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Hypothesis Tests as Statistical Inference

Recall from chapter 5 that statistical inference is the use of a
subset of a population (the sample) to draw conclusions about the
entire population.

There are two main branches of statistical inference: estimation,
which includes the topics of point estimation and confidence
intervals that we studied in chapter 5, and hypothesis tests,
which we will study in the coming days.

To introduce the ideas behind hypothesis testing, we will look at
the same example we used to introduce estimation.
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Hypothesis Testing: An Example

Determining the Effectiveness of a Medication

A pharmaceutical company is testing the effectiveness of a new
cholesterol-lowering medication. Specifically, they want to know if
the medication reduces low density lipoprotein (LDL) level in
people with high LDL.
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Hypothesis Testing: An Example

To do so, the company’s scientists propose the following study.
They will

o Recruit 10 subjects with high levels of LDL cholesterol.

o Make sure the subjects don’t take any cholesterol medication
for two weeks to ensure an accurate baseline measurement.

o Take an initial baseline reading.

o Take a follow-up LDL measurement after the subject has been
30 days on the test medication.
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Hypothesis Testing: An Example

Here are the resulting data:

Subject Baseline Follow-up LDL Decrease

1 160.5 168.1 −7.6
2 195.3 181.4 13.9
3 181.7 154.6 27.1
4 175.1 160.3 14.8
5 198.3 192.0 6.3
6 215.5 173.5 42.0
7 227.9 186.2 41.7
8 201.7 183.2 18.5
9 161.5 130.3 31.2

10 189.0 165.0 24.0
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The Components of a Statistical Hypothesis Testing
Problem

As we did for estimation problems, we will divide a statistical
hypothesis testing problem into five steps

1. The Scientific Hypothesis

2. The Statistical Model

3. The Statistical Hypotheses

4. The Test Statistic

5. The P-Value
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The Components of a Statistical Hypothesis Testing
Problem

1. The Scientific Hypothesis The scientific hypothesis is the
hypothesized outcome of the experiment or study. In this
example, we will take the scientific hypothesis to be that, on
average, the medication does lower LDL levels of people with
high LDL.

2. The Statistical Model The statistical model is the
distribution of the population of measurements that are being
taken. In this case, the measurements are the LDL decreases
and we will assume the population has a N(µ, σ2) distribution.
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The Components of a Statistical Hypothesis Testing
Problem

3. The Statistical Hypotheses In hypothesis testing problems,
we always state two competing hypotheses: H0, the null
hypothesis and Ha, the alternative hypothesis. For this
example, we will take these to be

H0 : µ = 0
Ha : µ > 0

Notice that Ha states the scientific hypothesis.
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The Components of a Statistical Hypothesis Testing
Problem

4. The Test Statistic In all one-parameter hypothesis test
settings we will consider, the test statistic will be the
estimator of the population parameter about which inference
is being made. As you know from chapter 5, the estimator of
µ is the sample mean, y , and this is also the test statistic.
The observed value of y for these data is y∗ = 21.19.
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The Components of a Statistical Hypothesis Testing
Problem

5. The P-Value Think of this as the plausibility value. To
compute the p-value, we first assume H0 is true. The p-value
is then the proportion of all samples from this population for
which the test statistic will give as much or more evidence
against H0 and in favor of Ha as does the observed test
statistic value.

That is, if H0 is true, how plausible is the observed value of
the test statistic?
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The Components of a Statistical Hypothesis Testing
Problem

For the LDL experiment, H0 : µ = 0. Since Ha states that µ > 0,
large values of y will provide evidence against H0 and in favor of
Ha. Therefore, any value of y as large or larger than the observed
value y∗ = 21.19 will provide as much or more evidence against H0

and in favor of Ha as does the observed test statistic value.

Thus, the p-value is Pr0(y ≥ 21.19), where Pr0(expression)
represents the proportion of all samples for which expression is
true, computed under the assumption that H0 is true.

So Pr0(y ≥ 21.19) represents the proportion of all samples of size
10 from a N(0, σ2) population for which y ≥ 21.19.
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The Components of a Statistical Hypothesis Testing
Problem

To make things clear, let’s first assume we know the population
vstandard deviation σ. Here, we’ll assume it equals 16.

To calculate the p-value, we standardize the test statistic by
subtracting its mean (remember we’re assuming H0 is true, so this
means we take µ = 0) and dividing by its standard error, σ/

√
n:

(y − 0)/(σ/
√
n)

If H0 is true, the result will have a ??? distribution.
Answer: N(0, 1)
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The Components of a Statistical Hypothesis Testing
Problem

For these data, σ/
√
n = 16/

√
10 = 5.060, so the p-value is

Pr0(y ≥ 21.19) = Pr0

(
y − 0

σ/
√

10
≥ 21.19− 0

σ/
√

10

)
= Pr0

(
y − 0

5.060
≥ 21.19− 0

5.060

)
= Pr(N(0, 1) ≥ 4.188)

= 1.4× 10−5

Computers, calculators and applets such as this can be used to find
p-values.

The following picture might put this in perspective:
≈

http://homepage.divms.uiowa.edu/~mbognar/applets/normal.html
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Figure: 1: The value of the standardized test statistic is 4.188. The
p-value is the area in red to the right of this.



The Components of a Statistical Hypothesis Testing
Problem

If we don’t know the population variance σ2, we estimate it using
the sample variance s2. To calculate the p-value, we standardize
the test statistic by subtracting its mean (remember we’re
assuming H0 is true, so we take µ = 0) and dividing by its
estimated standard error, s/

√
n:

(y − 0)/(s/
√
n)

If H0 is true, the result will have a ??? distribution.
Answer: tn−1 = t9
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The Components of a Statistical Hypothesis Testing
Problem

It can be shown that the p-value is then

Pr(tn−1 ≥ t∗),

where t∗ is the observed value of the standardized test statistic:

(y − 0)/(s/
√
n).
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The Components of a Statistical Hypothesis Testing
Problem

For these data, s = 15.45 and thus

t∗ =
21.19− 0

15.45/
√

10
= 4.337

The p-value (which can be computed with this applet) is

Pr(tn−1 ≥ t∗) = Pr(t9 ≥ 4.337) = 9.4× 10−4.
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The Components of a Statistical Hypothesis Testing
Problem

What’s the Conclusion?

At this point, we have two options:

• Reject H0 in favor of Ha.

• Do not reject H0 in favor of Ha.
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The Components of a Statistical Hypothesis Testing
Problem

If the p-value is small enough, it indicates that, relative to Ha, the
data are not consistent with the assumption that H0 is true (that
is, they are not plausible), so our action would be to reject H0 in
favor of Ha. (After all, if theory and data disagree, the data win!)

How small is “small enough” to reject H0 in favor of Ha? That
depends on a number of factors, such as the type of study, the
purposes of the study, and the number of hypothesis tests being
conducted. Table 1 gives guidelines for a single hypothesis test.
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The Components of a Statistical Hypothesis Testing
Problem

If the p-value The evidence against H0

is less than: and in favor of Ha is:

0.100 borderline
0.050 reasonably strong
0.025 strong
0.010 very strong

Table: 1: Interpreting the strength of evidence against H0 and in favor
of Ha provided by p-values

So, based on the p-value of 9.4× 10−4, the evidence against H0

and in favor of Ha in the LDL experiment is very strong indeed.

We would undoubtedly reject H0 in favor of Ha, and conclude that
there is a positive mean decrease in LDL levels for the population.
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Something About Hypotheses

In all examples we’ll look at, H0 will be simple (i.e. will state that
the parameter has a single value) as opposed to composite.
Alternative hypotheses will be one-sided (that the parameter be
larger the null value, or smaller than the null value) or two-sided
(that the parameter not equal the null value).1

In the LDL reduction example, we had

H0 : µ = 0 ( simple)
Ha : µ > 0 ( composite, one-sided)

≈

1It turns out that the tests we will consider of simple versus a one-sided
alternative hypothesis are also optimal for comparing two one-sided hypotheses,
such as H0 : µ ≤ 0 versus Ha : µ > 0, but development of such tests is a topic
for more advanced courses.



Something About Hypotheses

In all examples we’ll look at, H0 will be simple (i.e. will state that
the parameter has a single value) as opposed to composite.
Alternative hypotheses will be one-sided (that the parameter be
larger the null value, or smaller than the null value) or two-sided
(that the parameter not equal the null value).1

In the LDL reduction example, we had

H0 : µ = 0 ( simple)
Ha : µ > 0 ( composite, one-sided)

≈

1It turns out that the tests we will consider of simple versus a one-sided
alternative hypothesis are also optimal for comparing two one-sided hypotheses,
such as H0 : µ ≤ 0 versus Ha : µ > 0, but development of such tests is a topic
for more advanced courses.



Two-Sided Tests

Suppose in the LDL reduction problem that the researchers wanted
to see if there was no mean change in LDL levels as opposed to
the medication making some difference, either good (a positive
mean reduction) or bad (a negative mean reduction).

Then appropriate hypotheses would be:

H0 : µ = 0 (simple)
Ha : µ 6= 0 (composite, two-sided)

In this case, evidence against H0 and in favor of Ha is provided by
both large and small values of y .
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Two-Sided Tests

To compute the p-value of the two-sided test, we first compute the
standardized test statistic t, and its observed value, t∗:

t =
y − µ0
S/
√
n
, t∗ =

21.19− 0

4.886
= 4.337.

Recall that under H0, t ∼ t9.
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Two-Sided Tests
Because the test is two-sided, we compute the p-value as
Pr(|t9| ≥ |t∗|) = Pr(t9 ≤ −|t∗|) + Pr(t9 ≥ |t∗|). By the symmetry
of the t9 distribution about 0, this equals 2Pr(t9 ≥ |t∗|). For the
present example, the p-value is
Pr(|t9| ≥ 4.337) = 2Pr(t9 ≥ 4.337) = 18.8× 10−4.

In what follows, the following formula for the two-sided p-value will
prove useful:

2Pr(t9 ≥ |t∗|) = 2 min(Pr(t9 ≤ t∗),Pr(t9 ≥ t∗)).

This gives for the LDL example
2 min(Pr(t9 ≤ 4.337),Pr(t9 ≥ 4.337))

= 2 min(0.99906, 9.4× 10−4) = 18.8× 10−4.

≈



Two-Sided Tests
Because the test is two-sided, we compute the p-value as
Pr(|t9| ≥ |t∗|) = Pr(t9 ≤ −|t∗|) + Pr(t9 ≥ |t∗|). By the symmetry
of the t9 distribution about 0, this equals 2Pr(t9 ≥ |t∗|). For the
present example, the p-value is
Pr(|t9| ≥ 4.337) = 2Pr(t9 ≥ 4.337) = 18.8× 10−4.

In what follows, the following formula for the two-sided p-value will
prove useful:

2Pr(t9 ≥ |t∗|) = 2 min(Pr(t9 ≤ t∗),Pr(t9 ≥ t∗)).

This gives for the LDL example
2 min(Pr(t9 ≤ 4.337),Pr(t9 ≥ 4.337))

= 2 min(0.99906, 9.4× 10−4) = 18.8× 10−4.

≈



Two-Sided Tests
Because the test is two-sided, we compute the p-value as
Pr(|t9| ≥ |t∗|) = Pr(t9 ≤ −|t∗|) + Pr(t9 ≥ |t∗|). By the symmetry
of the t9 distribution about 0, this equals 2Pr(t9 ≥ |t∗|). For the
present example, the p-value is
Pr(|t9| ≥ 4.337) = 2Pr(t9 ≥ 4.337) = 18.8× 10−4.

In what follows, the following formula for the two-sided p-value will
prove useful:

2Pr(t9 ≥ |t∗|) = 2 min(Pr(t9 ≤ t∗),Pr(t9 ≥ t∗)).

This gives for the LDL example
2 min(Pr(t9 ≤ 4.337),Pr(t9 ≥ 4.337))

= 2 min(0.99906, 9.4× 10−4) = 18.8× 10−4.

≈



Testing A Population Mean: Summary

Assumptions:
A random sample of n observations from a N(µ, σ2) population
(or n is large enough for the CLT).

Observed Value of Standardized Test Statistic:

t∗ =
y∗ − µ0
s/
√
n
.

P-values:

H0 Ha p-value

µ = µ0 µ < µ0 p− = Pr(tn−1 ≤ t∗)
µ = µ0 µ > µ0 p+ = Pr(tn−1 ≥ t∗)
µ = µ0 µ 6= µ0 p± = 2 min(p−, p

+)
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The Philosophy of Hypothesis Testing

Statistical hypothesis testing is modeled on scientific investigation.
The two hypotheses represent competing scientific hypotheses.

• The alternative hypothesis is the hypothesis that suggests
change, difference or an aspect of a new theory.

• The null hypothesis is the hypothesis that represents the
accepted scientific view. Most often, it is the hypothesis that
suggests no difference or effect.
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The Philosophy of Hypothesis Testing

Example:

Quality testing of parts manufactured by an injection molding
process includes a compressive strength test. Historically, the mean
compressive strength has been 82.15 psi. Manufacturing personnel
want to test whether the mean for present production matches the
historical mean. Tests on a random sample of 25 parts taken from
production yield a mean of 79.65 psi and a standard deviation of
5.1.

For this problem,

H0 : µ = 82.15, where µ is the mean strength of present
production.
Ha : µ 6= 82.15.

≈



The Philosophy of Hypothesis Testing

Example:

Quality testing of parts manufactured by an injection molding
process includes a compressive strength test. Historically, the mean
compressive strength has been 82.15 psi. Manufacturing personnel
want to test whether the mean for present production matches the
historical mean. Tests on a random sample of 25 parts taken from
production yield a mean of 79.65 psi and a standard deviation of
5.1.

For this problem,

H0 :

µ = 82.15, where µ is the mean strength of present
production.
Ha : µ 6= 82.15.

≈



The Philosophy of Hypothesis Testing

Example:

Quality testing of parts manufactured by an injection molding
process includes a compressive strength test. Historically, the mean
compressive strength has been 82.15 psi. Manufacturing personnel
want to test whether the mean for present production matches the
historical mean. Tests on a random sample of 25 parts taken from
production yield a mean of 79.65 psi and a standard deviation of
5.1.

For this problem,

H0 : µ = 82.15, where µ is the mean strength of present
production.

Ha : µ 6= 82.15.

≈



The Philosophy of Hypothesis Testing

Example:

Quality testing of parts manufactured by an injection molding
process includes a compressive strength test. Historically, the mean
compressive strength has been 82.15 psi. Manufacturing personnel
want to test whether the mean for present production matches the
historical mean. Tests on a random sample of 25 parts taken from
production yield a mean of 79.65 psi and a standard deviation of
5.1.

For this problem,

H0 : µ = 82.15, where µ is the mean strength of present
production.
Ha :

µ 6= 82.15.

≈



The Philosophy of Hypothesis Testing

Example:

Quality testing of parts manufactured by an injection molding
process includes a compressive strength test. Historically, the mean
compressive strength has been 82.15 psi. Manufacturing personnel
want to test whether the mean for present production matches the
historical mean. Tests on a random sample of 25 parts taken from
production yield a mean of 79.65 psi and a standard deviation of
5.1.

For this problem,

H0 : µ = 82.15, where µ is the mean strength of present
production.
Ha : µ 6= 82.15.

≈



The Philosophy of Hypothesis Testing
Example:

It is well-known that the leading blood pressure drug reduces
systolic readings by an average of 16.8 mmHg in people with
unmedicated readings over 175 mmHg. A new medication is
undergoing tests. Researchers have solid evidence that mean
reduction from the new drug is at least as large as from the current
drug; the question is whether it is larger. A random sample of 12
individuals in the at-risk group taking the new medication showed
mean reduction of 23.7 mmHg with a standard deviation of 26.6
mmHg.

For this problem,

H0 : µ = 16.8, where µ is the mean systolic BP reduction under
the new medication.
Ha : µ > 16.8.
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The Philosophy of Hypothesis Testing

Because we do not want to lightly overturn the accepted scientific
view, the null hypothesis is given favored treatment. Such
treatment consists of assuming H0 is true when computing the
p-value, and requiring compelling evidence (in the form of a small
p-value) before rejecting that assumption. (Remember that the
p-value is the “plausibility value”, which measures how consistent
the data are with the assumption that H0 is true.)
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The Philosophy of Hypothesis Testing

A good analogy is to the Anglo-American criminal justice system,
in which the byword is “innocent until proven guilty”.

In this analogy, H0 is on trial, accused of pretending to be true
when in reality Ha is.

• Throughout the trial H0 is presumed to be “innocent” (i.e.,
true).

• A “conviction” results in H0 being rejected in favor of Ha.

• The “jury” (i.e., the scientific researchers) must not convict
unless there is sufficient evidence–“beyond a reasonable
doubt”– against H0 and in favor of Ha, as measured by the
p-value.
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The Philosophy of Hypothesis Testing

Note that

• We presume H0 to be true (“innocent”) until the evidence
indicates otherwise.

• The truth (“innocence”) of H0 is a presumption–it does not
have to be proven.

• Failing to “convict” does not prove H0 is true (“innocent”); it
only means there is not enough evidence to reject H0 in favor
of Ha.
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Statistical Significance

Often, prior to conducting a study, users of hypothesis tests set a
pre-specified threshold level of evidence against the null and in
favor of the alternative hypothesis. The rule is that H0 will be
rejected in favor of Ha if and only if the p-value falls below this
threshold. The name given to this threshold is “signifance level”,
and it is often denoted α.

If, for example, we decide to use a significance level of α = 0.05,
our action would be to reject H0 in favor of Ha if the p-value is less
than 0.05, and to not reject otherwise.

The significance level must be set before the data are analyzed,
and ideally at the study design stage. To do otherwise risks biasing
the results.
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Statistical Significance

Table 1, reproduced here, can serve as a guide to selecting an
appropriate significance level:

The evidence against
If the p-value H0 and in favor
is less than: of Ha is:

0.100 borderline
0.050 reasonably strong
0.025 strong
0.010 very strong
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Statistical Significance

Given a significance level, we can often use statistical tables to
decide whether to reject or not reject the null hypothesis. An
example of how to do this can be found here.
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http://users.wpi.edu/~jdp/ma2611d18/ch6_using _tables.pdf


Statistical vs. Practical Significance

Statistical significance measures our ability to detect a difference.
As such, it is a reflection of not only the size of the difference but
also the amount of data (i.e., evidence) we have.

For instance, recall the LDL reduction example. There were 10
subjects having mean LDL reduction 21.19 and standard deviation
15.45.
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Statistical vs. Practical Significance

To test

H0 : µ = 0
Ha : µ > 0

we computed the p-value as

Pr0

(
y − 0

4.886
≥ 21.19− 0

4.886

)
= Pr(t9 ≥ 4.337) = Pr(t9 ≥ 4.337) = 9.4× 10−4.

(Recall that 4.886 was the estimated standard error of the mean
computed as s/

√
n = 15.45/

√
10 = 4.886)
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Statistical vs. Practical Significance

Now suppose that we had a sample of size 3 with the same mean
and standard deviation. The observed difference is the same as
previously: y − 0 = 21.19.

However, the estimated standard error is much larger:
s/
√
n = 15.45/

√
3 = 8.920, and the corresponding p-value is

Pr0

(
y − 0

8.92
≥ 21.19− 0

8.92

)
= Pr(t2 ≥ 2.376) = Pr(t2 ≥ 2.376) = 0.0703.
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Statistical vs. Practical Significance

So with a sample of size 10, a mean LDL decrease of 21.19 is
highly significant, while for a sample of size 3 it is at best
borderline significant.

The practical significance of the result does not change. What
changes is the statistical significance: our ability to detect the
difference as being distinct from the background variation (or
“noise”).
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Be careful about...

o Using the same data to suggest and test hypotheses
(Exploratory vs. confirmatory studies).

o Doing lots of tests results in lots of false positives.

o Equating lack of significance with failure.
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Testing A Population Proportion

Suppose we have a population whose members can be observed to
have or not have a certain characteristic. Let p be the proportion
of population members who have the characteristic.

Hypotheses about p are frequently tested by taking a random
sample and observing the number in the sample who have the
characteristic, as the following example illustrates.
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Testing A Population Proportion

Example: Researchers in the LDL decrease experiment were
interested in testing whether the medication would result in
reductions in LDL levels in more than half of all people with high
LDL.

Specifically, if p is the proportion of that population for whom the
medication would result in reductions in LDL levels, they wanted
to test

H0 : p = 0.5
Ha : p > 0.5
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Testing A Population Proportion

Recall that for the estimator of p, we used the sample proportion,
p̂ = y/n, where y is the number in the sample who have the
characteristic, and n is the sample size.

The test statistic we will use for this problem is y , which gives the
same results as we would obtain using p̂, and which is easier to
work with.
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Testing A Population Proportion

Since Ha specifies that p is larger than 0.5, large values of y should
lead to rejection of H0 in favor of Ha. Therefore, the p-value will
be given by Pr0(y ≥ y∗), where y∗ is the number in the sample
who have the characteristic, and Pr0(y ≥ y∗) is the proportion
under H0 (that is, when p = 0.5), of all size n samples from the
population for which y will be at least as large as y∗.

For the LDL example, y∗ = 9, so the p-value is Pr0(y ≥ 9). In
order to compute this, we need the sampling distribution of y .
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Testing A Population Proportion

Consider taking simple random samples of size n from a large
population in which a proportion p have a given characteristic.
The proportion of all those random samples in which exactly k of
the n have the characteristic is given by the formula

Pr(y = k) =

(
n

k

)
pk(1− p)n−k , for k = 0, 1, 2, . . . , n,

where (
n

k

)
=

n!

k!(n − k)!
,

and ! denotes “factorial”.

This is the sampling distribution of y . It is called the binomial
distribution with parameters n and p (abbreviated b(n, p)).
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Testing A Population Proportion

In the LDL example, n = 10, so when p = 0.5, the sampling
distribution of y , the number of subjects with lower LDL, is
b(10, 0.5). Thus, when H0 is true, the proportion of all samples of
size 10 in which exactly k of the 10 have lower LDL is

Pr0(y = k) =

(
10

k

)
0.5k(1− 0.5)10−k , k = 0, 1, 2, . . . , 10.
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Testing A Population Proportion
Recall that in the LDL study, the number in the sample with
reduced LDL is y∗ = 9, and the p-value of the test is

Pr0(y ≥ 9) =
10∑
k=9

Pr0(y = k)

=
10∑
k=9

(
10

k

)
0.5k(1− 0.5)10−k

=

(
10

9

)
0.59(1− 0.5)1 +

(
10

10

)
0.510(1− 0.5)0

= (10)0.59(1− 0.5)1 + 0.510(1− 0.5)0

= (11)0.510 = 0.0107.

Thus, the data provide strong evidence against H0 and in favor of
Ha, and we might justifiably conclude that the medication would
reduce the LDL levels of more than half the population.

≈



Testing A Population Proportion
Recall that in the LDL study, the number in the sample with
reduced LDL is y∗ = 9, and the p-value of the test is

Pr0(y ≥ 9) =
10∑
k=9

Pr0(y = k)

=
10∑
k=9

(
10

k

)
0.5k(1− 0.5)10−k

=

(
10

9

)
0.59(1− 0.5)1 +

(
10

10

)
0.510(1− 0.5)0

= (10)0.59(1− 0.5)1 + 0.510(1− 0.5)0

= (11)0.510 = 0.0107.

Thus, the data provide strong evidence against H0 and in favor of
Ha, and we might justifiably conclude that the medication would
reduce the LDL levels of more than half the population.

≈



Testing A Population Proportion

The usual resources are available for computing a p-value from the
binomial distribution. This applet will do the job, as will many
calculators and the table found in the text.
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http://homepage.divms.uiowa.edu/~mbognar/applets/bin.html


Testing A Population Proportion: Summary

Assumptions:
A random sample of n observations from a large population with a
proportion p having a characteristic of interest.

Observed Value of Test Statistic:
y∗, the number in the sample having the characteristic.

P-values:

H0 Ha p-value

p = p0 p < p0 p− = Pr(b(n, p0) ≤ y∗)
p = p0 p > p0 p+ = Pr(b(n, p0) ≥ y∗)
p = p0 p 6= p0 See explanation below
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Testing A Population Proportion

Unlike the test for population mean, the p-value for a two-sided
test of a proportion is not generally twice the smaller of the
p-values of the one-sided tests. The reason is that unless p0 = 0.5,
the b(n, p0) distribution is not symmetric.

As a result, we compute the p-value for a two-sided test as follows.
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Testing A Population Proportion

Let

f (y) =

(
n

y

)
py0 (1− p0)n−y , y = 0, 1, . . . , n

define the sampling distribution of y when p = p0, and let y∗

denote the value of y observed in the sample. The p-value of the
test of H0 : p = p0 versus Ha : p 6= p0 is obtained by summing all
the values of f (y) that are less than or equal to f (y∗).

The following example will illlustrate.
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Testing A Population Proportion

Example
A manufacturer of high fiber cereal claims that its product,
Sawdusties, is recommended by 2 out of 3 nutritionists. In a small
(but well-conducted) survey, 3 of a random sample of 6
nutritionists recommended Sawdusties. We want to test whether
their claim is true for the population of nutritionists.

If p is the proportion of all nutritionists who recommend
Sawdusties, the statistical hypotheses are

H0 : p = 2/3
Ha : p 6= 2/3
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Testing A Population Proportion

Under H0, y , the number of a sample of 6 who recommend
Sawdusties has a b(6, 2/3) distribution, so

f (y) =

(
6
y

)
(2/3)y (1− 2/3)6−y , y = 0, 1, . . . , 6.

Evaluating, we find:
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Testing A Population Proportion

y f (y) y f (y)

0 0.001 4 0.329
1 0.017 5 0.264
2 0.082 6 0.088
3 0.219

The observed value of y is y∗ = 3. The p value is the sum of all
f (y) values that are less than or equal to f (y∗) = f (3) = 0.219:
That is, the p value equals

f (0) + f (1) + f (2) + f (3) + f (6)

= 0.001 + 0.017 + 0.082 + 0.219 + 0.088 = 0.407.
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Testing A Population Proportion

The test based on the binomial distribution is called an exact test
because it is based on the exact sampling distribution of the test
statistic y . This is the preferred test and should be accessible to
anyone with a good statistics computer program. A SAS macro to
do both one and two-sided exact tests can be found here.

With a little additional calculation, it is do-able with a good
statistics calculator (the TI-83, for instance, though the test
computed under the STAT menu is not this exact test, but
rather....)

≈
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Testing A Population Proportion: Large Samples

...an approximate test that can also be done with only a basic
calculator and a normal probability table. The approximation will
be good if y∗ and n − y∗ are both at least 10.

The test relies on the fact that under these conditions, the Central
Limit Theorem ensures that the sampling distribution of y is
approximately N(np, np(1− p)).
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Testing A Population Proportion: Large Samples
The test is easy to summarize:
Assumptions:
A random sample of n observations from a large population with a
proportion p having a characteristic of interest; y∗ and n − y∗

should both be large enough (at least 10).

Observed Value of Standardized Test Statistic (with
Continuity Corrections in red):

z∗l =
y∗ − np0+0.5√
np0(1− p0)

, z∗u =
y∗ − np0−0.5√
np0(1− p0)

.

P-values:

H0 Ha p-value

p = p0 p < p0 p− = Pr(N(0, 1) ≤ z∗l )
p = p0 p > p0 p+ = Pr(N(0, 1) ≥ z∗u )
p = p0 p 6= p0 p± = 2 min(p−, p

+)
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Testing A Population Proportion: Large Samples
Now, for illustration, we will use the large-sample test on the
Sawdusties data.

Neither y∗ = 3 nor n − y∗ = 3 are anywhere near 10, so using this
test is not justified, and we would not use this test in practice, so
this is just for illustration:

z∗l =
y∗ − np0 + 0.5√

np0(1− p0)
=

3− (6)(2/3) + 0.5√
6(2/3)(1− 2/3)

= −0.433,

z∗u =
y∗ − np0 − 0.5√

np0(1− p0)
=

3− (6)(2/3)− 0.5√
6(2/3)(1− 2/3)

= −1.299,

so p− = Pr(N(0, 1) ≤ −0.433) = 0.333, and
p+ = Pr(N(0, 1) ≥ −1.299) = 0.903, so
p± = 2 min(0.333, 0.903) = 2× 0.333 = 0.666 (recall that the
exact value is 0.407).
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Comparing Two Population Means: Paired Data

Recall the LDL reduction study in which each of 10 subjects
obtained in a simple random sample was measured for LDL at the
outset and then after 30 days on a particular medication. Our
analysis focused on testing the mean reduction in LDL.

But viewed another way, this mean reduction is the difference of
two population means: µ1 − µ2, where µ1 is the mean of the
before (or untreated) population, and µ2 is the mean of the after
(or treated) population.
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Comparing Two Population Means: Paired Data

The before and after measurements are said to be paired, because
each individual provides one before-after pair. Pairing is an
example of blocking, as you studied in Chapter 3.

When paired data measurements are of the same quantity, as in
the example, analysis is often done by subtracting one paired
measurement from the other and treating the resulting difference
as if it were a single measurement.

This is exactly what we did by choosing to analyze the decrease in
LDL.
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Comparing Two Population Means: Paired Data

The result is that the hypothesis test we conducted using the LDL
decrease could be interpreted as a test of the hypotheses:

H0 : µ1 − µ2 = 0
Ha : µ1 − µ2 > 0.

The test statistic and p-value are identical to those obtained
previously.
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Comparing Two Population Means: Paired Data :
Summary

Assumptions: A random sample of n paired observations,
(y1,i , y2,i ), i = 1, . . . , n, where

(a) The population means of the y1,i and y2,i are µ1 and µ2, and
(b) di = y1,i − y2,i are a random sample from a N(µ1 − µ2, σ2)

population (or n is large enough for the CLT).

Observed Value of Standardized Test Statistic:

t∗ =
d
∗ − δ0
sd/
√
n
.

P-values:

H0 Ha p-value

µ1 − µ2 = δ0 µ1 − µ2 < δ0 p− = Pr(tn−1 ≤ t∗)
µ1 − µ2 = δ0 µ1 − µ2 > δ0 p+ = Pr(tn−1 ≥ t∗)
µ1 − µ2 = δ0 µ1 − µ2 6= δ0 p± = 2 min(p−, p

+)
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Comparing Two Population Means: Independent
Populations

Not all comparisons are done using paired data. Sometimes our
data consist of independent random samples from two separate
populations.

Suppose that we take a random sample of size n1 from population
1, which follows a N(µ1, σ

2) distribution, and independently a
random sample of size n2 from population 2, which follows a
N(µ2, σ

2) distribution.

Notice that the only possible difference in the population
distributions is in their means.
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Comparing Two Population Means: Independent
Populations

We already know that the estimator of µ1 is the sample mean of
the first sample, y1, and that of µ2 is the sample mean of the
second sample, y2.

We also know that the sampling distribution of y1 is N(µ1, σ
2/n1)

and that of y2 is N(µ2, σ
2/n2).
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Comparing Two Population Means: Independent
Populations

In Chapter 5, we used y1 − y2 to estimate µ1 − µ2.

We also learned that the sampling distribution of the standardized
estimator

t(p) =
y1 − y2 − (µ1 − µ2)√

s2p

(
1
n1

+ 1
n2

) ,

has a tn1+n2−2 distribution, where sp is the pooled variance
estmate of σ:

s2p =
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2
.
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Comparing Two Population Means: Independent
Populations

If the null hypothesis is H0 : µ1 − µ2 = δ0, then when H0 is true,

t(p) =
y1 − y2 − δ0√
s2p

(
1
n1

+ 1
n2

) .

From this, assuming t(p)∗ is the observed value of t(p), computed
under the assumption that H0 is true, we get the following
hypothesis tests:

H0 Ha p-value

µ1 − µ2 = δ0 µ1 − µ2 < δ0 p− = Pr(tn1+n2−2 ≤ t(p)∗)

µ1 − µ2 = δ0 µ1 − µ2 > δ0 p+ = Pr(tn1+n2−2 ≥ t(p)∗)
µ1 − µ2 = δ0 µ1 − µ2 6= δ0 p± = 2 min(p−, p

+)
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Example

A company buys cutting blades used in its manufacturing process
from two suppliers. In order to decide if there is a difference in
blade life, the lifetimes of 10 blades from manufacturer 1 and 13
blades from manufacturer 2 used in the same application are
compared. A summary of the data shows the following (units are
hours):

Manufacturer n y s

1 10 108.4 26.9
2 13 134.9 18.4

The manufacturer wants to test the equality of mean blade lives at
the 0.10 level of significance, and is willing to assume the two
population variances are equal.
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Comparing Two Population Means: Independent
Populations

1. The Scientific Hypothesis There is a difference in the
lifetimes of blades from the two manufacturers.

2. The Statistical Model The two independent normal
populations with equal variances.

3. The Statistical Hypotheses

H0 : µ1 − µ2 = 0
Ha : µ1 − µ2 6= 0

(Notice that here δ0 = 0)
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Comparing Two Population Means: Independent
Populations

4. The Test Statistic
The pooled variance estimate is

s2p =
(10− 1)(26.9)2 + (13− 1)(18.4)2

10 + 13− 2
= 503.6,

So the standard error estimate of y1 − y2 is

σ̂p(y1 − y2) =

√
503.6

(
1

10
+

1

13

)
= 9.44.

Therefore, t(p)∗ = (108.4− 134.9)/9.44 = −2.81, with
10+13-2=21 degrees of freedom.
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Comparing Two Population Means: Independent
Populations

5. The p-value
p− = P(t21 ≤ −2.81) = 0.0052,
p+ = P(t21 ≥ −2.81) = 0.9948, and the p-value for this
problem is 2 min(0.0052, 0.9948) = 0.0104.

Since the p-value is less than 0.10, we reject H0 in favor of
Ha, and conclude there is a difference in mean blade lifetimes.

A SAS macro to conduct two-sample t tests using summary
data is found here, and SAS code to conduct them using raw
data here.

≈

http://users.wpi.edu/~jdp/ma2611d18/ttest2.mac.sas.txt
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Comparing Two Population Means: Independent
Populations

5. The p-value
p− = P(t21 ≤ −2.81) = 0.0052,
p+ = P(t21 ≥ −2.81) = 0.9948, and the p-value for this
problem is 2 min(0.0052, 0.9948) = 0.0104.

Since the p-value is less than 0.10, we reject H0 in favor of
Ha, and conclude there is a difference in mean blade lifetimes.

A SAS macro to conduct two-sample t tests using summary
data is found here, and SAS code to conduct them using raw
data here.

≈

http://users.wpi.edu/~jdp/ma2611d18/ttest2.mac.sas.txt
http://users.wpi.edu/~jdp/ma2611d18/sas_code_ch6_1.txt


Comparing Two Population Means: Independent
Populations

5. The p-value
p− = P(t21 ≤ −2.81) = 0.0052,
p+ = P(t21 ≥ −2.81) = 0.9948, and the p-value for this
problem is 2 min(0.0052, 0.9948) = 0.0104.

Since the p-value is less than 0.10, we reject H0 in favor of
Ha, and conclude there is a difference in mean blade lifetimes.

A SAS macro to conduct two-sample t tests using summary
data is found here, and SAS code to conduct them using raw
data here.

≈

http://users.wpi.edu/~jdp/ma2611d18/ttest2.mac.sas.txt
http://users.wpi.edu/~jdp/ma2611d18/sas_code_ch6_1.txt


Comparing Two Population Means: Independent
Populations

What do we do if the population variances are not equal?

As we stated in Chapter 5, the most fundamental question is: “If
the population variances are not equal, does it make sense to
compare the population means?”

In the case of unequal variances, even if the means are equal, the
two populations will have different distributions. So comparing the
means is inappropriate if the goal is to decide if the two population
distributions are the same.
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Comparing Two Population Means: Independent
Populations

If our interest is solely in comparing the means, and we are not
willing to assume the population variances are equal, we can make
use of the fact that the sampling distribution of the standardized
estimator

t(ap) =
y1 − y2 − (µ1 − µ2)√

s21
n1

+
s22
n2

can be approximated by a t distribution with ν degrees of freedom,
where ν is the largest integer less than or equal to(

S2
1

n1
+

S2
2

n2

)2
(

S2
1

n1

)2

n1−1 +

(
S2
2

n2

)2

n2−1

.
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Populations

From this, assuming t(ap)∗ is the observed value of t(ap), computed
under the assumption that H0 is true,

t(ap)∗ =
y1 − y2 − δ0√

s21
n1

+
s22
n2

,

we get the following hypothesis tests:

H0 Ha p-value

µ1 − µ2 = δ0 µ1 − µ2 < δ0 p− = Pr(tν ≤ t(ap)∗)

µ1 − µ2 = δ0 µ1 − µ2 > δ0 p+ = Pr(tν ≥ t(ap)∗)
µ1 − µ2 = δ0 µ1 − µ2 6= δ0 p± = 2 min(p−, p

+)
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Example

Recall the previous example: a company buys cutting blades used
in its manufacturing process from two suppliers. In order to decide
if there is a difference in blade life, the lifetimes of 10 blades from
manufacturer 1 and 13 blades from manufacturer 2 used in the
same application are compared. A summary of the data shows the
following (units are hours):

Manufacturer n y s

1 10 108.4 26.9
2 13 134.9 18.4

The manufacturer wants to test the equality of mean blade lives at
the 0.10 level of significance, but this time is unwilling to assume
the population variances are equal.
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Comparing Two Population Means: Independent
Populations

1. The Scientific Hypothesis There is a difference in the
lifetimes of blades from the two manufacturers.

2. The Statistical Model The two independent normal
populations.

3. The Statistical Hypotheses

H0 : µ1 − µ2 = 0
Ha : µ1 − µ2 6= 0
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Comparing Two Population Means: Independent
Populations

4. The Test Statistic
The observed value of the test statistic is

t(ap)∗ =
108.4− 134.9√
(26.9)2

10 + (18.4)2

13

= −2.67.
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Populations

5. The p-value
The degrees of freedom ν is computed as the greatest integer
less than or equal to(

(26.9)2

10 + (18.4)2

13

)2
(

(26.9)2

10

)2

10−1 +

(
(18.4)2

13

)2

13−1

= 15.17,

so ν = 15.
p− = P(t15 ≤ −2.67) = 0.0087,
p+ = P(t15 ≥ −2.67) = 0.9913, and the p-value for this
problem is 2 min(0.0087, 0.9913) = 0.0174.
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Comparing Two Population Means: Independent
Populations

Since the p-value is less than 0.10, we reject H0 in favor of Ha, and
conclude there is a difference in mean blade lifetimes.

The p-value in this case, 0.0174, is similar to the p-value we
obtained in the pooled variance case: 0.0104, and the conclusion is
the same.

A SAS macro to conduct two-sample t tests using summary data is
found here, and SAS code to conduct them using raw data here.
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Comparing Two Population Proportions

Suppose there are two populations: population 1, in which a
proportion p1 have a certain characteristic, and population 2, in
which a proportion p2 have a certain (possibly different)
characteristic. We will use a sample of size n1 from population 1,
and n2 from population 2 to test hypotheses about the difference
p1 − p2.
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Comparing Two Population Proportions

Specifically, if y1 is the number having the population 1
characteristic in the n1 items in sample 1, and if y2 is the number
having the population 2 characteristic in the n2 items in sample 2,
then the sample proportion having the population 1 characteristic
is p̂1 = y1/n1, and the sample proportion having the population 2
characteristic is p̂2 = y2/n2.

A point estimator of p1 − p2 is p̂1 − p̂2. We will use this difference
as our test statistic.
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Comparing Two Population Proportions

The standard error of p̂1 − p̂2 is√
p1(1− p1)

n1
+

p2(1− p2)

n2
.

Further, for large n1 and n2, the Central Limit Theorem ensures
that p̂1 − p̂2 has approximately a normal distribution, so

p̂1 − p̂2 − (p1 − p2)√
p1(1−p1)

n1
+ p2(1−p2)

n2

has approximately a N(0, 1) distribution.
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Comparing Two Population Proportions

We wish to test a null hypothesis that the two population
proportions differ by a known amount δ0,

H0 : p1 − p2 = δ0,

against one of three possible alternative hypotheses:

Ha+ : p1 − p2 > δ0
Ha− : p1 − p2 < δ0
Ha± : p1 − p2 6= δ0
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Comparing Two Population Proportions

The tests we will present rely on the normal approximation
promised by the Central Limit Theorem. Therefore, you should
always check that the sample sizes are large enough to justify this
approximation. yi ≥ 10 and ni − yi ≥ 10, i = 1, 2, suffices as a rule
of thumb.
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Comparing Two Population Proportions

Case 1: δ0 = 0
Suppose H0 is p1 − p2 = 0. Then, let p = p1 = p2 denote the
common value of the two population proportions. If H0 is true, the
variance of p̂1 equals p(1− p)/n1 and that of p̂2 equals
p(1− p)/n2. This implies the standard error of p̂1 − p̂2 equals√

p(1− p)

n1
+

p(1− p)

n2
=

√
p(1− p)

(
1

n1
+

1

n2

)
.

Since we don’t know p, we estimate it using the data from both
populations:

p̂ =
y1 + y2
n1 + n2

.
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The estimated standard error of p̂1 − p̂2 is then√
p̂(1− p̂)

(
1

n1
+

1

n2

)
,

and the standardized test statistic is then

Z0 =
p̂1 − p̂2√

p̂(1− p̂)
(

1
n1

+ 1
n2

) ,
which has approximately a N(0, 1) distribution if H0 is true.

The observed value of Z0 is denoted z∗0 .
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Comparing Two Population Proportions when δ0 = 0
Assumptions:
A random sample of ni observations from population i with a
proportion pi having a characteristic of interest, and yi ≥ 10,
ni − yi ≥ 10, i = 1, 2.

Observed Value of Standardized Test Statistic:

z∗0 = (p̂1 − p̂2)
/√

p̂(1− p̂) (1/n1 + 1/n2)

Approximate P-values:

H0 Ha p-value

p1 − p2 = 0 p1 − p2 < 0 p− = Pr(N(0, 1) ≤ z∗0 )
p1 − p2 = 0 p1 − p2 > 0 p+ = Pr(N(0, 1) ≥ z∗0 )
p1 − p2 = 0 p1 − p2 6= 0 p± = 2 min(p−, p

+)
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Case 2: δ0 6= 0
If δ0 6= 0, the standardized test statistic is

Z =
p̂1 − p̂2 − δ0√

p̂1(1−p̂1)
n1

+ p̂2(1−p̂2)
n2

,

which has approximately a N(0, 1) distribution if H0 is true.
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Comparing Two Population Proportions

Example:
In a recent survey on academic dishonesty 24 of the 200 female
college students surveyed and 26 of the 100 male college students
surveyed agreed or strongly agreed with the statement “Under
some circumstances academic dishonesty is justified.” Suppose pf
denotes the proportion of all female and pm the proportion of all
male college students who agree or strongly agree with this
statement.
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Comparing Two Population Proportions

To illustrate the calculation of the two possible test statistics, we
will consider two different scientific hypotheses:

1. Scientific Hypothesis 1: There is a difference in the
population proportions of male and female students who agree
or strongly agree with the statement.

2. Scientific Hypothesis 2: The population proportion of males
who agree or strongly agree with the statement is at least 0.1
greater than the population proportion of females who agree
or strongly agree with the statement.
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Comparing Two Population Proportions

1. Scientific Hypothesis 1 There is a difference in the
population proportions of male and female students who agree
or strongly agree with the statement.

2. The Statistical Model The two-population binomial.

3. The Statistical Hypotheses

H0 : pf − pm = 0
Ha : pf − pm 6= 0
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Comparing Two Population Proportions

4. The Test Statistic The point estimate of pf − pm is

p̂f − p̂m = 24/200− 26/100 = −0.140,

and the estimate of the common value of pf and pm under H0

is p̂ = (26 + 24)/(200 + 100) = 0.167.
Thus,

z∗ =
24/200− 26/100√

(0.166)(0.833)
(

1
200 + 1

100

) = −3.067.
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5. The P-Value
Since yf = 24, 200− yf = 176, ym = 26, and 100− ym = 74
all exceed 10, we may use the normal approximation:

p− = P(N(0, 1) ≤ −3.067) = 0.0011,

p+ = P(N(0, 1) ≥ −3.067) = 0.9989,
and

p± = 2 min(0.9989, 0.0011) = 0.0022,

this last being the p-value we want.
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1. Scientific Hypothesis 2 The population proportion of males
who agree or strongly agree with the statement is at least 0.1
greater than the population proportion of females who agree
or strongly agree with the statement.

2. The Statistical Model The two-population binomial.

3. The Statistical Hypotheses

H0 : pf − pm = −0.10
Ha : pf − pm < −0.10
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4. The Test Statistic The standardized test statistic is

z∗ =
24/200− 26/100− (−0.10)√

0.12(1−0.12)
200 + 0.26(1−0.26)

100

= −0.81,

5. The P-Value
p− = P(N(0, 1) ≤ −0.81) = 0.2090.

A SAS macro to conduct these tests comparing two proportions is
found here.

≈

http://users.wpi.edu/~jdp/ma2611d18/bi2test.mac.sas.txt
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Fixed Significance Level Tests

We have conducted hypothesis tests by computing a p-value to
measure the evidence against H0 and in favor of Ha. When we
wanted to conduct the tests at a fixed level of significance, α, we
first computed the p-value and rejected H0 if and only if the
p-value was less than α.

An alternative way to conduct a test at a fixed level of significance
is to determine which values of the test statistic will lead to
rejection of H0 in favor of Ha. Here are the steps involved,
illustrated using the LDL reduction example:
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Fixed Significance Level Tests

1. Specify hypotheses to be tested.

H0 : µ = 0
Ha : µ > 0

(i.e. µ0 = 0)

2. Set the significance level α. Usual choices are 0.10, 0.01 or
0.05. We’ll choose the latter.
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Fixed Significance Level Tests

3. Specify the (standardized) test statistic and it’s
distribution under H0. The standardized test statistic is

t =
y − µ0
s/
√
n

=
y − 0

15.45/
√

10
,

and under H0 it has a tn−1 = t9 distribution.
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Fixed Significance Level Tests

4. Find the critical region of the test. The critical region of
the test is the set of values of the (standardized) test statistic
for which H0 will be rejected in favor of Ha. Here, Ha tells us
that the critical region has the form

[tn−1,1−α,∞) = [t9,0.95,∞) = [1.8331,∞),

meaning H0 will be rejected if and only if the observed value
of t is greater than or equal to 1.8331.
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Fixed Significance Level Tests

5. Perform the test. For the LDL example, the observed value
of t is

t∗ =
21.19− 0

15.45/
√

10
= 4.337,

which falls in the critical region, so H0 is rejected in favor of
Ha.
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Power of a Test

In a fixed significance level test, power is the proportion of all
samples for which H0 will be rejected in favor of Ha. Power will
vary for different values of the parameter being tested, so it is
written as a function of that parameter.
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Power of a Test

Example: A random sample of size n is taken from a N(µ, 25)
population. We want to test H0 : µ = 10 versus Ha : µ < 10 at the
0.05 level of significance using a fixed significance level test.

The test statistic is y , which under H0 has distribution
N(10, 25/n), where n is the sample size.

The form of Ha tells us that small values of y should lead to
rejection of H0, which means small values of the standardized
statistic z = (y − 10)/(5/

√
n) should lead to rejection.

Since Pr(z ≤ z0.05) = Pr(z ≤ −1.645) = 0.05, the rejection region
is defined by (y − 10)/(5/

√
n) ≤ −1.645, which after some

algebra, becomes y ≤ 10− (1.645)(5)/
√
n.
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Power of a Test

To compute the power of this test, we need to evaluate the
proportion of all samples which lead to rejection when the true
population mean is µ.

We’ll write this as

Π(µ) = Prµ(reject H0) = Prµ(y ≤ 10− (1.645)(5)/
√
n),

for all values µ < 10.
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Power of a Test

We evaluate by standardizing:

Π(µ) = Prµ

(
y − µ
5/
√
n
≤ 10− (1.645)(5)/

√
n − µ

5/
√
n

)
= Pr(z ≤

√
n(10− µ)/5− 1.645).

For any value of µ, Π(µ) can be computed using online applets,
statistical software, a calculator or a table of the normal
distribution.
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Power of a Test

For instance, if n = 16 and µ = 7, we get

Π(µ) = Pr(z ≤
√
n(10− µ)/5− 1.645)

= Pr(z ≤
√

16(10− 7)/5− 1.645)

= Pr(z ≤ 0.755) = 0.775

Here is a plot of the power functions, Π(µ) for n = 16 and n = 32:
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Figure: 2: Power of the one-sided test.
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Power of a Test

Consider again the random sample of size n is taken from a
N(µ, 25) population. We will find a formula for the rejection
region of a fixed significance level test of H0 : µ = 10 versus
Ha : µ 6= 10 at the 0.05 level of significance. The rejection region
is defined by the absolute value of the standardized test statistic
exceeding a specified value.
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Power of a Test

To define the rejection region, We need to find a value A so that
Pr(|z | ≥ A) = 0.05, where z = (y − 10)/(5/

√
n).

Since z ∼ N(0, 1), A = z0.975 = 1.96.

Therefore, the rejection region is defined by
|(y − 10)/(5/

√
n)| ≥ 1.96, which, after some algebra, specifies

rejection if and only if y ≥ 10 + (1.96)(5)/
√
n or

y ≤ 10− (1.96)(5)/
√
n.
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Pr(|z | ≥ A) = 0.05, where z = (y − 10)/(5/
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Power of a Test

We will now find a formula for the power function of this test.
Remember the specifics:

• y is the mean of a sample of size n taken from a N(µ, 25)
population.

• A level 0.05 test of H0 : µ = 10 versus Ha : µ 6= 10 rejects H0

if and only if

y ≥ 10 + (1.96)(5)/
√
n or y ≤ 10− (1.96)(5)/

√
n.
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Power of a Test

The power function is

Π(µ) = Prµ(reject H0)

= Prµ(y ≤ 10− (1.96)(5)/
√
n) + Prµ(y ≥ 10 + (1.96)(5)/

√
n)

= Pr(z ≤
√
n(10− µ)/5− 1.96)

+ Pr(z ≥
√
n(10− µ)/5 + 1.96)

Here’s a plot for n = 16 and 32:
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Figure: 2: Power of the two-sided test.
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Power of a Test

You have seen that the power curve depends on the sample size, n.
This means the power function can also be used to specify a
sample size. If the researcher specifies a significance level for the
test and a desired power at a specified value of the parameter
being tested, then using the formulas given, (s)he can find what
value of n is needed.

In our example of a test for a population mean µ, the researcher
would specify a significance level α and a desired power Π(µ0) at
the particular mean value µ0. A minimum sample size n to satisfy
these requirements would then be obtained.
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The relation between hypothesis tests and confidence
intervals

There is an interesting parallel between many hypothesis tests and
confidence intervals. Specifically, to each fixed-level hypothesis test
we have considered, there corresponds a confidence interval that
can be used to conduct the test.
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The relation between hypothesis tests and confidence
intervals

As an example, consider the following two inference procedures for
a population mean µ, conducted on the same set of data:

• A two-sided level α test of H0 : µ = µ0 versus Ha : µ 6= µ0.

• A level L = 1− α confidence interval for µ.

≈



The relation between hypothesis tests and confidence
intervals

The relation can be summarized in two ways:

The test will reject H0 in favor of Ha if and only if µ0 lies outside
the confidence interval, so we can use the confidence interval to
conduct the test: just construct the interval and if µ0 is outside
the interval, reject H0 in favor of Ha.

Similarly, given the level α test of H0 : µ = µ0 versus Ha : µ 6= µ0,
a level L = 1− α confidence interval for µ consists of all µ0 values
for which the test does not reject H0 in favor of Ha (this is called
“inverting the test”).
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The relation between hypothesis tests and confidence
intervals

The relation between hypothesis tests and confidence intervals
enables us to do more.

First, it gives us an effective small-sample alternative to the
large-sample test comparing two population proportions.
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The relation between hypothesis tests and confidence
intervals

Specifically, to test H0 : p1 − p2 = δ0 versus Ha : p1 − p2 6= δ0 at
the α level of significance, we can construct the level L = 1− α
approximate score (Agresti-Coull) confidence interval

p̃1 − p̃2 ± z(1+L)/2

√
p̃1(1− p̃1)

ñ1
+

p̃2(1− p̃2)

ñ2
,

where

ñi = ni + 0.5z2(1+L)/2, p̃i =
yi + 0.25z2(1+L)/2

ñi
, i = 1, 2,

and reject H0 if and only if δ0 is not in the interval.
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The relation between hypothesis tests and confidence
intervals

Second, we can create one-sided confidence intervals by inverting
tests of one-sided alternative hypotheses.

For example, consider the test of H0 : µ = µ0 versus Ha : µ > µ0.

Based on what we have done, a level α test rejects H0 in favor of
Ha if

tn−1,1−α ≤
y − µ0
s/
√
n
<∞.
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The relation between hypothesis tests and confidence
intervals

Second, we can create one-sided confidence intervals by inverting
tests of one-sided alternative hypotheses.

For example, consider the test of H0 : µ = µ0 versus Ha : µ > µ0.

Based on what we have done, a level α test rejects H0 in favor of
Ha if
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s/
√
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<∞.
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The relation between hypothesis tests and confidence
intervals

After a little algebra, these inequalities are equivalent to

−∞ < µ0 ≤ y − s√
n
tn−1,1−α,

giving a level L = 1− α confidence interval(
−∞, y − s√

n
tn−1,1−α

]
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Recap: Hypothesis Testing

• The Components of a Statistical Hypothesis Testing Problem

o The Scientific Hypothesis
o The Statistical Model
o The Statistical Hypotheses
o The Test Statistic
o The p-value

• Types of Hypotheses

• One and Two-Sided Tests

• The Philosophy of Hypothesis Testing

• Statistical and Practical Significance
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Recap: Hypothesis Testing

• Specific Hypothesis Testing Problems:

o 1-Sample Mean, Known Variance
o 1 Sample Mean, Unknown Variance
o 1-Sample Proportion, Exact
o 1-Sample Proportion, Large Sample with Continuity Correction
o 2-Sample Mean, Paired Observations
o 2 Sample Mean, Pooled Variance
o 2 Sample Mean, Separate Variance
o 2-Sample Proportion, Large Sample

• Fixed Significance Level Tests

• Power

• Hypothesis Tests and Confidence Intervals
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