the forest (how would YOU design the sampling
scheme?), cut them down and measure the volume of lumber in them. Then we could estimate the total
forest volume from the sample.

But consider another approach. Suppose the diameter of a tree a certain distance above the ground
is closely related to the volume of lumber in the tree. Then it might make sense to proceed as follows:

1. For the original sample of trees, measure the diameter of each tree as well as its volume.
2. Use the data to quantify the relationship between tree diameter and tree volume.
3. Measure the diameters of a much larger sample of trees.

4. Use the relation between diameter and volume obtained in 2 and the measurements of the tree
diameters obtained in 3 to give an improved estimate of the volume of trees in the forest.

In this approach, easily-obtained information, tree diameter, can help improve estimation of a quantity,
tree volume, that is difficult to obtain. 2

Two kinds of estimators which use auxiliary information are ratio estimators and regression estimators.
These estimators can improve the precision of estimation, in some cases substantially.

For both kinds of estimators, we assume the values of the variable of interest in the population are
Y1, ..., Yy and the values of an auxiliary variable are X1,..., Xy. The values observed in the sample
are y1,...,Y, and z1,..., &, respectively. The population totals of measurements on these two variables
are Y and X and the sample totals are y and z. In the lumber example, the Y; are the lumber volumes
of the trees and the X, are the tree diameters.

In the next two sections we will only consider estimation of the population total Y. Similar formulas
apply to estimation of the population mean. We will also assume a SRS, though ratio and regression
estimation can be easily adapted to stratified sampling.

Ratio Estimation

The ratio estimator of Y is
Vr = Zx,
T

which has approximate variance

P (EY) Sl (¥ - RX)”

n N-1
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where R = Y/X. An estimator of the variance computable from the sample is

52 _ NP1 f) ¥ (u — Ray)?
-

n n—1

1

where R = y/z. For n large, an approximate level L confidence interval for Y is
(Yr —6Rr- 2111, YR+ GR - 2141).
2 2

The ratio estimator is not unbiased, though unbiased versions can be constructed. Ratio estimators
which use information from more than one auxiliary variable can also be constructed. Note also that
ratio estimators require knowledge of X, the population total of the auxiliary variable. Ratio estimators
are most useful when:

1. The relation between the X; and Y; is roughly linear with the line passing through the origin.

2. The variance of Y; about this line is proportional to Xj;.

Regression Estimation 3

If the relation between the X; and Y; is roughly linear but the line doesn’t pass through the origin, a
regression estimator is preferable to a ratio estimator. The linear regression estimator is

}A/lr =N y"i';él(y_f) )

where 7 is the sample mean of the variable of interest, Z and X are the sample and population means of
the auxiliary variable, and Bl is the estimated slope computed from the least squares regression of the
y; on the z; (see Chapter 7 for details). For large samples, we may estimate the approximate variance
of the regression estimator as

201 _
62 = N0~ Fygp,
n

where MSE is the mean squared error resulting from the regression of the y; on the z;. For n large, an
approximate level L confidence interval for Y is

(}/17—5'-214-:,, Y[T+6"ZI+L).
2 2

Like the ratio estimator, the regression estimator is mot unbiased. Regression estimators which
use information from more than one auxiliary variable can be constructed. Note also that regression
estimators require knowledge of X.

Regression estimators are most useful when:

1. The relation between the X; and Y; is linear.

2. The variance of Y; about this line is constant.

Double Sampling

As we have seen, both the ratio and regression estimation techniques rely on auxiliary information which
may not be available at the time the sampling study is done. One way to obtain the auxiliary information
is to do double sampling, a technique which you have already seen applied to stratified sampling.

In double sampling an initial sample is taken for obtaining auxiliary information only. Then a second
sample is taken in which the variable of interest and the auxiliary variable are both observed.

In the lumber estimation example, we might take a relatively large first sample of the easily-measured
tree diameter to estimate X, the total of the tree diameters in the forest. Then a smaller sample of both
X; and the harder to measure Y; could provide a ratio or regression estimator.

3The material in this section assumes a knowledge of simple linear regression, as covered in Chapter 7.
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EXAMPLE 16.6, CONTINUED

We illustrate ratio estimation by using the data found in the data set TREES. These data consist of
measurements taken from 31 black cherry trees in the Allegheny National Forest in Pennsylvania. Among
the variables recorded for these trees are the diameter in inches, taken at 4.5 feet above ground level,
and the lumber volume, in cubic feet, obtained by cutting down the tree. It is desired to estimate the
total lumber volume of mature black cherry trees in a sector of the forest.

Foresters used double sampling to obtain the quantities necessary to produce ratio estimators. To
do this, they measured the diameters of all of the N = 451 mature black cherry trees in the sector
(including the 31 in the data set), and obtained a total diameter X = 5867.6 inches for all 451 trees.

From the 31 trees in the data set, we have total volume y = 935.3 cubic feet and =z = 410.7 inches.
This yields R= 935.3/410.7 = 2.277, and hence the estimator

Yr = (2.277)(5867.6) = 13360.5.

To compute the approximate variance of this estimate, we first find

n B - TR
Liza (U~ B2 _ g, o7

n—1

The variance is then approximately
6% = (451)%(1 — 31/451)(94.07)/31 = 574798.

This is about one-third the estimated variance of 1651009 for the estimate ¥ = Ny, which shows the
value of incorporating the tree diameters into the estimation.
A level 0.99 confidence interval for the total of the tree volumes is given by

13360.5 + +/574798 - 2.5758 = (11407.6, 15313.4).

The relation between diameter and volume for the 31 sample trees is, in fact, reasonably linear, but
its intercept is not zero. As a result the regression estimator of total volume should perform better
than the ratio estimator just computed. Exercise 16.14 gives those with a knowledge of simple linear
regression a chance to see whether this proves true. 2

16.7 Some Other Commonly-Used Sampling Techniques

In this section we present a brief overview of some other commonly-used sampling techniques.

Cluster Sampling

In some applications the population units available for sampling consist of a group or cluster of smaller
units called elements.

DEFINITION: e Cluster sampling is a sampling scheme in which a sample of the
clusters, instead of individual elements, is initially taken.

e If a census is then taken of each of the initially-sampled clusters, the
procedure is called single-stage cluster sampling.

e If a sample is then taken from each of the initially-sampled clusters,
the procedure is called two-stage cluster sampling.

EXAMPLE 16.7

Consider the problem of surveying all households in a city. Taking a SRS of all households could
present difficulties. First, it might be too difficult or too expensive to get an accurate frame of all
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households. Second, it might prove too costly to try to physically cover the entire city as a SRS would
require.

However, dividing the city into smaller clusters, such as city blocks, can help alleviate these problems.
Suppose we use cluster sampling with city blocks as clusters. That is, at the first stage of sampling
we choose a SRS of city blocks. This approach has two advantages over taking a random sample of
households. First, it is likely that a frame of city blocks is easier to obtain and much shorter than a
frame of all households. Second, by concentrating effort at a few locations (the selected blocks), resources
used in traveling to the households are conserved.

If we conduct a census of all households in each block selected, we will be performing single-stage
cluster sampling. If we conduct a SRS of the households in each block, we will be doing two-stage cluster
sampling. 2

Single-Stage Cluster Sampling

For simplicity we will concentrate on estimating population totals of measurements, but similar results
occur for population means of measurements and population proportions.
Suppose there are N clusters and that the number of elements in the j** cluster is M;. Let Y}; denote

the measurement value of the i** element in the j** cluster, and let Y; = Zf‘ill Y;; denote the total for
the j** cluster. Let Y = Zj.vzle denote the population total and ¥ = Y/N denote the population
mean per cluster.
Suppose that n clusters are sampled and let f = n/N. For those clusters that are actually sampled,
let y; = Zf‘iﬁ Y;; denote the total for the 7** cluster, and Y= yj/M; the mean for the 7t cluster.
Then an unbiased estimator of Y is

=3y,
1’1,],:1

and its variance is

2 Nz(l—f) Z;‘Vzl(yj _?)2‘

¥ n N -1

As we will not know Y, we may estimate it using ¥, the mean per sample cluster, to obtain the estimated
variance

ag

s2 _ N0 - ) Xiay —9)°
Y n n—1

These estimators have the advantage that the M; need not be known to compute them. However, the
estimator Y is often found to have poor precision, particularly when the y; vary little from cluster to
cluster, and the M; vary greatly.

Ratio Estimation We can often improve on the estimator Y if we know more about the M;. For
example, if we know the population total number of elements M — Z;.Vzl Mj, then a ratio estimator

for Y is n
Zj:l Yj
Z?:l M]

If N is large, this estimator has approximate variance

}A’R:M

N3(1— f) TiL, MA(g, ~ Y)’
n N -1 !

5'12{ =
where ¥ = Y/M is the population total per element. In practice, we will not know ?, S0 we may

estimate it with }A’R/M to obtain the estimate of &2,

;2 _ N*(1-f) E]n'zl sz(yj_}}R/M)z
Op = .

n n—1
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Note that the M; need not be known ahead of time to compute Yr (the M; for the sampled units
are needed, but these will be known once the units have been sampled), but the value of M is needed.
The variance of YR is often much smaller than that of V.

EXAMPLE 16.7, CONTINUED

We will illustrate calculation of the unbiased and ratio estimators. Consider the problem of estimating
the population of a mid-sized city. It is decided to conduct a single-stage cluster sampling. As a first
stage in sampling, a simple random sample of size 100 will be obtained from the 1743 city blocks. The
number of members in each household in each of the sampled city blocks will then be counted.

Data from ten of the blocks are shown in Table 16.3.

City Number of
Block Households Population
1 40 106
2 31 96
3 27 74
4 24 54
5 11 23
96 24 60
97 48 115
98 8 18
99 26 78
100 25 78

Table 16.3: City population data

For these data, N = 1743, n = 100 and 2]1001 y; = 9075, so

A 1743
Y= —— = 1581
100 9075 = 158177.

In addition, E ( —7)?/99 = 1681.99, so

1743)%(1 — 22
6% = ( it 1743)1681.99 = 48167971.81,
100
and therefore 64 = 6940.31.
From past censuses, it is estimated that the total number of households in the city is M = 62759.
From the data, 2?21 M; = 3445.

The ratio estimate is then

9075
62759% = 165323.

In addition,
2;21 M]?(yj — 165323/62759)?

n—1

— 80.87,

the estimated variance of }A’R is

L2 (1743)%(1 - %)
e _

= .87 =2315913.82.
R 100 80.87 315913.8

This gives a standard deviation &g = 1521.81, a much smaller value than was obtained for the unbiased
estimator. 2
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PPS Sampling Another widely used technique is sampling with probability proportional to
size, or PPS. For single-stage cluster sampling, this means that the chance of a cluster being included
in the sample is proportional to M;. As a model for how to choose such a sample, consider drawing
numbered slips from a hat. A total of M = Z;V:1 M; slips are placed in the hat with those numbered 1
through M; corresponding to cluster 1, those numbered M;+1 through M; 4+ M, corresponding to cluster
2, and so on. Then n slips are drawn from the hat with replacement. Drawing with replacement is
necessary, when n exceeds 1, in order to keep the probability of selection proportional to cluster size.
An unbiased estimator of Y based on PPS sampling is

and its variance is

An estimated variance for }A’pps is
2 n 9
52 = LE@ _ @)2
PPE - p(n—1) 4 7 M
]:

PPES Sampling One problem with PPS sampling is that we have to know all the Mj to design the
sampling scheme. If we don’t know the M;, but can estimate them in a reasonable way, then we can
use the estimates in place of the M; in the above scheme. In the city example, we may have estimates
of the number of households in each city block from the last census that we can use to estimate the M;.

To see how this works in practice, suppose we estimate M; by Mj based on information obtained
prior to sampling. Let M = E;'v:1 ]l;I]-, and let z; = M]/M Then if we draw the n clusters with

replacement with probabilities proportional to the Mj, an unbiased estimator for Y is the probability
proportional to estimated size (PPES) estimator

which has variance
1 X v 2
2 _ J
c = - E zi |2 -Y )] .
rres L™ <Zj )

An unbiased estimator of this variance is

When the sample size is sufficiently large, normal theory confidence intervals can be computed from
these estimators in the usual way.

EXAMPLE 16.8

We will illustrate PPES estimation with a small fabricated example. Suppose in a very small town all
residents live in 8 blocks. The town wishes to estimate the population based on a survey of 4 blocks,
which is all they can afford to do. They have an estimate of the number of households in each of the 8
blocks, so it is decided to do conduct a PPES sampling. To do the sampling, the cumulative sum of the
estimated numbers of households in the 8 blocks was formed and a range of values was assigned based
on this cumulative sum. Table 16.4 shows the estimated numbers of households, the cumulative sums
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Estimated Number Cumulative

Block  of Households, M; Sum Range z;
1 6 6 1-6 0.023
2 17 23 7—23 0.064
3 21 44 24—-44 0.079
4 53 97 45 —-97 0.200
5 46 143 98 — 143 0.174
6 33 176 144 — 176 0.125
7 32 208 177 — 208 0.121
8 57 265 209 — 265 0.215

Table 16.4: Estimated numbers of households, the cumulative sums and the ranges used in Ezample 16.8

and the ranges constructed. Based on this information, M = 265, and the z; = M]/M are shown in
Table 16.4.

Four random numbers between 1 and 255, inclusive were obtained: 9, 60, 90 and 251. The blocks
whose ranges contained the random numbers were chosen for the sample. Thus, the sample consisted
of blocks 2, 4, 4, and 8. Notice that sampling with replacement means that we allow a block to appear
more than once in the sample.

The samplers interviewed all households in blocks 2, 4 and 8, and found the respective block popu-
lations to be 36, 147 and 151. The PPES estimator was obtained as

- 1 36 147 147 151
es — o = 683.71.
PP 4 10.064 + 0.200 + 0.200 + 0.215

Computation of the estimated variance, &2 is left as an exercise. 2

ppes?

Two- and Multi-Stage Sampling

If in one-stage cluster sampling we select a sample from each cluster instead of doing a census on that
cluster, we are performing two-stage sampling. In Example 16.7, two-stage sampling results if after
selecting a sample of city blocks, we then select a sample of households from each block for interviews.
The formulas for estimation in two-stage sampling are more complex versions of those for single-stage
cluster sampling because of the extra level of sampling. We will not consider them here.

Two-stage sampling can be extended to multi-stage sampling. Suppose that instead of doing a
survey only on one city, we wanted to do a nationwide survey. We would want to do some type of cluster
sampling nationwide for the same reasons as doing it in one city. One way to proceed is to sample
clusters within clusters (within clusters, within clusters,..., etc). So if we want to do a nationwide survey
of households, we might take a random sample of counties nationwide, then within the selected counties
a sample of cities, then within the selected cities a sample of households. This would be a three-stage
sampling procedure.

Systematic Sampling

Systematic sampling refers to sampling in a well-defined non-random manner. The simplest example
is the every k*® sample. In this scheme, the units in the population are assigned the labels 1,..., N,
just as in a SRS. Then one label is drawn at random from the first k labels and every k** label after
that is drawn. The units whose labels are drawn constitute the sample. For a sample of size n, choose
k = [N/n], (that is, the greatest integer less than or equal to N/n).

As an example, suppose we draw a sample of size 2 from the population in Table 16.1. Then we
would take k = 4 and draw a number at random from the set {1,2,3,4}. Say we draw 3. Next we would
choose label 3+ k =3 + 4 =7, so the sample would be engines 3 and 7.

Systematic sampling has connections to both stratified random sampling and cluster sampling:
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e Systematic sampling stratifies the population into strata consisting of the first k, the second k,
etc. labels. One observation is sampled from each stratum. The difference in sampling is that in
systematic sampling the labels are sampled from the same relative location in each stratum while
in stratified random sampling they are sampled at random. This results in the systematic sample
being more evenly spread out over the population, which sometimes leads to it being more precise
than stratified random sampling.

In the engine example, there would be two strata consisting of engines 1-4 and 5-8.

e Suppose N = nk and consider the population as being divided into k clusters with the first
cluster consisting of labels 1,k+ 1,2k+1,...,(n — 1)k + 1, the second cluster consisting of labels
2,k+2,2k+2,...,(n— 1)k + 2, and so on. The systematic sample is then a single-stage cluster
sample with N = k clusters in the population and n = 1 cluster in the sample. If N # nk the
clusters have unequal sizes.

In the engine example, there would be 4 clusters: {1,5}, {2,6}, {3,7}, and {4,8}. The sample
consists of one of these clusters selected at random.

A major advantage of systematic sampling schemes is the ease with which they may be implemented.
A major disadvantage is the risk of poor precision and misleading results when unsuspected periodicity
exists in the data. As an example of this, consider the extreme case in which N = 40,k = 4 and the
value of the unit in the population with label ¢ is ¥; = sin(ni/2). Then the population total is 0. The
sample totals will be either 0 (if the first label is 2 or 4), 10 (if the first label is 1) or —10 (if the first
label is 3). If a SRS or stratified random sample is used, the sample totals will seldom be so extreme.
This means the variance of the systematic sample will be unusually large.

A systematic sample may be treated as a SRS when the labels are or may be considered to be in
random order. In other settings (stratified systematic samples or systematic multi-stage sampling, for
example) the treatment of systematic samples is more complicated and will not be dealt with here.

Combining Types of Sampling

Types of sampling can be combined to obtain a sampling scheme that meets the needs of a specific appli-
cation. For example, in the three-stage sampling scheme described on page 26, we might want to stratify
the counties according to their primary economic base (industrial, agricultural or high technology), then
sample different size counties by PPS or PPES sampling.

16.8 Steps in Designing a Sampling Study

What Information is Required?

At the initial design stages, discussion should focus on the goals of the study and what information is
needed to meet those goals.

What Are the Relevant Target Populations?

It is important to define precisely all target populations (including subpopulations) for the study. It is
also important to specify the sampling units. For example, if doing a survey of spending habits, do you
want to measure individual or household spending? If the latter, how is “household” defined?

For these populations find out if a frame is available. If there is a frame, what information does it
contain, and what is its cost?

What Are the Variables of Interest?

Make sure that what is being measured will provide the required information. In a survey this means
asking the right questions of the right persons in the right way. For example, whom do you ask about
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teen age drug use? Parents? School officials? Teen agers? When you decide whom to ask, how do you
phrase potentially incriminating or embarrassing questions to obtain accurate answers?

Match the variables selected with the goals of the study to make sure that all variables of interest
are included. Establish the precision required for each variable.

How Will the Information be Obtained from the Sample Units?

For example, will a survey be conducted by mail, phone or in-person? What will be done about missing
data or nonresponse?

Type of Sampling

The type of sampling will depend on the target populations, the types of frames, if any, that are available,
and the goals of the study. Some rules of thumb are:

1. Give special treatment to unusual population units. For example, in a study of business
firms, you may want to do a census of the very largest firms and sample the rest.

2. Sample homogeneous groups lightly and nonhomogeneous groups heavily.

3. Spread the sample out. In general, all other things being equal, it is better to sample 10% of
the cities in all states rather than all cities in 10% of the states. While it will often prove too costly
to follow this advice exactly, follow it to the extent that you can.

4. For unequally sized groups use PPS sampling.

Determine Sample Size

Once the above issues have been settled sample sizes can be determined subject to budget and precision
constraints (which are always in conflict).

16.9 Some Steps in Conducting a Sampling Study

Some (though assuredly not all) steps you may want to consider in conducting a sampling study follow.

Develop the Operational Plan

The operational plan lays out the practical details of how the study will be conducted. A flow chart
detailing the steps that need to be done, who will do them and the schedule for doing them will facilitate
the plan.

Prepare the Initial Design of the Study

Follow the steps outlined in the previous section.

Develop the Data Collection Instruments

In a survey this means questionnaire preparation and instruction and training of interviewers. In other
sampling studies it means developing the sampling instructions for technicians, data collection sheets,
etc.
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Conduct a Pilot Study

The importance of this cannot be over-emphasized. A pilot study is a small sampling study conducted
before the main study. A pilot study will enable you to:

1. Get the bugs out of the whole operation. By conducting a pilot study, you will find out which
parts of the operational plan work and which don’t. You can then revise the plan as necessary for
the main study.

2. Obtain valuable information on population parameters. For example, you may obtain estimates of
population variances needed to determine sample sizes.

The pilot study should be small enough to allow adequate resources for the main study, but large
enough to yield useful information.

Revise as Necessary

Using the results of the pilot study, you should now revise the study design, the study instruments and
the operational plan.

Conduct and Analyze the Main Study

Now is the time when all the planning pays off. Once the data are obtained, they need to be entered
into the computer and analyzed. Then conclusions are drawn. The work culminates in a final report.

16.10 Binomial and Hypergeometric Distribution Models (Op-
tional)

This section draws a comparison between sampling from an infinite population (or equivalently sampling
with replacement from a finite population) and sampling without replacement from a finite population.
The discussion will lead you to an understanding of where the FPC comes from (though it will be given
by a slightly different formula).

First, we make a fundamental observation with regards to the binomial model. This is really an
illustration of the basic difference between sampling from a finite population and an infinite population
(i-e., the difference between N finite and N infinite).

Consider N balls in an urn with M red balls and N — M white ones. We take n balls at random
without replacement (i.e., once a ball is chosen it is not put back in the urn for subsequent draws). What
is the distribution model for Y, the number of red balls obtained? If N is infinite, and the proportion
of red balls in the urn is p, then Y ~ b(n, p) (i.e., Y follows the binomial distribution model).

In terms of the discussion in Chapter 4, if N is infinite, the number of red balls in n draws from the
urn without replacement satisfies the conditions of a binomial experiment:

1. There are n independent trials (i.e. draws).

2. At each trial there are two possible outcomes, “success” (here, a red ball) and “failure” (here, a

white ball).
3. The chance of a success is p at each draw.

It is item 3 that is crucial here. The reason the chance of a success is p at each draw is that the proportion
of red balls in the urn is p at each draw. And the reason this proportion remains the same as more draws
are taken is that N, the number of balls in the urn is infinite, so drawing one (or n) balls does not alter
the proportion.

Recall from Chapter 4 that the b(n, p) distribution has probability mass function

p(y) = ( Z )py(l -p)7?
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where y = 0,1,2,...,n. Recall also the interpretation of p(y) as the proportion of all samples of size n
from the population which have Y = y red balls. Finally, recall from Chapter 4 that the mean of the
b(n,p) distribution model is np and the variance is np(l — p).

If N is finite, the b(n, p) model is incorrect. This is because item 3 above is no longer satisfied. To
see this, suppose there are N = 5 balls in the urn and that 3 of them are red. On the first draw, the
chance of drawing a red ball is 3/5. On the second draw, however, it is either 2/4 (if the first draw
resulted in a red ball) or 3/4 (if the first draw resulted in a white ball).

In the case of finite N, the number of red balls, Y, obtained in n draws without replacement from an
urn containing M red balls and N — M white balls follows the hypergeometric distribution model,
and we write Y ~ H(N, M,n). The proportion of all samples of size n from the population which have

Y = y red balls is
() ()
Y n—-y
N
n

where max(0,n — (N — M)) < y < min(n, M). Here, max stands for maximum and min stands for
minimum.

Consider the H(N, M, n) distribution model, and let p = M/N, the initial proportion of red balls in
the urn. For this H(N, M, n) distribution model, the mean is np just as it is for the b(n, p) distribution
model. However, in contrast to the np(l — p) for the b(n, p) model, the variance of this H(N, M,n)
model is

p(y) =

(N —n)
———=np(l — p).
(N_l)np( p)
The quantity
N-—-n
f=5—71

called the finite population correction, is the factor by which the variability in sampling from a finite
population is smaller than the variability in sampling from an infinite population. What becomes of the
finite population correction and the variance of the H(N, M, n) model as the number of balls in the urn,
N, goes to infinity?

Discussion Questions

1. Give the meaning of the following terms:

Target population

SN

Population units

Census

/o

Sample, judgment sample, probability sample
Frame

Sampling study, sample survey

R = O

Simple random sample

h. Unbiased estimator
2. Tell how to compute the following, and what each means:

a. Population total, mean, variance, standard deviation, proportion

b. Sampling fraction, finite population correction

3. Tell how to estimate the population total, mean, variance, and proportion in large simple random
samples.
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10.
11.
12.
13.
14.
15.
16.
17.
18.

Tell how to determine the size of a SRS need to attain a precision d with confidence L.
Explain the ideas behind stratified random sampling.

Tell how to estimate the population total, mean, variance, and proportion in large stratified random
samples.

What is optimal allocation? Proportional allocation?
When does stratification produce large gains in precision?
Explain post-stratification.

What is an auxiliary variable?

Explain ratio and regression estimation.

Explain cluster sampling.

What are PPS and PPES?

What is multi-stage sampling?

What is systematic sampling? How is it connected to stratified sampling and cluster sampling?
What is double sampling, and when is it used?

Describe the steps in designing a sampling study.

Describe the steps in conducting a sampling study.

Exercises

16.1.

16.2.

16.3.

The student body of a small technical institute consists of 2600 undergraduates. Assume you are
a student at this institute.

a. A simple random sample of size 260 is to be taken. Can you tell what your chance is of being
included in this sample? If so, what is it? If not, why not?

b. A stratified random sample of size 260 is to be taken. Can you tell what your chance is of
being included in this sample? If so, what is it? If not, why not?

A SRS of size n was taken from the 2600 undergraduates at the technical institute mentioned in
exercise 16.1. It was desired to estimate the proportion p of the undergraduates who favor the
building of a student center whose operation will be partially supported by an increase in student
fees. The investigators have no knowledge of what p is. What is the smallest sample size they can
take in order to be certain of estimating to within 3 percentage points with 95% confidence?

The investigators mentioned in exercise 16.2 who were conducting the survey to estimate the
proportion p of the 2600 undergraduates who favor building a student center thought that seniors,
who would graduate soon, would have a different view than freshmen. So they decided to do
a stratified random sample with classes (freshmen, sophomore, junior and senior) as the strata.
Assume the numbers in the freshmen, sophomore, junior and senior classes are 600, 650, 650 and
700 respectively, that the numbers sampled were 60, 75, 85 and 65 respectively, and that the
numbers favoring the center were 55, 50, 57 and 30 respectively.

a. Obtain an unbiased estimate of the proportion of freshmen who favor a student center. Con-
struct and interpret a 90% confidence interval for the proportion of freshmen who favor a
student center.

b. Do the same for the seniors.
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16.4.

16.5.

16.6.

16.7.

16.8.
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c. Obtain p,;. Explain what it means here. Construct and interpret a 90% confidence interval,
based on ps¢, for the proportion of undergraduates who favor a student center.

Table 16.5 displays the heights in inches of the members of the Cleaver family. Money is a little
tight with the Cleavers this year, so they can afford physicals for only three family members.
Therefore Doctor Kildare, their family doctor, selects a SRS of size three to receive physicals. At
the physical the sample of Cleavers learn their official heights. Ward is anxious to estimate the
mean family height from this sample.

a. What is the population here?
b. What are p and o2?

c. By writing out all samples of size three from the population, show that § is an unbiased
estimator of p.

Family Member Height

Ward 71
June 64
Wally 65
Beaver 55

Table 16.5: Heights of the Cleaver Family

The town in which I live has 2,500 voters. It is desired to take a SRS from these voters in order
to estimate the proportion who will vote in the next election.

a. How large a sample would I have to take in order to be assured that with 95% confidence the
estimate will be accurate to within +3%?

b. An SRS of size 1000 is actually taken and 850 of the 1000 voters questioned said that they
intend to vote in the next election. Estimate the true proportion p of voters who will vote in
the next election. Calculate and interpret a 95% confidence interval for p.

A population consists of 4 households. A SRS of size 3 is to be taken and the respondents asked how
many members are in their household. The population units are numbered 1 to 4 and the household
sizes are 1, 5, 2, and 6 respectively. You know that the sample mean is an unbiased estimator
of the population mean household size. By writing out all samples of size 3 and computing the
median of each, verify that the sample median is an unbiased estimator of the population median.

Estimate the total number of individuals in all households in the population of the previous prob-
lem, by computing a 95% confidence interval based on a sample consisting of units 1, 2 and 4.
Assume the normal theory interval will be adequate despite the small sample size.

A salary survey of recent (i.e. over the past five years) management graduates of four local four
year colleges was recently conducted. A simple random sample was taken at each of the colleges
and the resulting data were obtained:

Measure College 1 | College 2 | College 3 | College 4
Number in population 720 550 490 390
Number in sample 50 40 30 20

Mean salary (in $10,000) | 3.2 2.8 3.7 2.4
Sample SD .6 .8 1.1 .5

a. Find a 99% confidence interval for the mean salary for all recent management graduates from
college 1.
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16.9.

16.10.

16.11.

16.12.

16.13.

16.14.

16.15.

b. Find an estimate of the mean salary of all recent management graduates of the four colleges
using an unbiased estimation procedure.

c. Find a 90% confidence interval for the mean salary of all recent management graduates of the
four colleges. Interpret this interval.

Each year the Internal Revenue Service Auditing Division samples tax returns for a full audit. One
of the aims of these audits is to estimate the dollar amount of shortfall in the tax system.

A simple random sample of size 200 from all tax returns at a regional IRS office is taken and the
returns in the sample are subjected to a complete audit. The table below summarizes the data.
The data in the table are divided into four post-strata based on declared adjusted gross income.
The totals in each stratum for the variable of interest, tax shortfall, are given. Based on these
numbers, do you think post-stratification will greatly increase precision? Would you recommend
that the IRS continue taking simple random samples in the future?

Declared Tax
Income Shortfall Number
($ 1000s) ($ 1000s) (ni)
Over 200 525 15
100 to 200 481 29
50 to 100 217 48
Under 50 86 108

Design a sampling scheme for IRS audits. Explain why yours is a better choice than other possi-
bilities.

Consider the problem of sampling trees in a certain forest to estimate the volume of lumber in
harvestable trees in that forest. Devise a workable sampling scheme for this task. State what
information your scheme requires. Justify your choice by explaining why it is more workable than
other methods.

A survey of student attitudes is to be conducted at a well-known college. Because of limited
resources, the investigators decided to obtain a frame of all classes and then select a SRS of these
classes. In each selected class a census was taken. Is this single stage cluster sampling? Why or
why not?

A national political survey seeks to estimate the proportion p of all eligible voters who favor a
certain government policy. A SRS is to be used. Suppose that there are 175 million eligible voters
and it is desired to estimate p to within 40.03 with 95% confidence. Can you tell exactly how
large the sample must be? If not, can you give an upper bound on the sample size needed?

(For students who have a knowledge of simple linear regression.) Obtain the regression estimate
and its estimated variance for the tree data in Example 16.6. Compare the results with those for
ratio estimation and for estimation if the tree diameters are ignored.

Compute 5';;;55 for the data in Example 16.8.

Mini-Project: Do Your Own Survey

Purpose

Your group’s task in this project is to plan, conduct and analyze your own survey.
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Process

Before designing and conducting your survey, submit a short (one page or less) proposal for your instruc-
tor’s approval. The proposal should state what question(s) you want answered, what kind of instrument
you will use, what kind of sampling design you will use, and what analysis you intend to conduct. Your
instructor will discuss the proposal with your group, and may suggest modifications.

After your group’s proposal has been approved, proceed to collect the data and use any of the
techniques discussed in this chapter that are appropriate.
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Lab 16.1: Explore Simple Random Sampling

Introduction

By having you look at the nuts and bolts of the sampling process for a simple example, this lab demon-
strates the notions involved in sampling and estimation for simple random samples from a finite popu-
lation.

Objectives

To give you an understanding of how sampling and estimation work for simple random samples from a
finite population.

Lab Materials

None needed.

Experimental Procedure

The first two columns of Table 16.6 show all ( 8 = 28 possible samples of size two from the population

2
in Table 16.1 of Chapter 16. The third column shows the measured emissions for each unit in the sample,
and the fourth and fifth columns show the sample mean and variance for the measured emissions in each
sample. The sixth column shows the values of the compliance variable for each unit in the sample, and
the seventh column displays the sample proportion of units in compliance.
Under simple random sampling, each of these 28 possible samples has equal chance of being chosen.
These data are found in the data set EMISS1.

Unbiasedness

Compute the mean of YBAR. You will find that it equals 95.625, which is the value of u, the population
mean. In other words, the mean of the sample means for all possible samples equals the population
mean. This shows that ¥ is an unbiased estimator of pu.

How would you check that for these data, s? is an unbiased estimator of ¢2? That p is an unbiased
estimator of p? Do so now for both of these

Finite Population Correction

Now compute the variance of YBAR in the data set EMISS1. However, when computing this variance,
do not use the formula

1 28

28-1:4

(T — w)?,

which is the default in SAS/INSIGHT, but rather the formula

To do this, choose Analyze:Distribution ( Y ) from the menu bar of the data window. From the
dialog window, choose YBAR as the Y variable, then click on the “Method” button, and choose N’
instead of 'DF’ as the variance divisor.

The variance you obtain for YBAR is 58.0647. Verify that this is 0.75 x (154.839)/2 (i.e. ((1—n/N)x
o?/n). This shows the validity of the formula for the variance of § involving the FPC.
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Sample Engines  Emissions y s% Compliance p
Number in Sample in Sample in Sample
1 21 78 90 84.0 72.0 11 1.0
2 31 101 90 955  60.5 01 0.5
3 32 101 78 89.5 264.5 01 0.5
4 41 95 90 925 125 11 1.0
5 42 95 78 86.5 1445 11 1.0
6 43 95 101 98.0 18.0 10 0.5
7 51 92 90 91.0 2.0 11 1.0
8 52 92 78 85.0 98.0 11 1.0
9 53 92 101 96.5 40.5 10 0.5
10 54 92 95  93.5 4.5 11 1.0
11 61 121 90 105.5 480.5 01 0.5
12 62 121 78 99.5 9245 01 0.5
13 63 121 101 111.0 200.0 00 0.0
14 64 121 95 108.0 338.0 01 0.5
15 6 5 121 92 106.5 420.5 01 0.5
16 71 89 90 89.5 0.5 11 1.0
17 72 89 78 83.5 60.5 11 1.0
18 73 89 101 95.0 72.0 01 0.5
19 74 89 95 92.0 18.0 11 1.0
20 75 89 92  90.5 4.5 11 1.0
21 76 89 121 105.0 512.0 10 0.5
22 81 99 90 94.5  40.5 11 1.0
23 82 99 78  88.5 220.5 11 1.0
24 83 99 101 100.0 2.0 10 0.5
25 84 99 95  97.0 8.0 11 1.0
26 85 99 92 955 245 11 1.0
27 86 99 121 110.0 242.0 10 0.5
28 87 99 89 94.0 50.0 11 1.0

Table 16.6: All samples of size 2 from emission population

Lab 16.2: Explore Stratification

Introduction

By having you look at the nuts and bolts of the sampling process for a simple example, this lab demon-
strates the notions involved in sampling and estimation for stratified random samples from a finite
population. It also demonstrates the gains that may be obtained from stratification, and compares
optimal and proportional allocation.

Objectives

To give you an understanding of how sampling and estimation work for stratified random samples from
a finite population. To demonstrate the gains that may be obtained from stratification. To compare
optimal and proportional allocation.

Lab Materials

None needed.
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Experimental Procedure

Look at the data set FIRMS. As explained in the chapter, these are the number of employees of 115
multinational corporations. The firms are arranged in two strata, the first containing the 94 firms with
fewer than 100,000 employees, and the second the remaining 21 firms.

Assume that these 115 firms are the population about which inference is to be made. Assume also
that $10,000 is available to sample from this population, and that you are to spend as close to the full
$10,000 as possible. Your goal is to use a sample to estimate the total number of employees in the firms
in the population. Begin by assuming that regardless of the size of the firm, it costs $400 to sample a
single firm.

1. Calculate N, n, f, Y p, and o. Also, for : = 1, 2 calculate N;, Y;, ui, and o;.

2. Calculate n; and f;,7 = 1,2 when sampling under optimal allocation. Do the same when sampling
under proportional allocation.

3. Calculate the standard deviation of ¥ under SRS, optimal allocation and proportional allocation.
Which type of estimation is most precise? Which is least precise? What are their relative mag-
nitudes? (Note: in computing the variance of Y,: use the actual population variances instead of
variances estimated from a sample).

4. Suppose the cost of sampling a large firm is $900 and the cost of sampling a small firm is $100.
Find n and the optimal allocation. How does it differ from the case in which all firms cost the
same amount to sample?



