
Predicting a Future Observation

We have seen how to use a sample from a population to estimate the population mean µ, and how
to quantify the uncertainty in that estimate by use of a confidence interval. Suppose instead that our
interest is in using that sample to predict the value of a new observation to be taken from that population
and to quantify the uncertainty in that prediction. In this presentation we will develop the statistical
prediction tools for a population that follows a normal distribution with mean µ and variance σ2 (i.e. a
N(µ, σ2) distribution).

Suppose to begin with, that we know µ, and that we use µ to predict the future observation. Call this
future observation ynew. Since it comes from the same population, ynew has a N(µ, σ2) distribution as
well. The error in using µ to predict ynew will be ynew−µ = εnew, which follows a N(0, σ2) distribution.
Note that even if we know µ, there is still uncertainty in predicting ynew.

Of course, in reality we don’t know µ, so we estimate it using µ̂ = y. When using µ̂ to predict a future
observation, we’ll call it ŷnew. This is the point predictor.

We would also like a measure of how precise the prediction is. We measure this using the standard
error of prediction, σ(ynew − ŷnew), which is computed as follows.

When using ŷnew to predict a new observation, the prediction error is

ynew − ŷnew = (µ+ εnew)− ŷnew = (µ− ŷnew) + εnew. (1)

The term (µ− ŷnew) in the rightmost expression of (1) equals (µ− µ̂) and is the error due to using µ̂ to
estimate µ. Its variance is the variance of µ̂ = y, which, as we know, is σ2/n. The second term, εnew,
is the random error inherent in ynew. Its variance, as we saw above, is σ2. Since ŷnew, being computed
from the current data, is independent of the new observation ynew, the variance of ynew − ŷnew is the
sum of the variances of (µ− ŷnew) and εnew. That is,
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Now, of course, we rarely know σ2, so we use the sample variance, s2, to estimate it, which gives the
estimated standard error of prediction
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It turns out that

t =
ynew − ŷnew

σ̂(ynew − ŷnew)

has a tn−1 distribution. Therefore,
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It follows that a level L prediction interval for a future observation is
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As with confidence intervals for a model parameter, the interpretation of a prediction interval is based
on repeated samples from the given population. Suppose for each sample a level L prediction interval
is computed, and that a new observation is then taken from the population. A proportion L of all
constructed intervals will contain their corresponding new observation.



A Caution

As we have previously seen, the Central Limit Theorem helps insure that, even if the population does
not follow a normal distribution, in practice confidence intervals for the mean will still be valid if the
sample size is not small. That is no longer true for prediction intervals, since the distribution of a single
future observation will not be affected no matter how large a sample is used for prediction.

Example

A researcher at a biotechnology company is testing an artificial pancreas on laboratory rats. She gives
four diabetic rats, who have had this pancreas implanted, an initial dose of glucose in solution and then
measures their blood-sugar levels (serum/plasma glucose, mg/100ml) after one hour. The data are

266 149 161 220

We will use the artificial pancreas data to construct a 95% prediction interval for a future observation.
From the data, we obtain the

ŷnew = y = 199, s2 = 2958

From this, we compute the estimated standard error of prediction:
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3697.5 = 60.8.

Since
tn−1, 1+L

2
= t3,0.975 = 3.18,

the desired interval is

(199− (60.8)(3.18), 199 + (60.8)(3.18)) = (5.6, 392.4).

Notice that this 95% prediction interval for a future observation is much wider than the classical 95% con-
fidence interval for µ. The extra width reflects the extra uncertainty involved in obtaining a completely
new observation from the population.

In interpreting this interval, the researcher can say: “Suppose I obtain another rat (i.e., a rat not in the
sample of four rats) with the artificial pancreas. Suppose that I measure the blood sugar level of this
rat one hour after the ingestion of the glucose solution. I predict with 95% confidence that the blood
sugar level of this new rat will fall between 5.6 and 392.4. My confidence rests in my use of a method
to compute this interval which will produce an interval containing the blood sugar level of a new rat in
95% of all possible identically-run experiments.”


