Bivariate Data: Graphical Dis-
play

T he scatterplot is the basic tool of graphically
displaying bivariate quantitative data.

Example:

Some investors think that the performance of
the stock market in January is a good predictor
of its performance for the entire year. To see
if this is true, consider the following data on
Standard & Poor’s 500 stock index (found in
SASDATA.SANDP).



Percent Percent

January 12 Month
Year Gain Gain
1985 7.4 26.3
1986 0.2 14.6
1987 13.2 2.0
1988 4.0 12.4
1989 7.1 27.3
1990 -6.9 -6.6
1991 4.2 26.3
1992 -2.0 4.5
1993 0.7 7.1
1994 3.3 -1.5



The plot your instructor is about to show you
is a scatterplot of the percent gain in the S&P
index over the year (vertical axis) versus the
percent gain in January (horizontal axis).



How to analyze a scatterplot

The scatterplot of the S&P data can illus-
trate the general analysis of scatterplots. You

should look for:

e Association. This is a pattern in the scat-
terplot.

e Type of Association. If there is association,
is it:

O Linear.

o Nonlinear.

e Direction of Association.




For the S&P data, there is association. This
shows up as a general positive relation (Larger
% gain in January is generally associated with
larger % yearly gain.) It is hard to tell if the
association is linear, since the spread of the
data is increasing with larger January % gain.
This is due primarily to the 1987 datum in
the lower right corner of plot, and to some
extent the 1994 datum. Eliminate those two
points, and the association is strong linear and
positive, as the second plot shows.

There is some justification for considering the
1987 datum atypical. That was the year of the
October stock market crash. The 1994 datum
IS @ mystery to me.



Data Smoothers

Data smoothers can help identify and simplify
patterns in large sets of bivariate data. You
have already met one data smoother: the mov-

ing average.

Another is the median trace. Here's how it
works:




Correlation

Pearson Correlation

Suppose n measurements, (X;, Y;), ¢t =1,...,n
are taken on the variables X and Y. Then
the Pearson correlation between X and Y com-
puted from these data is

1 n

" n—1 Z: X,
1=1
where
X; - X Y, - Y
X;="—"—and Y/ ="~
Sx Sy

are the standardized data.

The following illustrate what Pearson correla-
tion measures.



Good Things to Know About Pear-
son Correlation

e Pearson correlation is always between -1
and 1. Values near 1 signify strong positive
linear association. Values near -1 signify
strong negative linear association. Values
near O signify weak linear association.

e Correlation between X and Y is the same
as the correlation between Y and X.

e Correlation can never by itself adequately
summarize a set of bivariate data. Only
when used in conjunction with X, Y, Sy,
and Sy and a scatterplot can an adequate
summary be obtained.

e T he meaningfulness of a correlation can
only be judged with respect to the sam-
ple size.



Example:
Back to the S&P data, the SAS macro CORR
gives a 95% confidence interval for p as

(-0.2775, 0.8345).

We can also test

Hp : p = O
Hq+ p = O
by computing
. 8
t* = 0.4295 = 1.3452,
(1 — 0.42952)

and comparing this with a tg distribution. The
resulting values are

pT = P(tg > 1.3452) = 0.1077,
and

p_ = P(tg < 1.3452) = 0.8923,



so that

p = 2min(0.1077,0.8923) = 0.2154.

QUESTION: What is p? Does this make sense?



Spearman’s Correlation

An alternative to Pearson correlation which is
resistant to outliers and which can pick up
some kinds of nonlinear association is Spear-
man’s correlation. Spearman’s correlation is
just Pearson correlation computed from the
ranks of the data.



Example:

Back to the S&P data, we compute the ranks

Rank Rank
Percent Percent Percent Percent
January 12 Month January 12 Month

Year Gain Gain Gain Gain
1985 7.4 26.3 O 8.5
1986 0.2 14.6 3 7
1987 13.2 2.0 10 3
1988 4.0 12.4 6 6
1989 7.1 27.3 8 10
1990 -6.9 -6.6 1 1
1991 4.2 26.3 7 8.5
1992 -2.0 4.5 2 4
1993 0.7 7.1 4 5
1994 3.3 -1.5 5 2



The Pearson correlation between the January
gain and the 12 month gain is 0.4295. The
Spearman correlation, which is just the Pear-
son correlation between the ranks, is 0.4802.
We can test

Hgy : JANGAIN and YEARGAIN are independent.

versus

H,+ : JANGAIN and YEARGAIN are not
independent.

by using Table B.8. There we see that if
r* = 0.454, pT = 0.095, which implies p =
2(0.095) = 0.190. We also see that if ri =
0.551, pt = 0.052, which implies p = 2(0.052) =
0.104.

Final note: If the 1987 and 1994 data are omit-
ted, the Pearson and Spearman correlations
are 0.9360 and 0.8862, respectively. These
are significantly different from O.



Simple Linear Regression

The SLR model assumes a predictor variable
X and a response variable Y are related by

Y:BO_I_BlX_I_ea

where € is a random error term.

We want to fit the model to a set of data
(X;,Y;),i=1,...,n. Aswith the measurement
model, two options are least absolute errors,
which finds values b5 and b1 to minimize

n
SAE(bg,b1) = ) | Y;— (bo + b1X;) |,
i=1
or least squares, which finds values bg and bq
to minimize

SSE(bg,b1) = Y (Y; — (bo + b1X;))".
1=1

10



We’'ll concentrate on least squares. Using cal-
culus, we find the least squares estimators of
Bo and (1 to be

Y (X - X)(Y; - Y)
Z?’:l(Xz' — Y)2 .

B1 =
and
Bo=Y - 1 X.
The relevant SAS/INSIGHT output for the re-

gression of YEARGAIN on JANGAIN looks like
this:



And the relevant SAS/INSIGHT output for the
regression of YEARGAIN on JANGAIN, with
the years 1987 and 1994 removed, looks like
this:



Residuals, Predicted and Fitted
Values

e [ he predicted value of Y at X is

Y = Bo+ B1X.

e For X = X;, one of the values in the data
set, the predicted value is called a fitted
value and is written

Y; = Bo + B1X;.

e T he residuals, ¢;,: = 1,...,n are the dif-
ferences between the observed and fitted
values for each data value:

e, =Y, -V, =Y, — (Bo+ B1X;).
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Tools to Assess the Quality of
the Fit

e Residuals. Residuals should exhibit no pat-
terns when plotted versus the X;, Y; or
other variables, such as time order. Stu-
dentized residuals should be plotted on a
normal quantile plot.

o Coefficient of Determination. The coefficient
of determination, r2, is a measure of (take

your pick):

o How much of the variation in the re-
sponse is “explained” by the predictor.

o How much of the variation in the re-
sponse is reduced by knowing the pre-
dictor.
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The notation r2 comes from the fact that the
coefficient of determination is the square of
the Pearson correlation. Check out the quality
of the two fits for the S&P data:



Model Interpretation

e T he Fitted Slope. The fitted slope may be
interpreted as the estimated change in the
mean response per unit increase in the pre-
dictor.

e [ he Fitted Intercept. The fitted intercept
iIs the estimate of the response when the
predictor equals O, provided this makes sense.

e T he Mean Square Error. The mean square
error or MSE, is an estimator of the vari-
ance of the error terms ¢, in the simple
linear regression model. Its formula is

n
L v e
1

n—2.
/

MSE =

It measures the “average prediction error”
when using the regression.
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Classical Inference for the SLR
Model

Estimation of Slope and Inter-
cept

Level L confidence intervals for B8g and (31 are
(Bo — 3(Bo)t Q,H—TMBO + 5(Bo)t
and

(B1— (Bt _, 141,81 +5(B1)t ., 141),
2 D

respectively, where

2)1"2—[/)7

P 1 X2
0(60)_JMSE/[n—I_Z?:l(Xi_X)Z ,

and

5(B1) = J MSE/i (X; — X)2
1=1
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Estimation of The Mean Response

The mean response at X = zg is

po = Bo + Bizo.
The point estimator of ug is
Yo = Bo + Bizo-

A level L confidence interval for ug is
(Yo — 3(Yo)tn_2,1JrTL> Yo + a(YO)tn_z,H-TL)7

where

e N 1, (zo—X)?
5(V,) = JI\/ISE [5 o -2




Prediction of a Future Observa-
tion

A level L prediction interval for a future obser-
vation at X =z IS

(Ynefw — 5'(Ynew — Ynew)tn_z 14-L>

D
Ynew + 6 (Ynew — Ynew)tn_z,l—l—TL))a
where
Yiew = Bo + B1zo,

and

. 5 _ 1, (z0—X)?
5(Ynew—Trew) = J MSE [1 LR |

The macro REGPRED will compute confidence
intervals for a mean response and prediction
intervals for future observations for each data
value and for other user-chosen X values.
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The Relation Between Correla-
tion and Regression

If the standardized responses and predictors
are

Y=Y
1 SY ’

and
1 SX ’

Then the regression equation fitted by least
squares can be written as

Yi=r X,

Where X'’ is any value of a predictor variable
standardized as described above.
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T he Regression Effect refers to the phenomenon
of the standardized predicted value being closer
to O than the standardized predictor. Equiv-
alently, the unstandardized predicted value is
fewer Y standard deviations from the response
mean than the predictor value is in X standard
deviations from the predictor mean.

For the S&P data »r = 0.4295, so for a January
gain X’ standard deviations (Syx) from X, the
regression equation estimates a gain for the
year of

Y’ = 0.4295 . X'

standard deviations (Sy) from Y.

With 1987 and 1994 removed, the estimate is
Y! = 0.9360- X',

which reflects the stronger relation.



The Relationship Between Two
Categorical Variables

Analysis of categorical data is based on counts,
proportions or percentages of data that fall
into the various categories defined by the vari-
ables.

Some tools used to analyze bivariate categor-
ical data are:

e Mosaic Plots.

e [wo-Way Tables.
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Example:

A survey on academic dishonesty was conducted
among WWPI students in 1993 and again in
1996. One question asked students to respond
to the statement “Under some circumstances
academic dishonesty is justified.” Possible re-
sponses were “Strongly agree”, “Agree”, “Dis-
agree” and “Strongly disagree”. Here are the
results:
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Association is NOT Causation

Two variables may be associated due to a num-
ber of reasons, such as:

1. X could cause Y.

2. Y could cause X.

3. X and Y could cause each other.

4. X and Y could be caused by a third
(lurking) variable Z.

5. X and Y could be related by chance.

6. Bad (or good) luck.
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T he Issue of Stability

e \When assessing the stability of a process
in terms of bivariate measurements X and
Y, always consider the evolution of the re-
lationship between X and Y, as well as the
individual distribution of the X and Y val-
ues, over time or order.

e Suppose we have a model relating a mea-
surement from a process to time or order.
If, as more data are taken the pattern re-
lating the measurement to time or order
remains the same, we say that the process
is stable relative to the model.
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