
Chapter 5: Introduction to Inference:
Estimation



Estimating Population Quantities: An Example

Estimating the Effectiveness of a Medication

A pharmaceutical company is testing the effectiveness of a new
cholesterol-lowering medication. Specifically, they want to know
(1) If the medication reduces low density lipoprotein (LDL) level in
people with high LDL, and (2) On average, how much it reduces
LDL among those people.
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Estimating Population Quantities: An Example

To do so, the company’s scientists propose the following study.
They will

o Recruit 10 subjects with high levels of LDL cholesterol.

o Make sure the subjects don’t take any cholesterol medication
for two weeks to ensure an accurate baseline measurement.

o Take an initial baseline reading.

o Take a follow-up LDL measurement after the subject has been
30 days on the test medication.
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Estimating Population Quantities: An Example

Here are the resulting data:

Subject Baseline Follow-up LDL Decrease

1 160.5 168.1 −7.6
2 195.3 181.4 13.9
3 181.7 154.6 27.1
4 175.1 160.3 14.8
5 198.3 192.0 6.3
6 215.5 173.5 42.0
7 227.9 186.2 41.7
8 201.7 183.2 18.5
9 161.5 130.3 31.2

10 189.0 165.0 24.0
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Estimating Population Quantities: An Example
Suppose for the sake of argument, that there are only 10 people
with high LDL in the world, and the company has tested them all.
Can the company now answer its two questions: (1) Does the
medication reduce LDL in people with high LDL?

Subject Baseline Follow-up LDL Decrease
1 160.5 168.1 −7.6
2 195.3 181.4 13.9
3 181.7 154.6 27.1
4 175.1 160.3 14.8
5 198.3 192.0 6.3
6 215.5 173.5 42.0
7 227.9 186.2 41.7
8 201.7 183.2 18.5
9 161.5 130.3 31.2

10 189.0 165.0 24.0

It did in 9 of the 10. Or, putting it more scientifically, p, the
proportion of the population for whom the drug lowers LDL, is 0.9.
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Estimating Population Quantities: An Example
(2) On average, how much does the medication change LDL
among those people?

Subject Baseline Follow-up LDL Decrease

1 160.5 168.1 −7.6
2 195.3 181.4 13.9
3 181.7 154.6 27.1
4 175.1 160.3 14.8
5 198.3 192.0 6.3
6 215.5 173.5 42.0
7 227.9 186.2 41.7
8 201.7 183.2 18.5
9 161.5 130.3 31.2

10 189.0 165.0 24.0

Answer: It reduced their LDL levels an average of 21.19 mg/dL.
Or, putting it more scientifically, µ, the population mean decrease
in LDL, equals 21.19.
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Estimating Population Quantities: An Example

Because there were only 10 people with high LDL, the company
was able to measure the change in LDL levels in all of them, and
so could get exact answers to its questions.

In this case the 10 people constitute the target population (which
we will usually shorten to just population): the group to which we
want the conclusions to apply.
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Estimating Population Quantities: An Example

Of course, there are many more than 10 people with high LDL
levels; there are, in fact, millions, and these make up the target
population for the company’s study. The company still wants to
answer its two questions, but it cannot measure the LDL levels of
everyone with high LDL.

To get acceptable answers will take more thought and effort.
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Estimating Population Quantities: An Example

Selecting the Sample

Since the company can only test its product on a relatively small
number of people, the first thing to decide is how to select the
subjects for study.

The answer, if they want to draw scientific conclusions and have
the results apply to the full population, is to select the subjects
using an appropriate probability sampling method, such as
simple random sampling, stratified random sampling, or other
methods discussed in Chapter 3.

Throughout the rest of this course, we will assume samples are
selected by simple random sampling.

≈



Estimating Population Quantities: An Example

Selecting the Sample

Since the company can only test its product on a relatively small
number of people, the first thing to decide is how to select the
subjects for study.

The answer, if they want to draw scientific conclusions and have
the results apply to the full population, is to select the subjects
using an appropriate probability sampling method, such as
simple random sampling, stratified random sampling, or other
methods discussed in Chapter 3.

Throughout the rest of this course, we will assume samples are
selected by simple random sampling.

≈



Estimating Population Quantities: An Example

Selecting the Sample

Since the company can only test its product on a relatively small
number of people, the first thing to decide is how to select the
subjects for study.

The answer, if they want to draw scientific conclusions and have
the results apply to the full population, is to select the subjects
using an appropriate probability sampling method, such as
simple random sampling, stratified random sampling, or other
methods discussed in Chapter 3.

Throughout the rest of this course, we will assume samples are
selected by simple random sampling.

≈



Estimating Population Quantities: An Example

So, suppose the company decides it can afford 10 subjects for its
study. Its researchers select 10 at random from the population of
all people with high LDL, and once they have their subjects they
proceed as described earlier to obtain the data.

≈



Estimating Population Quantities: An Example

If the data are

Subject Baseline Follow-up LDL Decrease

1 160.5 168.1 −7.6
2 195.3 181.4 13.9
3 181.7 154.6 27.1
4 175.1 160.3 14.8
5 198.3 192.0 6.3
6 215.5 173.5 42.0
7 227.9 186.2 41.7
8 201.7 183.2 18.5
9 161.5 130.3 31.2

10 189.0 165.0 24.0

they would answer their questions by saying LDL decreased for 9 of
10 subjects, and the mean decrease was 21.19 mg/dL.
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Estimating Population Quantities: An Example

There is one further complication, however.

Because the sample is only a subset of the population (and not the
entire population, as we had assumed before), the proportion 0.9
and the mean 21.19 are not the population proportion and mean.
Rather, they are called the sample proportion and sample mean.

≈



Estimating Population Quantities: An Example

There is one further complication, however.

Because the sample is only a subset of the population (and not the
entire population, as we had assumed before), the proportion 0.9
and the mean 21.19 are not the population proportion and mean.
Rather, they are called the sample proportion and sample mean.

≈



Estimating Population Quantities: An Example

Because we are using these sample quantities to estimate their
population counterparts, we call them estimators. You know that
the sample mean is denoted y , which is the notation we will use.

Sometimes, in order to indicate what is being estimated, the
estimator is represented by putting a little hat on the quantity
being estimated. For example, we will denote the sample
proportion p̂ (We could have used µ̂ to represent the sample mean,
but since the y notation is so widely used, we chose not to).

Estimators such as y and p̂ that give a single value as an estimate
are called point estimators.
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Estimating Population Quantities: An Example

So from the sample, we estimate the population proportion for
whom the medication lowers LDL (p), by the sample proportion
p̂ = 0.9, and we estimate the population mean decrease in LDL
(µ) by the sample mean y = 21.19.

The problem is, we don’t know how close these estimates are to
the true population values.

To figure this out, we need the notion of a sampling distribution.
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Sampling Distributions

The sampling distribution of an estimator arises from the idea that
we obtain the subjects in our study by sampling randomly from the
population.

As a result, each sample is different and will give a different value
of the estimator we are using (e.g., the sample mean or sample
proportion).
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Sampling Distributions
To make this concrete, here are the LDL decreases for 5 different
samples from the population. Notice how the values of y and p̂
vary from sample to sample.

Sample
1 2 3 4 5

8.2 10.4 30.2 11.7 −1.0
52.5 52.0 17.2 36.3 25.4
41.4 25.1 19.0 15.5 3.5

7.1 3.3 12.1 −23.4 7.9
38.9 53.8 29.3 21.9 10.5
50.4 17.0 33.3 13.8 28.9
30.5 43.1 29.6 35.5 -1.6
14.4 18.0 22.4 30.4 11.2
−6.1 7.9 −2.7 16.2 26.6
−18.9 25.5 15.5 23.9 10.3

y 21.84 25.61 20.59 18.18 12.17
p̂ 0.8 1.0 0.9 0.9 0.8
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Sampling Distributions
The sampling distribution of an estimator is the pattern of
variation shown by the values obtained when the estimator is
calculated for all possible samples.

Let’s focus on y for the present.

In the LDL example, the sampling distribution of y would be the
set of values of y computed from all possible samples of size 10.

You can think of this as creating a table like the one on the
previous slide; instead of just 5 columns, though, there would be
one column for each possible sample (which would be a lot of
columns!). The resulting set of y values would be the sampling
distribution of y .

A good way to display the sampling distribution is to use a
histogram. For the LDL example, a histogram of the sampling
distribution of y for all samples of size 10 might look like Figure 1
on the next slide.
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Figure: 1: Histogram showing sampling distribution of y for samples of
size 10.
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Sampling Distributions

Let’s explore the sampling distribution of y a little more closely.

To do so, we begin with the original population of LDL decrease
values. This population will have a mean µ and a standard
deviation σ.

It can be shown that the sampling distribution of y based on
samples of size 10 has mean µ and standard deviation σ/

√
10. This

is shown in Figure 2 on the next slide, which displays a histogram
of the population of LDL decrease values (upper histogram) and a
histogram of the sampling distribution of y (lower histogram).
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Figure: 2: Top: distribution of population values of LDL decrease;
Bottom: sampling distribution of y for samples of size 10.
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Sampling Distributions

The standard deviation of the sampling distribution of an estimator
is called the standard error of the estimator. The standard error
of y based on samples of size 10 is σ/

√
10.
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Development of Confidence Intervals

Let’s standardize all the y values in the sampling distribution by
subtracting their mean µ and dividing the result by their standard
error σ/

√
10. The resulting values will have a distribution that has

mean 0 and standard deviation 1.

Here is the distribution of the standardized y values for samples of
size 10:
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Figure: 3: Distribution of standardized y values of LDL decrease for
samples of size 10.
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Sampling Distributions

If we know the sampling distribution, then given any two values,
a < b, we know the proportion of the standardized values that lie
between a and b.

For example, we have reason to suppose that the proportion of
standardized values of y between −1.96 and 1.96 is 0.95 (we’ll
give the reason later).
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Development of Confidence Intervals

Assume the proportion of standardized values between −1.96 and
1.96 is 0.95. If we let Pr denote “proportion”, we have

0.95 = Pr

(
−1.96 <

y − µ
σ/
√

10
< 1.96

)
= Pr

(
−1.96

σ√
10

< y − µ < 1.96
σ√
10

)
= Pr

(
y − 1.96

σ√
10

< µ < y + 1.96
σ√
10

)
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Development of Confidence Intervals

Look carefully at the first and last items in the chain of equalities:

0.95 = Pr

(
y − 1.96

σ√
10

< µ < y + 1.96
σ√
10

)
.

What this says is that if for each possible sample we calculate the
interval (

y − 1.96
σ√
10
, y + 1.96

σ√
10

)
,

then 95% of those intervals will contain the true population mean
µ.

For this reason, the interval
(
y − 1.96 σ√

10
, y + 1.96 σ√

10

)
is called

a 95% confidence interval for µ.
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Development of Confidence Intervals

Because they give a range of likely values for what is being
estimated (here, the population mean µ), confidence intervals are
examples of what are called interval estimators.

The interval estimator,
(
y − 1.96 σ√

10
, y + 1.96 σ√

10

)
is more

informative than the point estimator y , because

• If you know the interval, you can figure out what y is (it’s the
center of the interval).

• The interval gives a range of likely values for µ based on the
variation in the sampling distribution of y .
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• The interval gives a range of likely values for µ based on the
variation in the sampling distribution of y .
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Interpretation of Confidence Intervals

OK, so we’ve just obtained a 95% confidence interval for µ:(
y − 1.96

σ√
10
, y + 1.96

σ√
10

)
.

Notice that there is one interval for every possible sample, and
from the derivation, 95% of all these intervals contain the true
population mean µ.

This is what we mean when we say we are “95% confident” that
the interval contains µ.

Here are the results of several simulations to help illustrate this
idea:
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Figure: 4: Simulation of 100 95% confidence intervals for a population
mean.
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Figure: 5: Simulation of 100 95% confidence intervals for a population
mean.
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Figure: 6: Simulation of 100 90% confidence intervals for a population
mean.
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Example 1

Assume the 10 LDL decrease values presented earlier resulted from
a simple random sample of subjects with high LDL levels. We have
seen that the mean of the values is 21.19, which is the estimate y .
Assume we know the population standard deviation, σ, to be 16.
Then a 95% confidence interval for the population mean µ is(

y − 1.96
σ√
10
, y + 1.96

σ√
10

)
=

(
21.19− 1.96

16√
10
, 21.19 + 1.96

16√
10

)
= (11.27, 31.11).

Thus, with 95% confidence, we estimate that the population mean
decrease in LDL is between 11.27 and 31.11. 1

≈

1SAS code found here

http://users.wpi.edu/~jdp/ma2611d18/sas_code_ch5_1.txt
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Statistical Inference

Using data from a sample to estimate a population quantity, such
as the mean, is an example of statistical inference. We are using
information about a subset of the population (the sample) to infer
(that is, to conclude) something about the population.

Now that we have some basic ideas of what estimation and
confidence intervals are and how they are used, let’s develop these
ideas in a little more generality.
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Theoretical Distributions

In developing the confidence interval, we used the idea of a
population distribution: the pattern of variation in data from the
entire population. Of course, we can’t really know what this
distribution is: if we could take data from every unit in the
population, we wouldn’t need to take a sample.

So what we do is use a mathematical model to give a theoretical
population distribution, and derive methods and results from this
model.
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The Normal Distribution Model

The most frequently used model for continuous data (such as LDL
decrease) is the normal (aka Gaussian) model. The normal
model is given by the normal density curve:

f (x) =
1

σ
√

2π
exp

(
−1

2

[
x − µ
σ

]2)
, −∞ < x <∞.

As you might guess, the mean of this distribution is µ and the
standard deviation is σ (which means the variance is σ2). We use
the notation N(µ, σ2) to denote the normal distribution with mean
µ and variance σ2.

The density curve of the normal distribution is the famous
bell-shaped curve. Here are several examples:
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Figure: 7: Normal density curves. N(0,1) (tall curve at left), N(0,4)
(short curve at left), and N(5,4).
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The Normal Distribution Model

Some Important Characteristics of the Normal Density Curve

1. The curve is unimodal and symmetric about µ.

2. For any a<b, the area under the curve between a and b is the
proportion of the population values falling between a and b.

3. The total area under the curve is ... 1.

4. If a population of values follows a N(µ, σ2) distribution, and if
we standardize each value by subtracting the mean µ and
dividing the result by the standard deviation σ, the population
of standardized values follows a N(0, 1) (called a standard
normal) distribution.
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The Normal Distribution Model

Several slides ago, when we were developing a confidence interval
for µ, we stated that “the proportion of standardized values
between −1.96 and 1.96 is 0.95.”

We were making the assumption that the population of estimators
y followed a normal distribution. When we standardized these, the
standardized values followed a standard normal distribution.

By numerical computation (since we can’t generally find areas
under a normal curve exactly), we can show that the area under
the standard normal density between −1.96 and 1.96 is 0.95.
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The Normal Distribution Model
Table A.3 of the text provides areas under the standard normal
density curve. As shown below, the value in the table for z = 1.96
is 0.9750, which means that 97.5% of all N(0, 1) population values
lie below 1.96.

N(0, 1) Probabilities

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .

1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767
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The Normal Distribution Model
Similarly, the value in the table for z = −1.96 is 0.0250, which
means that 2.5% of all N(0, 1) population values lie below −1.96.
From this, we deduce that 95% of all N(0, 1) population values lie
between −1.96 and 1.96.

N(0, 1) Probabilities

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

−3.6 .0002 .0002 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0001
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .

−1.9 .0287 .0281 .0274 .0268 .0262 .0256 .0250 .0244 .0238 .0233
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The Normal Distribution Model

For any number q between 0 and 1, we define the q quantile of the
standard normal distribution as the value zq below which lies area
q under the standard normal curve. From what we have just seen,
z0.025 = −1.96 and z0.975 = 1.96. In a similar way, we can find any
quantile zq using Table A.3. Note this and other tables are in the
text’s appendices (pdf posted on Canvas).

Modern technology has given other options for finding the quantile
as well. Many calculators (my TI-84, for instance) have functions
to do so. There are also a number of online calculators available,
such as this.

≈

http://homepage.divms.uiowa.edu/~mbognar/applets/normal.html
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Example 1.5

Specification limits for the diameter of a nanoglobule are 1 to 8
microns. If the distribution of nanoglobule diameters is N(5, 4),
what percent of nanoglobules meet specification?

If X represents the diameter of a nanoglobule, the proportion of
nanoglobules in spec is (keep in mind that µ = 5 and σ = 2)

Pr(1 < X < 8) = Pr

(
1− 5

2
<

X − 5

2
<

8− 5

2

)
= Pr(−2 < Z < 1.5)

= Pr(Z < 1.5)− Pr(Z < −2)

= 0.9332− 0.0227

= 0.9105,

so 91.05% of nanoglobules meet specification.
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Synopsis: Confidence Intervals for the Population Mean

• We derived the formula for a 95% confidence interval for the
population mean µ based on a sample of size 10 from a

N(µ, σ2) population:
(
y − 1.96 σ√

10
, y + 1.96 σ√

10

)
.

• We can generalize this to samples of any size n:(
y − 1.96 σ√

n
, y + 1.96 σ√

n

)
.

• 1.96 equals z0.975, the 0.975 quantile of the N(0, 1) (standard
normal) distribution, so the formula is(
y − z0.975

σ√
n
, y + z0.975

σ√
n

)
.
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Confidence Intervals for the Population Mean

Finally, for any number L between 0 and 1, we can obtain the
formula for a level L confidence interval (also known as a
(100× L)% confidence interval) for µ:(

y − z 1+L
2

σ√
n
, y + z 1+L

2

σ√
n

)
.

Some common confidence levels are

Percent Level Normal Quantile

90% L = 0.90 z 1+L
2

= z 1+0.90
2

= z0.95 = 1.6449

95% L = 0.95 z 1+L
2

= z 1+0.95
2

= z0.975 = 1.9600

99% L = 0.99 z 1+L
2

= z 1+0.99
2

= z0.995 = 2.5758
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The Central Limit Theorem

In deriving the formula for the confidence interval for the
population mean, we have been assuming that the sampling
distribution of the sample mean y is normal.

If the original population distribution is normal, we know that this
assumption is correct: For a sample of size n from a N(µ, σ2)
population, the sampling distribution of y is N(µ, σ2/n).

However, these same confidence interval formulas work quite well
for many populations with non-normal distributions: better, in
fact, than we might suppose they would.
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The Central Limit Theorem

It turns out that the reason is a mathematical result called The
Central Limit Theorem.

Basically, the Central Limit Theorem says that regardless of the
population distribution of the quantity being measured, if the
sample size is sufficiently large, then the sampling distribution of
the sample mean is approximately normal.
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The Central Limit Theorem

Specifically, if the population mean is µ and the population
standard deviation is σ, then if the sample size n is sufficiently
large, the sample mean will have approximately a N(µ, σ2/n)
distribution.

“Sufficiently large” varies with the population distribution, but
samples of size 25 or 30 will make the CLT valid for most cases,
and samples of size 100 for almost all cases found in practice.

As a result, when the Central Limit Theorem applies, the
confidence interval formula we have been studying gives reliable
results in a wide range of applications. Here is a picture to
illustrate the Central Limit Theorem.
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Figure: 1: The CLT in action. Distribution of standardized original data
(upper left), and of standardized means of size 10 (upper right), 30
(lower left), and 50 (lower right).
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Determining Sample Size

One of the first questions that has to be answered in designing any
study is “What sample size is needed?”. We have seen that the
Central Limit Theorem provides some guidance on this.

Another consideration is the precision desired in estimators.
Precision of an estimator is a measure of how variable that
estimator is. One way of expressing precision is the width of a level
L confidence interval. For a given population and confidence level,
precision is a function of the size of the sample: the larger the
sample, the greater the precision.
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Determining Sample Size
For example, recall the confidence interval for a population mean:(

y − z 1+L
2

σ√
n
, y + z 1+L

2

σ√
n

)
.

Half the width of this interval is

z 1+L
2

σ√
n
.

If we want a precision d (so that the half length of this interval is
less than or equal to d), we have

d ≥ z 1+L
2

σ√
n
,

which implies
n ≥ (σ2 · z21+L

2

)/d2.
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Example 2

In the LDL decrease study, the standard deviation was taken to be
16. If the researchers want a level 0.95 confidence interval to
estimate the population mean decrease with a precision of 1/2
mg/dL, they should select a sample of size

n ≥ 162 · 1.962/(1/2)2 = 3933.8.

Their sample should consist of 3934 subjects: a far cry from the 10
subjects used in the study!
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The Components of a Statistical Estimation Problem

We will divide a statistical estimation problem into five steps

1. The Scientific Goal

2. The Statistical Model

3. The Model Parameter(s) to Be Estimated

4. Point and Interval Estimates

5. Results and Interpretation

We illustrate using the LDL reduction study
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The Components of a Statistical Estimation Problem

1. The Scientific Goal The scientific goal is the reason for
doing the experiment or study. In this example, there are two
scientific goals: (a) Does the medication reduce LDL for a
substantial proportion of people with high LDL levels? and
(b) By how much does it reduce LDL among people with high
LDL? Here, we will focus on (b).

2. The Statistical Model The statistical model is the
distribution of the population of measurements that are being
taken. In this case, the measurements are the LDL decreases
and we will assume the population has a N(µ, 162)
distribution.
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The Components of a Statistical Estimation Problem

3. The Model Parameter(s) to Be Estimated At this point
we examine how to achieve the scientific goal in terms of the
statistical model. If we can’t formulate the scientific goal in
these terms, we shouldn’t be doing a statistical estimation
problem.

In the LDL reduction study, we will focus on the average effect
of the medication, so that the scientific goal is to find how
much, on average, the medication reduces LDL among people
with high LDL. This suggests that the model parameter we
want to estimate is the population mean LDL reduction: µ.
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The Components of a Statistical Estimation Problem

4. Point and Interval Estimates Often, the point estimator is
the sample version of the model parameter to be estimated.
This is true when we want to estimate the mean of a N(µ, σ2)
population: the estimator of µ is the sample mean, y . For the
LDL data, the point estimate is the value of y = 21.19.

We have seen that the formula for a level L confidence
interval for µ when σ is known is(

y − z 1+L
2

σ√
n
, y + z 1+L

2

σ√
n

)
.

To compute the interval, we have to choose a confidence
level, L. For L = 0.95, we have seen that the interval for the
LDL data is(

y − 1.96
16√
10
, y + 1.96

16√
10

)
= (11.27, 31.11).

≈



The Components of a Statistical Estimation Problem

4. Point and Interval Estimates Often, the point estimator is
the sample version of the model parameter to be estimated.
This is true when we want to estimate the mean of a N(µ, σ2)
population: the estimator of µ is the sample mean, y . For the
LDL data, the point estimate is the value of y = 21.19.

We have seen that the formula for a level L confidence
interval for µ when σ is known is(

y − z 1+L
2

σ√
n
, y + z 1+L

2

σ√
n

)
.

To compute the interval, we have to choose a confidence
level, L. For L = 0.95, we have seen that the interval for the
LDL data is(

y − 1.96
16√
10
, y + 1.96

16√
10

)
= (11.27, 31.11).

≈



The Components of a Statistical Estimation Problem

5. Results and Interpretation We have to be a bit careful to
state these correctly. For point estimation,you are always on
solid ground making a statement like “The estimate of the
mean LDL reduction is 21.19 mg/dL.”

However, you should always give some indication of the
variation in the estimate. You can do this by giving the
standard error of the estimate (here, 16/

√
10 = 5.06), or a

confidence interval.

When reporting a confidence interval, you are on safest
ground making a statement such as “A 95% confidence
interval for the mean LDL reduction is (11.27,31.11) mg/dL.”
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The Components of a Statistical Estimation Problem

Be warned, however, that on homework, quiz and test, I may ask
you for a practical interpretation of “confidence” and of the
interval you produce.

Here, the correct interpretation of “95% confidence” is that 95%
of all possible samples will produce intervals that contain the true
population mean LDL reduction.

As an example of practical interpretation, suppose it is known that
the mean LDL reduction provided by the present LDL reduction
medication is 5.88. The 95% interval produced by this study
estimates the mean reduction under the new medication is in the
range (11.27,31.11). Does this result support the contention that
the new medication is more effective than the present medication?

Answer: yes, since 5.88 lies below the entire confidence interval.
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Estimating the Mean when the Variance is Unknown

Up to now in our development of confidence intervals for a
population mean µ, we have assumed that the population variance
σ2 is known. This is often unrealistic.

It turns out that the right thing to do in this case is to use the
sample standard deviation, s, in place of the unknown population
standard deviation σ.

Recall that

s =

√√√√ 1

n − 1

n∑
i=1

(yi − y)2.
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Estimating the Mean when the Variance is Unknown

That is, instead of assuming that the sampling distribution of the
sample mean y has mean µ and standard deviation σ/

√
n, we

assume it has mean µ and standard deviation s/
√
n
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Estimating the Mean when the Variance is Unknown

Recall that the derivation of the confidence interval used the fact
that the standardized sample mean Z = (y − µ)/(σ/

√
n) has a

N(0, 1) distribution.

Replacing σ by s gives a different standarized estimator
t = (y − µ)/(s/

√
n), which not surprisingly has a different

sampling distribution, called a t distribution, sometimes named
Student’s t distribution after the statistician who discovered it.
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Estimating the Mean when the Variance is Unknown

A Slight Detour:

The t distributions are a family of distributions having an integer
parameter ν (and written tν), called the degrees of freedom. The
t distribution density curves look like standard normal density
curves, except they are lower in the center and higher in the tails.

Figure 8 compares some t densities with the standard normal
density.
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Figure: 8: In order of decreasing center height: N(0, 1), t10, t5 and t1.
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Estimating the Mean when the Variance is Unknown

If the original data are from a N(µ, σ2) distribution, the
standardized mean t = (y − µ)/(s/

√
n) has a t distribution with

n − 1 degrees of freedom.

If we let tn−1,q denote the qth quantile of the tn−1 distribution,
and mimic the derivation of the confidence interval for the mean
when σ is known, we get the formula for a level L confidence
interval for the mean:(

y − tn−1, 1+L
2

s√
n
, y + tn−1, 1+L

2

s√
n

)
.
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Example 1, Revisited

Let’s go back to the LDL decrease data. Recall that the mean
decrease was y = 21.19. Previously, we assumed σ = 16. Let’s
now suppose we don’t know σ, but use the sample standard
deviation s = 15.45. To compute a 95% confidence interval for µ,
we need to know t9,0.975. The value is 2.2622, and as with normal
quantiles, can be obtained in a number of ways: a calculator, an
online site such as this, or from a table such as Table A.4 of the
text, as the next slide shows.
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Estimating the Mean when the Variance is Unknown

Critical Values of the t Distribution

Degrees of
Freedom, k tk,.90 tk,.95 tk,.975 tk,.99 tk,.995 tk,.999 tk,.9995

1 3.0777 6.3137 12.7062 31.8205 63.6567 318.3090 636.6190
2 1.8856 2.9200 4.3027 6.9646 9.9248 22.3270 31.5990
3 1.6377 2.3534 3.1824 4.5407 5.8409 10.2150 12.9240
4 1.5332 2.1319 2.7764 3.7469 4.6041 7.1730 8.6100
5 1.4759 2.0150 2.5706 3.3649 4.0321 5.8930 6.8690
6 1.4398 1.9432 2.4469 3.1427 3.7074 5.2080 5.9590
7 1.4149 1.8946 2.3646 2.9980 3.4995 4.7850 5.4080
8 1.3968 1.8595 2.3060 2.8965 3.3554 4.5010 5.0410
9 1.3830 1.8331 2.2622 2.8214 3.2498 4.2970 4.7810
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Estimating the Mean when the Variance is Unknown

Thus, a 95% confidence interval for µ is(
y − tn−1, 1+L

2

s√
n
, y + tn−1, 1+L

2

s√
n

)
=(

21.19− 2.2622
15.45√

10
, 21.19 + 2.2622

15.45√
10

)
= (10.14, 32.24)2

Notice that this interval is a bit wider than the earlier one
((11.27,31.11)), despite the fact that s is smaller than the value of
σ we assumed before. This reflects the greater uncertainty that
results from estimating σ.
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Inference for a Population Proportion

Recall that one of the initial questions for the LDL reduction study
was whether the tested medication reduces LDL. One way of
answering this question might be to decide for what proportion of
the population the medication does lower LDL.

The data obtained showed that LDL decreased for 9 of the 10
subjects. How can we use this information to answer the question?
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Inference for a Population Proportion

To begin, let p denote the proportion of the population for whom
the medication will lower LDL. To estimate p, we will use the
proportion of the sample whose LDL decreased. Denoting this
sample proportion p̂, we have p̂ = 9/10 = 0.9.

p̂ is the point estimate for p.

To obtain a 95% confidence interval for p, we need information
about the sampling distribution of p̂, which we now present in a
little more generality.
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Inference for a Population Proportion

Suppose we have a sample of size n (in our example n = 10), and
that p̂ is the proportion in the sample having the characteristic of
interest (in our example, a decrease in LDL). It can be shown that
the mean and variance of p̂ are p and p(1− p)/n, respectively.

If n is large, the Central Limit Theorem will apply to p̂, and will
ensure that the distribution of p̂ standardized by subtracting the
mean p and dividing by the standard error

√
p(1− p)/n, will

approximately follow a standard normal distribution.
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Inference for a Population Proportion

So, an approximate large sample level L confidence interval for p
has endpoints

p̂ ± z (1+L)
2

√
p(1− p)

n

This presents a problem. Can you tell me why?

That’s right: we have to know p to compute it.

One solution, which works well for large samples, is to replace p
with p̂.
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Inference for a Population Proportion

Therefore, an approximate large sample level L confidence interval
for p has endpoints

p̂ ± z (1+L)
2

√
p̂(1− p̂)

n
.

For our example, a level 0.95 interval would be

0.9± 1.96

√
(0.9)(1− 0.9)

10
= (0.714, 1.086) −→ (0.714, 1.0),

with the rounding being done since p cannot be bigger than 1.
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Inference for a Population Proportion

While this interval works well for large samples, it does not work so
well for small samples. However, a simple adjustment will make
this interval work well for both small and large samples.

The adjustment consists of adding “fudge factors” to the
numerator and denominator of p̂. Here’s how it goes:
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Inference for a Population Proportion

Assume we want a level L confidence interval. If we let y denote
the number of items in the sample having the characteristic of
interest (so that p̂ = y/n), compute the adjusted sample
proportion

p̃ =
y + 0.5z2(1+L)

2

ñ
,

where
ñ = n + z2(1+L)

2

The adjusted confidence interval has endpoints

p̃ ± z (1+L)
2

√
p̃(1− p̃)

ñ
.
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Inference for a Population Proportion
For the LDL example, y = 9, n = 10, L = 0.95, so
z (1+L)

2

= z0.975 = 1.96. Thus,

ñ = 10 + 1.962 = 13.8416,

p̃ =
9 + (0.5)(1.962)

13.8416
= 0.789,

And the interval is

0.789± 1.96

√
0.789(1− 0.789)

13.8416
= (0.574, 1.003),

which we should report as (0.574, 1.0).3

≈

3SAS code found here

http://users.wpi.edu/~jdp/ma2611d18/sas_code_ch5_3.txt
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Inference for a Population Proportion

We can say that with 95% confidence we estimate that the
proportion of the population for whom the medication will decrease
LDL is between 0.574 and 1.

The interpretation of 95% confidence is that if we take all possible
samples from the population, and for each conduct the experiment
and construct a confidence interval of this type, then 95% of all
those intervals will contain the true population proportion p.
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Inference for a Population Proportion

This interval is called an approximate score or Agresti-Coull
confidence interval for p. “Approximate score” tells the
statistical idea behind the interval, and “Agresti-Coull” credits the
two researchers who developed the idea. Because this is an
approximate interval, the true confidence level may differ from the
advertized level, though in general the approximation is good.

NOTE: In all homework and lab assignments, and the final I want
you to use the approximate score interval for estimating a
population proportion.
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The Components of a Statistical Estimation Problem:
Estimating a Population Proportion in the LDL Study

1. The Scientific Goal: As stated previously: “Does the
medication reduce LDL in people with high LDL?” We will
take this to be answered if we can tell what proportion of the
population obtains lower LDL from the medication.
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The Components of a Statistical Estimation Problem:
Estimating a Population Proportion in the LDL Study

2. The Statistical Model:

Suppose

(a) All units in a large population can be classified as having or
not having a certain characteristic.

(b) The proportion of the population having the characteristic is p.
(c) A simple random sample of size n is taken from the population.

The statistical model for the number of units in the sample
having the characteristic is called a binomial model with
parameters n and p (abbreviated b(n, p)). 4

≈

4We will have more to say about the binomial model in chapter 6.
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The Components of a Statistical Estimation Problem:
Estimating a Population Proportion in the LDL Study

In the LDL example, the characteristic is reduction in LDL level
after taking the medication. Since a simple random sample of size
10 is taken, the statistical model is b(10, p), where p is proportion
of the target population for whom this medication would lower
LDL levels.
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The Components of a Statistical Estimation Problem:
Estimating a Population Proportion in the LDL Study

3. The Model Parameter(s) to Be Estimated: p

4. Point and Interval Estimates:
a. Point estimate: p̂ = 9/10 = 0.9.
b. 95% approximate score CI:

Adjusted estimate of p:

p̃ =
9 + (0.5)(1.962)

10 + 1.962
= 0.789.

Interval:

0.789±1.96

√
0.789(1− 0.789)

10 + 1.962
= (0.574, 1.003) −→ (0.574, 1.0).
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The Components of a Statistical Estimation Problem:
Estimating a Population Proportion in the LDL Study

5. Results and Interpretation: Point estimate of population
proportion who obtain lower LDL from the medication: 0.9.
95% confidence interval: (0.574,1.0). In particular, we
estimate with 95% confidence that the medication will lower
LDL for more than 57% of the population.
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Comparing Two Population Means

Many applications of statistics involve comparisons: different
products, processes, and treatments are frequently compared.

Although it was not presented as such, estimation of mean LDL
reduction in the LDL study can be viewed as comparing two
population means. It will be instructive to see why.
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Comparing Two Population Means: Paired Data

Recall that in the study each of 10 subjects obtained in a simple
random sample was measured for LDL at the outset and then after
30 days on a particular medication. Our analysis focused on
estimating the mean reduction in LDL.

But viewed another way, this mean reduction is the difference of
two population means: µpre − µpost , where µpre is the mean of the
before (or untreated) population, and µpost is the mean of the
after (or treated) population.
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Comparing Two Population Means: Paired Data

The before and after measurements are said to be paired, because
each individual provides one before-after pair. Pairing is an
example of blocking, as you studied in chapter 3.

When paired data measurements are of the same quantity, as in
the LDL example, analysis is often done by subtracting one paired
measurement from the other and treating the resulting difference
as if it were a single measurement.

This is exactly what we did by choosing to analyze the decrease in
LDL.
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Comparing Two Population Means: Paired Data

Recall that the data gave a point estimate of 21.19 for the
population mean decrease, and a 95% confidence interval
(10.14,32.24). If we choose, we can interpret the first result as
estimating the difference between pre and post-treatment
population mean LDL (i.e., µpre − µpost) as 21.19, and the second
as saying that with 95% confidence we estimate that difference in
population means to be between 10.14 and 32.24.
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Comparing Two Population Means: Independent
Populations

Not all comparisons are done using paired data. Sometimes our
data consist of independent random samples from two separate
populations.

Suppose that we take a random sample of size n1 from population
1, which follows a N(µ1, σ

2) distribution, and independently a
random sample of size n2 from population 2, which follows a
N(µ2, σ

2) distribution.

Notice that the only possible difference in the population
distributions is in their means.
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Comparing Two Population Means: Independent
Populations

We already know that the estimator of µ1 is the sample mean of
the first sample, y1, and that of µ2 is the sample mean of the
second sample, y2.

We also know that the sampling distribution of y1 is N(µ1, σ
2/n1)

and that of y2 is N(µ2, σ
2/n2).
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Comparing Two Population Means: Independent
Populations

If we want to estimate µ1− µ2, common sense says to use y1− y2.

Although “common sense” can sometimes lead you astray, in this
case, it doesn’t fail: y1 − y2 is exactly the right point estimator to
use.

We also want to obtain a confidence interval for µ1 − µ2. For this,
we need the information that the sampling distribution of y1 − y2
is N(µ1 − µ2, σ2/n1 + σ2/n2) = N(µ1 − µ2, σ2(1/n1 + 1/n2)).
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Comparing Two Population Means: Independent
Populations

Then using the fact that the standardized estimator

Z =
y1 − y2 − (µ1 − µ2)√

σ2
(

1
n1

+ 1
n2

) ∼ N(0, 1),

and following the same logic as we did in developing the one
sample confidence interval for the mean, we get a level L
confidence interval for µ1 − µ2:(
y1 − y2 − z 1+L

2

√
σ2
(

1

n1
+

1

n2

)
, y1 − y2 + z 1+L

2

√
σ2
(

1

n1
+

1

n2

))
.

This interval is fine if we know the population variance, but as you
know, we often do not.
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Comparing Two Population Means: Independent
Populations

If we don’t know the population variance, we do the usual: we
estimate it from the sample. In our case, we have two samples, and
hence two sample variances to use as estimates of σ2: s21 and s22 .

We combine these together by a process known as pooling, which
is an average of s21 and s22 weighted by the degrees of freedom (i.e.,
number of data values minus 1) in each sample.
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Comparing Two Population Means: Independent
Populations

The result is the pooled variance estimate:

s2p =
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2
.

Using sp instead of σ in the standardization formula gives

t(p) =
y1 − y2 − (µ1 − µ2)√

s2p

(
1
n1

+ 1
n2

) ,

which has a tn1+n2−2 distribution.
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Comparing Two Population Means: Independent
Populations

From this, we get a level L confidence interval for µ1 − µ2 having
endpoints:

y1 − y2 ± tn1+n2−2, 1+L
2

√
s2p

(
1

n1
+

1

n2

)
.

This interval is called a pooled variance interval.

≈



Comparing Two Population Means: Independent
Populations

From this, we get a level L confidence interval for µ1 − µ2 having
endpoints:

y1 − y2 ± tn1+n2−2, 1+L
2

√
s2p

(
1

n1
+

1

n2

)
.

This interval is called a pooled variance interval.

≈



Example 3

A company buys cutting blades used in its manufacturing process
from two suppliers. In order to decide if there is a difference in
blade life, the lifetimes of 10 blades from manufacturer 1 and 13
blades from manufacturer 2 used in the same application are
compared. A summary of the data shows the following (units are
hours):

Manufacturer n y s

1 10 108.4 26.9
2 13 134.9 18.4

Management decides a 0.90 level of confidence is sufficient for
their needs, and based on previous experience, they are willing to
assume the two population variances are equal.
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Example 3

1. The Scientific Goal:

Decide if there is a difference in the life
of blades from the two manufacturers.

2. The Statistical Model: Two independent normal
populations with equal variances: N(µ1, σ

2), N(µ2, σ
2).

3. The Model Parameter(s) to Be Estimated: The difference
in mean blade life, µ1 − µ2.
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Example 3

4. Point and Interval Estimates:
a. Point estimate:

y1 − y2 = 108.4− 134.9 = −26.5.
b. Confidence Interval: The pooled variance estimate is

s2p =
(10− 1)(26.9)2 + (13− 1)(18.4)2

10 + 13− 2
= 503.6.

This gives the estimate of the standard error of y1 − y2 as√
503.6

(
1

10
+

1

13

)
= 9.44.

Finally, n1 + n2 − 2 = 10 + 13− 2 = 21, and t21,0.95 = 1.7207,
so a level 0.90 confidence interval for µ1 − µ2 is

(−26.5− (9.44)(1.7207), −26.5 + (9.44)(1.7207))

= (−42.7,−10.3)

(SAS code found here).
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Example 3

5. Results and Interpretation:

Management can say that with
90% confidence they estimate that the mean lifetime of the
blades from manufacturer 1 is between 10.3 and 42.7 hours
less than that of the blades from manufacturer 2.

An interesting point is that if this interval contained 0, they
would not be able to conclude there was a difference in
population means, which, since they are assuming normal
distributions with equal variances, implies they would not be
able to conclude the two populations had different
distributions.
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Comparing Two Population Means: Independent
Populations

What do we do if the population variances are not equal?

The most fundamental question is: “If the population variances are
not equal, does it make sense to compare the population means?”

In the case of unequal variances, even if the means are equal, the
two populations will have different distributions. So comparing the
means is inappropriate if the goal is to decide if the two population
distributions are the same.
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Comparing Two Population Means: Independent
Populations

If our interest is solely in comparing the means, and we are not
willing to assume the population variances are equal, here is how
we can proceed.

Suppose that we take a random sample of size n1 from population
1, which follows a N(µ1, σ

2
1) distribution, and independently a

random sample of size n2 from population 2, which follows a
N(µ2, σ

2
2) distribution.
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Comparing Two Population Means: Independent
Populations

We already know that the estimator of µ1 is the sample mean of
the first sample, y1, and that of µ2 is the sample mean of the
second sample, y2.

We also know that the sampling distribution of y1 is N(µ1, σ
2
1/n1)

and that of y2 is N(µ2, σ
2
2/n2).
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Comparing Two Population Means: Independent
Populations

As in the equal variance case, the best estimator of µ1 − µ2 is
y1 − y2.

To construct a confidence interval for µ1 − µ2 we will use the
information that the sampling distribution of y1 − y2 is
N(µ1 − µ2, σ21/n1 + σ22/n2).
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Comparing Two Population Means: Independent
Populations

Then using the fact that the standardized estimator

Z =
y1 − y2 − (µ1 − µ2)√

σ2
1

n1
+

σ2
2

n2

∼ N(0, 1),

and following the same logic as we did in developing the one
sample confidence interval for the mean, we get a level L
confidence interval for µ1 − µ2:y1 − y2 − z 1+L

2

√
σ21
n1

+
σ22
n2
, y1 − y2 + z 1+L

2

√
σ21
n1

+
σ22
n2

 .

This interval is fine if we know the population variances, but as
you know, we often do not.
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Comparing Two Population Means: Independent
Populations

As before, if we do not know the population variances, we estimate
them from the data using the sample variances: s21 and s22 . This
gives us the standardized estimator

t(ap) =
y1 − y2 − (µ1 − µ2)√

s21
n1

+
s22
n2

.

Based on the equal variance case, t(ap) should have a t distribution.

It doesn’t. In fact, its distribution isn’t very nice at all.
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Comparing Two Population Means: Independent
Populations

However, all is not lost. Its distribution can be approximated by a
t distribution with ν degrees of freedom, where ν is the largest
integer less than or equal to(

s21
n1

+
s22
n2

)2
(

s2
1
n1

)2

n1−1 +

(
s2
2
n2

)2

n2−1

.

Yuck! Fortunately, the calculation is not as bad as it looks.
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Comparing Two Population Means: Independent
Populations

Once we resign ourselves to calculating ν, an approximate level L
confidence interval for µ1 − µ2 isy1 − y2 − tν, 1+L

2

√
s21
n1

+
s22
n2
, y1 − y2 + tν, 1+L

2

√
s21
n1

+
s22
n2

 .

This interval is called a separate variance or Satterhwaite
interval.
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Example 3, Revisited

A company buys cutting blades used in its manufacturing process
from two suppliers. In order to decide if there is a difference in
blade life, the lifetimes of 10 blades from manufacturer 1 and 13
blades from manufacturer 2 used in the same application are
compared. A summary of the data shows the following (units are
hours):

Manufacturer n y s

1 10 108.4 26.9
2 13 134.9 18.4

Management is not willing to assume equal population variances.
Even so, the only component of the statistical estimation problem
this will change is the computation of the confidence interval.
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Example 3, Revisited
The estimated standard error of y1 − y2 is√

(26.9)2

10
+

(18.4)2

13
= 9.92.

The degrees of freedom ν is computed as the greatest integer less
than or equal to (

(26.9)2

10 + (18.4)2

13

)2
(

(26.9)2

10

)2

10−1 +

(
(18.4)2

13

)2

13−1

= 15.17,

so ν = 15. Finally, t15,0.95 = 1.7530, so a level 0.90 confidence
interval for µ1 − µ2 is

(−26.5− (9.92)(1.753), −26.5 + (9.92)(1.753))

= (−43.9,−9.1)

(SAS code found here).
≈

http://users.wpi.edu/~jdp/ma2611d18/sas_code_ch5_4.txt
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Example 3, Revisited

So, we have

• Pooled variance interval for µ1 − µ2: (−42.7,−10.3).

• Separate variance interval for µ1 − µ2: (−43.9,−9.1).

Both give similar results in this case.
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Comparing Two Population Proportions

Suppose there are two populations: population 1, in which a
proportion p1 have a certain characteristic, and population 2, in
which a proportion p2 have a certain (possibly different)
characteristic. We will use a sample of size n1 from population 1,
and n2 from population 2 to estimate the difference p1 − p2.
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Comparing Two Population Proportions

Specifically, if y1 is the number having the population 1
characteristic in the n1 items in sample 1, and if if y2 is the
number having the population 2 characteristic in the n2 items in
sample 2, then the sample proportion having the population 1
characteristic is p̂1 = y1/n1, and the sample proportion having the
population 2 characteristic is p̂2 = y2/n2.

A point estimator of p1 − p2 is p̂1 − p̂2.
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Comparing Two Population Proportions

The standard error of p̂1 − p̂2 is√
p1(1− p1)

n1
+

p2(1− p2)

n2
.

Further, for large n1 and n2, the Central Limit Theorem ensures
that p̂1 − p̂2 has approximately a normal distribution, so

p̂1 − p̂2 − (p1 − p2)√
p1(1−p1)

n1
+ p2(1−p2)

n2

has approximately a N(0, 1) distribution.
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Comparing Two Population Proportions

Based on this, and on the fact that if n1 and n2 are large, then p̂1
and p̂2 are close to p1 and p2, respectively, an approximate level L
confidence interval for p1 − p2 has endpoints

p̂1 − p̂2 ± z(1+L)/2

√
p̂1(1− p̂1)

n1
+

p̂2(1− p̂2)

n2
.
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Comparing Two Population Proportions

As for the one sample case, this large-sample interval does not
work well when one or both sample sizes are small.

However, by “fudging” the sample proportions in much the same
way as we did in the one sample case, we can get an approximate
interval that works well for all sample sizes.
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Comparing Two Population Proportions
Specifically, to compute the level L approximate score (or
Agresti-Coull) interval, first compute the adjusted estimates of n1
and n2:

ñ1 = n1 + 0.5z2(1+L)/2, ñ2 = n2 + 0.5z2(1+L)/2,

and then the adjusted estimates of p1 and p2:

p̃1 =
y1 + 0.25z2(1+L)/2

ñ1
, p̃2 =

y2 + 0.25z2(1+L)/2

ñ2

The approximate score interval for p1 − p2 is then given by the
formula:

p̃1 − p̃2 ± z(1+L)/2

√
p̃1(1− p̃1)

ñ1
+

p̃2(1− p̃2)

ñ2
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Example 4

In a recent survey on academic dishonesty 24 of the 200 female
college students surveyed and 26 of the 100 male college students
surveyed agreed or strongly agreed with the statement “Under
some circumstances academic dishonesty is justified.” With 95%
confidence estimate the difference in the proportions pf of all
female and pm of all male college students who agree or strongly
agree with this statement.
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Example 4

1. The Scientific Goal:

Estimate the difference in the
proportions pf of all female and pm of all male college
students who agree or strongly agree with the statement.

2. The Statistical Model: Two independent binomials
b(200, pf ), b(100, pm).

3. The Model Parameter(s) to Be Estimated: pf − pm
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Example 4

4. Point and Interval Estimates:
a. Point estimate:

p̂f − p̂m = 24
200 −

26
100 = −0.14.

b. Confidence interval: Since z0.975 = 1.96, yf = 24, nf = 200,
ym = 26, and nm = 100, the adjusted estimates of nf and nm
are

ñ1 = 200+0.5·1.962 = 201.9208, ñ2 = 100+0.5·1.962 = 101.9208

The adjusted estimates of pf and pm are then

p̃f =
24 + 0.25 · 1.962

ñ1
= 0.1236,

and

p̃m =
26 + 0.25 · 1.962

ñ2
= 0.2645.
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Example 4

The approximate score interval for pf − pm is then

0.1236− 0.2645±

1.96

√
0.1236(1− 0.1236)

201.9208
+

0.2645(1− 0.2645)

101.9208

= (−0.2378,−0.0440)

(SAS code here)

≈

http://users.wpi.edu/~jdp/ma2611d18/sas_code_ch5_5.txt
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5. Results and Interpretation:

With 95% confidence we
estimate that the percentage of male college students who
agree or strongly agree with the statement is between 4.4 and
23.78 percent greater than the corresponding percentage of
female college students.
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