Summarizing Data 1

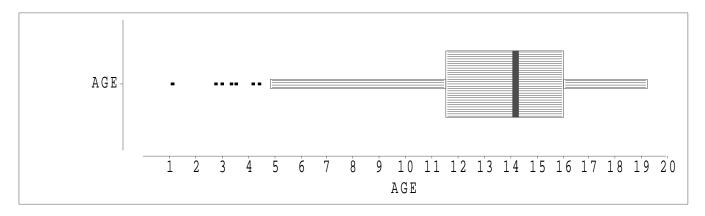
SUPPLEMENTARY EXERCISES, CHAPTER 2

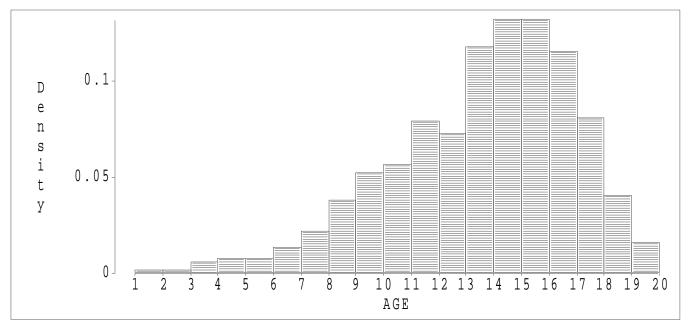
SUMMARIZING DATA

S2.1. Figure 1 shows output from a SAS/INSIGHT distribution analysis of the ages at death of 492 dogs. The units are years.

- a. Describe the distribution of the ages as displayed in the histogram.
- b. Choose one appropriate summary measure of "center" of the distribution. Give its interpretation.
- c. Is the mean an appropriate measure of the "center" of the distribution? Why or why not?
- d. Choose one appropriate summary measure of spread of the distribution. Describe what it means,
- e. Is the standard deviation an appropriate measure of the spread of the distribution? Why or why not?
- f. If you have to give a measure, based on this distribution output, to predict the age at death of a dog, what would it be? Why did you choose this measure?
- S2.2. If a data distribution is symmetric, you know that the mean equals the median. Is the converse true: that is, if the mean of a data distribution equals its median, must the distribution be symmetric? Prove it's true or give an example to show it isn't.
- S2.3. The half-life of a piece of uranium is the amount of time it takes for half the uranium atoms to decay. Suppose you have a data set consisting of the time to decay of each atom in a piece of uranium. What statistical measure of location for these times corresponds to the half-life of the uranium? Explain why.
- S2.4. Figure 2 displays a histogram of a set of data from a stationary process. Your friend, Bill says, "I like box and whisker plots better than histograms, so I'll use one to present these data."
 - a. Bill asks your opinion of his idea. What do you tell him? Explain your reasoning.
 - b. Summarize these data using appropriate measures.
- S2.5. The lower curve in Figure 3 is a line plot of the median salaries, in 1983 dollars, of major league baseball players for the 1983 through 1998 seasons. The upper curve is a line plot of the corresponding mean salaries.
 - a. Based on the plot of the medians, would you conclude that the process that produces baseball salaries is stationary? What is your answer if you base your conclusion on the plot of the means? Justify your answers.
 - b. Give a plausible explanation for what might be happening to the distribution of baseball salaries to account for the increasing means and level medians.
- S2.6. Figure 4 displays four frequency histograms, each constructed from a different data set of 200 observations. Each has mean 8.42. Which histogram, that graphing Y1 (upper left), Y2 (lower left), Y3 (upper right) or Y4 (lower right), has quartiles $Q_1 = 8.09$, $Q_2 = 9.00$, $Q_3 = 9.44$? Justify your answer.
- S2.7. The scores on a recent test in an upper level math course were: 90 80 95 85 40 100 39 95 45 100 30.
 - a. Obtain the five number summary of these data and construct a box and whiskers plot.
 - b. Do you feel that the five number summary and the box and whiskers plot adequately summarize these data? If so, tell why. If not, tell why not, and give a better summary.
- S2.8. Look at Figure 5, and suppose the data were produced by a stationary process.
 - a. What explanation can you give for the pattern you see?
 - b. Summarize the pattern of variation with appropriate measures.
- S2.9 The Gross Domestic Product (GDP) of the United States for the years 1986-1999 is given in the table 1 (units are billions of 1996 dollars).

Y	ear	GDP	Year	GDP
19	986	5912.4	1993	7062.6
19	987	6113.3	1994	7347.7
1	988	6368.4	1995	7543.8
1	989	6591.8	1996	7813.2
1	990	6707.9	1997	8144.8
1	991	6676.4	1998	8495.7
1	992	6880.0	1999	8848.2


Table 1: Gross Domestic Product (GDP) of the United States for the years 1986-1999.


- a. Draw an appropriate graphical summary of these data. Explain why your summary is appropriate. What conclusion do you draw from your summary?
- b. Ichiro claims that the data are well summarized by their mean $\overline{y} = 7179.0$ and standard deviation s = 891.7. Do you agree? Give your reasons.
- S2.10. Figure 6 shows a frequency histogram, box plot and summary measures of monthly sales of tobacco and tobacco products from January, 1971, through December, 1991.
 - a. Before trying to use the graphs and measures in Figure 6 to summarize the data, what other plot would you make? Why?
 - b. Assuming the graphs and measures in Figure 6 are appropriate to summarizing these data, give a verbal and numerical summary.
 - c. Calculate the mode in the manner described in the book.¹
 - d. If you had to predict the value of a new monthly sales figure based on the histogram, what value would you choose? Why?

¹If you have done the calculation correctly, your value for the mode should differ from the value, 1009, given in the SAS output. The value 1009 is the SAS mode since it occurs three times among the 252 data values. No other single value occurs more than twice. this should suggest the meaninglessness of the usual definition of the mode.

Summarizing Data 3

Moments						
N Mean Std Dev Skewness USS	492.0000 13.5702 3.3328 -0.7746 96056.4165	Sum Wgts Sum Variance Kurtosis CSS	492.0000 6676.5587 11.1077 0.3785 5453.9031			

Quantiles							
100% 75% 50% 25%	Max Q3 Med Q1 Min Range Q3-Q1	19.2290 16.0234 14.1796 11.5154 1.1335 18.0955 4.5080	99.0% 97.5% 95.0% 90.0% 10.0% 2.5%	19.1396 18.4611 18.1236 17.3965 8.8893 7.5627 5.8676			
	Mode	1.1335	1.0%	3.5704			

Figure 1: Output from SAS/INSIGHT distribution analysis of ages of dogs at death.

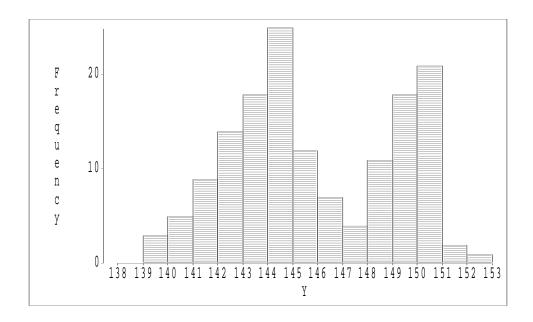


Figure 2: Histogram for exercise S2.4.

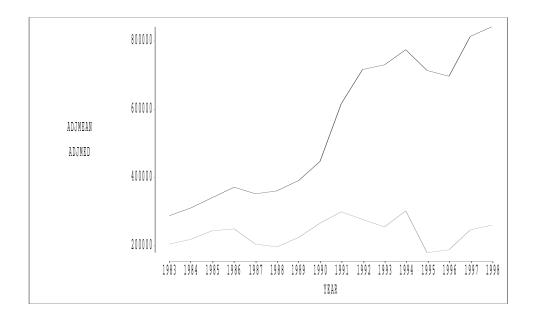


Figure 3: Line plot of the median (lower curve) and mean salaries (in 1983 dollars) of major league baseball players for the 1983 through 1998 seasons.

Summarizing Data 5

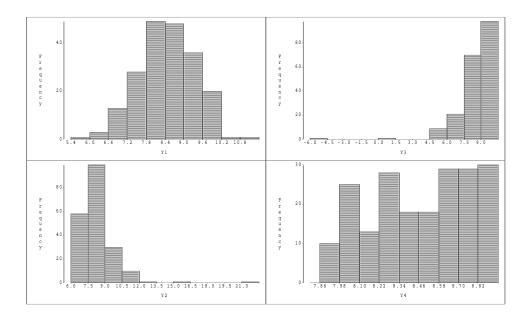


Figure 4: Four frequency histograms for exercise S2.6.

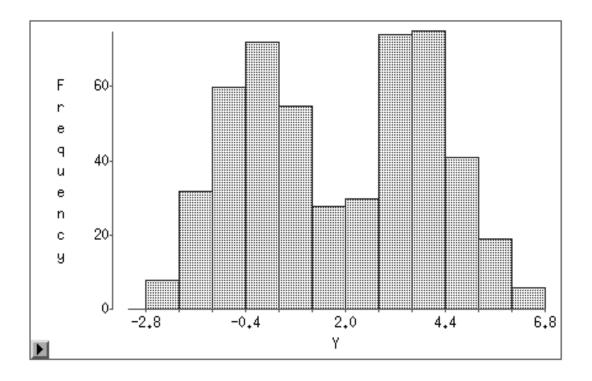


Figure 5:

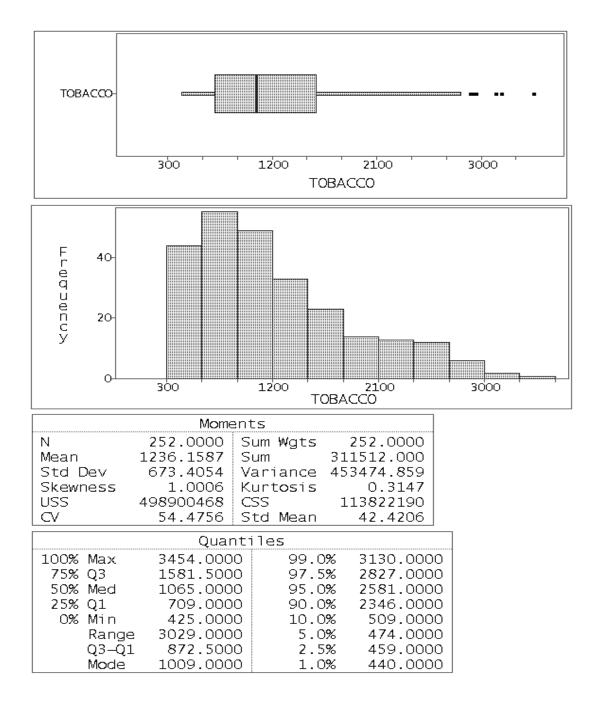


Figure 6: Frequency histogram of monthly sales of tobacco and tobacco products from January, 1971, through December, 1991.