

We have conducted hypothesis tests by computing a p-value to measure the evidence against H_0 and in favor of H_a . When we wanted to conduct the tests at a fixed level of significance, α , we first computed the p-value and rejected H_0 if and only if the p-value was less than α .

We have conducted hypothesis tests by computing a p-value to measure the evidence against H_0 and in favor of H_a . When we wanted to conduct the tests at a fixed level of significance, α , we first computed the p-value and rejected H_0 if and only if the p-value was less than α .

An alternative way to conduct a test at a fixed level of significance is to determine which values of the test statistic will lead to rejection of H_0 in favor of H_a . Here are the steps involved, illustrated using the LDL reduction example:

 \approx

1. Specify hypotheses to be tested.

 $\begin{array}{rrrr} H_0: & \mu & = & 0 \\ H_a: & \mu & > & 0 \end{array}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

(i.e. $\mu_0 = 0$)

1. Specify hypotheses to be tested.

 $\begin{array}{rcccc} H_0: & \mu & = & 0\\ H_a: & \mu & > & 0 \end{array}$

 \approx

(i.e. $\mu_0 = 0$)

2. Set the significance level α . Usual choices are 0.10, 0.01 or 0.05. We'll choose the latter.

3. Specify the (standardized) test statistic and it's distribution under H_0 . The standardized test statistic is

$$t = \frac{\overline{y} - \mu_0}{s/\sqrt{n}} = \frac{\overline{y} - 0}{15.45/\sqrt{10}},$$

 \approx

and under H_0 it has a $t_{n-1} = t_9$ distribution.

4. Find the critical region of the test. The critical region of the test is the set of values of the (standardized) test statistic for which H_0 will be rejected in favor of H_a . Here, H_a tells us that the critical region has the form

$$[t_{n-1,1-\alpha},\infty) = [t_{9,0.95},\infty) = [1.8331,\infty),$$

meaning H_0 will be rejected if and only if the observed value of *t* is greater than or equal to 1.8331.

 \approx

5. **Perform the test.** For the LDL example, the observed value of *t* is

$$t^* = \frac{21.19 - 0}{15.45/\sqrt{10}} = 4.337,$$

which falls in the critical region, so H_0 is rejected in favor of H_a .

 \approx

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

In a fixed significance level test, power is the proportion of all samples for which H_0 will be rejected in favor of H_a . Power will vary for different values of the parameter being tested, so it is written as a function of that parameter.

Example: A random sample of size *n* is taken from a $N(\mu, 25)$ population. We want to test $H_0: \mu = 10$ versus $H_a: \mu < 10$ at the 0.05 level of significance using a fixed significance level test.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example: A random sample of size *n* is taken from a $N(\mu, 25)$ population. We want to test $H_0: \mu = 10$ versus $H_a: \mu < 10$ at the 0.05 level of significance using a fixed significance level test.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The test statistic is \overline{y} , which under H_0 has distribution N(10, 25/n), where *n* is the sample size.

Example: A random sample of size *n* is taken from a $N(\mu, 25)$ population. We want to test $H_0: \mu = 10$ versus $H_a: \mu < 10$ at the 0.05 level of significance using a fixed significance level test.

The test statistic is \overline{y} , which under H_0 has distribution N(10, 25/n), where *n* is the sample size.

The form of H_a tells us that small values of \overline{y} should lead to rejection of H_0 , which means small values of the standardized statistic $z = (\overline{y} - 10)/(5/\sqrt{n})$ should lead to rejection.

Example: A random sample of size *n* is taken from a $N(\mu, 25)$ population. We want to test $H_0: \mu = 10$ versus $H_a: \mu < 10$ at the 0.05 level of significance using a fixed significance level test.

The test statistic is \overline{y} , which under H_0 has distribution N(10, 25/n), where *n* is the sample size.

The form of H_a tells us that small values of \overline{y} should lead to rejection of H_0 , which means small values of the standardized statistic $z = (\overline{y} - 10)/(5/\sqrt{n})$ should lead to rejection.

Since $Pr(z \le z_{0.05}) = Pr(z \le -1.645) = 0.05$, the rejection region is defined by $(\overline{y} - 10)/(5/\sqrt{n}) \le -1.645$, which after some algebra, becomes $\overline{y} \le 10 - (1.645)(5)/\sqrt{n}$.

 \approx

To compute the power of this test, we need to evaluate the proportion of all samples which lead to rejection when the true population mean is μ .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

To compute the power of this test, we need to evaluate the proportion of all samples which lead to rejection when the true population mean is μ .

We'll write this as

$$\Pi(\mu) = Pr_{\mu}(\text{reject } H_0) = Pr_{\mu}(\overline{y} \le 10 - (1.645)(5)/\sqrt{n}),$$

 \approx

for all values $\mu < 10$.

We evaluate by standardizing:

$$\Pi(\mu) = \Pr_{\mu} \left(\frac{\overline{y} - \mu}{5/\sqrt{n}} \le \frac{10 - (1.645)(5)/\sqrt{n} - \mu}{5/\sqrt{n}} \right)$$

= $\Pr(z \le \sqrt{n}(10 - \mu)/5 - 1.645).$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

We evaluate by standardizing:

$$\begin{aligned} \Pi(\mu) &= \Pr_{\mu}\left(\frac{\overline{y}-\mu}{5/\sqrt{n}} \leq \frac{10-(1.645)(5)/\sqrt{n}-\mu}{5/\sqrt{n}}\right) \\ &= \Pr(z \leq \sqrt{n}(10-\mu)/5 - 1.645). \end{aligned}$$

For any value of μ , $\Pi(\mu)$ can be computed using online applets, statistical software, a calculator or a table of the normal distribution.

 \approx

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

For instance, if n = 16 and $\mu = 7$, we get

$$\Pi(\mu) = \Pr(z \le \sqrt{n}(10 - \mu)/5 - 1.645)$$

= $\Pr(z \le \sqrt{16}(10 - 7)/5 - 1.645)$
= $\Pr(z \le 0.755) = 0.775$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

For instance, if n = 16 and $\mu = 7$, we get

$$\Pi(\mu) = \Pr(z \le \sqrt{n}(10 - \mu)/5 - 1.645)$$

= $\Pr(z \le \sqrt{16}(10 - 7)/5 - 1.645)$
= $\Pr(z \le 0.755) = 0.775$

Here is a plot of the power functions, $\Pi(\mu)$ for n = 16 and n = 32:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Figure: 2: Power of the one-sided test.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへぐ

Consider again the random sample of size *n* is taken from a $N(\mu, 25)$ population. We will find a formula for the rejection region of a fixed significance level test of $H_0: \mu = 10$ versus $H_a: \mu \neq 10$ at the 0.05 level of significance. The rejection region is defined by the absolute value of the standardized test statistic exceeding a specified value.

 \approx

To define the rejection region, We need to find a value A so that $Pr(|z| \ge A) = 0.05$, where $z = (\overline{y} - 10)/(5/\sqrt{n})$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

To define the rejection region, We need to find a value A so that $Pr(|z| \ge A) = 0.05$, where $z = (\overline{y} - 10)/(5/\sqrt{n})$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Since $z \sim N(0, 1)$, $A = z_{0.975} = 1.96$.

To define the rejection region, We need to find a value A so that $Pr(|z| \ge A) = 0.05$, where $z = (\overline{y} - 10)/(5/\sqrt{n})$.

Since $z \sim N(0, 1)$, $A = z_{0.975} = 1.96$.

Therefore, the rejection region is defined by $|(\overline{y} - 10)/(5/\sqrt{n})| \ge 1.96$, which, after some algebra, specifies rejection if and only if $\overline{y} \ge 10 + (1.96)(5)/\sqrt{n}$ or $\overline{y} \le 10 - (1.96)(5)/\sqrt{n}$.

 \approx

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

We will now find a formula for the power function of this test. Remember the specifics:

We will now find a formula for the power function of this test. Remember the specifics:

• \overline{y} is the mean of a sample of size *n* taken from a $N(\mu, 25)$ population.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

We will now find a formula for the power function of this test. Remember the specifics:

- \overline{y} is the mean of a sample of size *n* taken from a $N(\mu, 25)$ population.
- A level 0.05 test of H_0 : $\mu = 10$ versus H_a : $\mu \neq 10$ rejects H_0 if and only if

$$\overline{y} \geq 10 + (1.96)(5)/\sqrt{n} \text{ or } \overline{y} \leq 10 - (1.96)(5)/\sqrt{n}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The power function is

$$\begin{aligned} \Pi(\mu) &= \Pr_{\mu}(\text{reject } H_{0}) \\ &= \Pr_{\mu}(\overline{y} \leq 10 - (1.96)(5)/\sqrt{n}) + \Pr_{\mu}(\overline{y} \geq 10 + (1.96)(5)/\sqrt{n}) \\ &= \Pr(z \leq \sqrt{n}(10 - \mu)/5 - 1.96) \\ &+ \Pr(z \geq \sqrt{n}(10 - \mu)/5 + 1.96) \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The power function is

$$\begin{split} \Pi(\mu) &= Pr_{\mu}(\text{reject } H_{0}) \\ &= Pr_{\mu}(\overline{y} \leq 10 - (1.96)(5)/\sqrt{n}) + Pr_{\mu}(\overline{y} \geq 10 + (1.96)(5)/\sqrt{n}) \\ &= Pr(z \leq \sqrt{n}(10 - \mu)/5 - 1.96) \\ &+ Pr(z \geq \sqrt{n}(10 - \mu)/5 + 1.96) \end{split}$$

 \approx

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Here's a plot for n = 16 and 32:

Figure: 2: Power of the two-sided test.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

You have seen that the power curve depends on the sample size, n. This means the power function can also be used to specify a sample size. If the researcher specifies a significance level for the test and a desired power at a specified value of the parameter being tested, then using the formulas given, (s)he can find what value of n is needed.

You have seen that the power curve depends on the sample size, n. This means the power function can also be used to specify a sample size. If the researcher specifies a significance level for the test and a desired power at a specified value of the parameter being tested, then using the formulas given, (s)he can find what value of n is needed.

In our example of a test for a population mean μ , the researcher would specify a significance level α and a desired power $\Pi(\mu_0)$ at the particular mean value μ_0 . A minimum sample size *n* to satisfy these requirements would then be obtained.

 \approx

There is an interesting parallel between many hypothesis tests and confidence intervals. Specifically, to each fixed-level hypothesis test we have considered, there corresponds a confidence interval that can be used to conduct the test.

 \approx

As an example, consider the following two inference procedures for a population mean μ , conducted on the same set of data:

• A two-sided level α test of $H_0: \mu = \mu_0$ versus $H_a: \mu \neq \mu_0$.

 \approx

• A level $L = 1 - \alpha$ confidence interval for μ .

The relation can be summarized in two ways:

The relation can be summarized in two ways:

The test will reject H_0 in favor of H_a if and only if μ_0 lies outside the confidence interval, so we can use the confidence interval to conduct the test: just construct the interval and if μ_0 is outside the interval, reject H_0 in favor of H_a .

The relation can be summarized in two ways:

The test will reject H_0 in favor of H_a if and only if μ_0 lies outside the confidence interval, so we can use the confidence interval to conduct the test: just construct the interval and if μ_0 is outside the interval, reject H_0 in favor of H_a .

Similarly, given the level α test of $H_0: \mu = \mu_0$ versus $H_a: \mu \neq \mu_0$, a level $L = 1 - \alpha$ confidence interval for μ consists of all μ_0 values for which the test does not reject H_0 in favor of H_a (this is called "inverting the test").

 \approx

The following quote neatly summarizes the relation between hypothesis tests and confidence intervals:

"... a hypothesis test tells us whether the observed data are consistent with the null hypothesis, and a confidence interval tells us which hypotheses are consistent with the data."

 \approx

-William C. Blackwelder

The relation between hypothesis tests and confidence intervals enables us to do more.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The relation between hypothesis tests and confidence intervals enables us to do more.

First, it gives us an effective small-sample alternative to the large-sample test comparing two population proportions.

Specifically, to test $H_0: p_1 - p_2 = \delta_0$ versus $H_a: p_1 - p_2 \neq \delta_0$ at the α level of significance, we can construct the level $L = 1 - \alpha$ approximate score (Agresti-Coull) confidence interval

$$ilde{p}_1 - ilde{p}_2 \pm z_{(1+L)/2} \sqrt{rac{ ilde{p}_1(1- ilde{p}_1)}{ ilde{n}_1} + rac{ ilde{p}_2(1- ilde{p}_2)}{ ilde{n}_2}},$$

where

$$\tilde{n}_i = n_i + 0.5 z_{(1+L)/2}^2, \ \tilde{p}_i = rac{y_i + 0.25 z_{(1+L)/2}^2}{\tilde{n}_i}, \ i = 1, 2,$$

and reject H_0 if and only if δ_0 is not in the interval.

 \approx

・ロット (雪) (日) (日) (日)

Second, we can create one-sided confidence intervals by inverting tests of one-sided alternative hypotheses.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Second, we can create one-sided confidence intervals by inverting tests of one-sided alternative hypotheses.

For example, consider the test of $H_0: \mu = \mu_0$ versus $H_a: \mu > \mu_0$.

Second, we can create one-sided confidence intervals by inverting tests of one-sided alternative hypotheses.

For example, consider the test of H_0 : $\mu = \mu_0$ versus H_a : $\mu > \mu_0$.

Based on what we have done, a level α test rejects H_0 in favor of H_a if

$$t_{n-1,1-\alpha} \leq \frac{\overline{y} - \mu_0}{s/\sqrt{n}} < \infty.$$

 \approx

After a little algebra, these inequalities are equivalent to

$$-\infty < \mu_0 \leq \overline{y} - \frac{s}{\sqrt{n}} t_{n-1,1-\alpha},$$

giving a level $L = 1 - \alpha$ confidence interval

$$\left(-\infty, \ \overline{y} - \frac{s}{\sqrt{n}}t_{n-1,1-\alpha}\right]$$

 \approx

<□> <□> <□> <□> <=> <=> <=> <=> <<

• The Components of a Statistical Hypothesis Testing Problem

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• The Components of a Statistical Hypothesis Testing Problem *o* The Scientific Hypothesis

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• The Components of a Statistical Hypothesis Testing Problem

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- o The Scientific Hypothesis
- o The Statistical Model

• The Components of a Statistical Hypothesis Testing Problem

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- o The Scientific Hypothesis
- o The Statistical Model
- o The Statistical Hypotheses

• The Components of a Statistical Hypothesis Testing Problem

- o The Scientific Hypothesis
- o The Statistical Model
- o The Statistical Hypotheses
- o The Test Statistic

• The Components of a Statistical Hypothesis Testing Problem

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- o The Scientific Hypothesis
- o The Statistical Model
- o The Statistical Hypotheses
- o The Test Statistic
- o The p-value

• The Components of a Statistical Hypothesis Testing Problem

- o The Scientific Hypothesis
- o The Statistical Model
- o The Statistical Hypotheses
- o The Test Statistic
- o The p-value
- Types of Hypotheses

• The Components of a Statistical Hypothesis Testing Problem

- o The Scientific Hypothesis
- o The Statistical Model
- o The Statistical Hypotheses
- o The Test Statistic
- o The p-value
- Types of Hypotheses
- One and Two-Sided Tests

• The Components of a Statistical Hypothesis Testing Problem

- o The Scientific Hypothesis
- o The Statistical Model
- o The Statistical Hypotheses
- o The Test Statistic
- o The p-value
- Types of Hypotheses
- One and Two-Sided Tests
- The Philosophy of Hypothesis Testing

The Components of a Statistical Hypothesis Testing Problem

 \approx

- o The Scientific Hypothesis
- o The Statistical Model
- o The Statistical Hypotheses
- o The Test Statistic
- o The p-value
- Types of Hypotheses
- One and Two-Sided Tests
- The Philosophy of Hypothesis Testing
- Statistical and Practical Significance

<□> <□> <□> <□> <=> <=> <=> <=> <<

• Specific Hypothesis Testing Problems:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Specific Hypothesis Testing Problems:
 - o 1-Sample Mean, Known Variance

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Specific Hypothesis Testing Problems:
 - o 1-Sample Mean, Known Variance
 - o 1 Sample Mean, Unknown Variance

- Specific Hypothesis Testing Problems:
 - o 1-Sample Mean, Known Variance
 - o 1 Sample Mean, Unknown Variance
 - o 1-Sample Proportion, Exact

- Specific Hypothesis Testing Problems:
 - o 1-Sample Mean, Known Variance
 - o 1 Sample Mean, Unknown Variance
 - o 1-Sample Proportion, Exact
 - o 1-Sample Proportion, Large Sample with Continuity Correction

- Specific Hypothesis Testing Problems:
 - o 1-Sample Mean, Known Variance
 - o 1 Sample Mean, Unknown Variance
 - o 1-Sample Proportion, Exact
 - o 1-Sample Proportion, Large Sample with Continuity Correction

o 2-Sample Mean, Paired Observations

- Specific Hypothesis Testing Problems:
 - o 1-Sample Mean, Known Variance
 - o 1 Sample Mean, Unknown Variance
 - o 1-Sample Proportion, Exact
 - o 1-Sample Proportion, Large Sample with Continuity Correction

- o 2-Sample Mean, Paired Observations
- o 2 Sample Mean, Pooled Variance

- Specific Hypothesis Testing Problems:
 - o 1-Sample Mean, Known Variance
 - o 1 Sample Mean, Unknown Variance
 - o 1-Sample Proportion, Exact
 - o 1-Sample Proportion, Large Sample with Continuity Correction

- o 2-Sample Mean, Paired Observations
- o 2 Sample Mean, Pooled Variance
- o 2 Sample Mean, Separate Variance

- Specific Hypothesis Testing Problems:
 - o 1-Sample Mean, Known Variance
 - o 1 Sample Mean, Unknown Variance
 - o 1-Sample Proportion, Exact
 - o 1-Sample Proportion, Large Sample with Continuity Correction

- o 2-Sample Mean, Paired Observations
- o 2 Sample Mean, Pooled Variance
- o 2 Sample Mean, Separate Variance
- o 2-Sample Proportion, Large Sample

- Specific Hypothesis Testing Problems:
 - o 1-Sample Mean, Known Variance
 - o 1 Sample Mean, Unknown Variance
 - o 1-Sample Proportion, Exact
 - o 1-Sample Proportion, Large Sample with Continuity Correction

- o 2-Sample Mean, Paired Observations
- o 2 Sample Mean, Pooled Variance
- o 2 Sample Mean, Separate Variance
- o 2-Sample Proportion, Large Sample
- Fixed Significance Level Tests

- Specific Hypothesis Testing Problems:
 - o 1-Sample Mean, Known Variance
 - o 1 Sample Mean, Unknown Variance
 - o 1-Sample Proportion, Exact
 - o 1-Sample Proportion, Large Sample with Continuity Correction

- o 2-Sample Mean, Paired Observations
- o 2 Sample Mean, Pooled Variance
- o 2 Sample Mean, Separate Variance
- o 2-Sample Proportion, Large Sample
- Fixed Significance Level Tests
- Power

- Specific Hypothesis Testing Problems:
 - o 1-Sample Mean, Known Variance
 - o 1 Sample Mean, Unknown Variance
 - o 1-Sample Proportion, Exact
 - o 1-Sample Proportion, Large Sample with Continuity Correction

 \approx

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

- o 2-Sample Mean, Paired Observations
- o 2 Sample Mean, Pooled Variance
- o 2 Sample Mean, Separate Variance
- o 2-Sample Proportion, Large Sample
- Fixed Significance Level Tests
- Power
- Hypothesis Tests and Confidence Intervals