Multivariable Visualization

Tools:

e Scatterplot Array

e Rotating 3-D Plots

Let’s try these out. Each of the data sets sasdata.eg10_2a
sasdata.egl1l0_2b, sasdata.eg10_2c and sasdata.eg10_2d
contains data generated by one of four models shown

on the next page. Using only the display of the data
set itself and a scatterplot array, you are to tell which
data set was generated by which model.



The models are:

1. Y = —1—|—7ac1+6x2—3x%—|—2x%—|—7x1x2—|—e,
2. Y = 5+7x1—|—6x2—3x%—|—2x%—|—e,
3. Y = 5—|—7x1+6x2—3x%—|—2x%—|—7x1x2—|—e,
4. 'Y = —1—|—7ac1—|—6ac2—3ac%—|—2x%—|—e,

where ¢ ~ N(0,1). Be sure to write down your an-
SWers.



Now use the rotating 3-D plot to view the data. Does
this change your guesses?



The MLR Model
Y = Bo+B1X1(Z1,%25,...,2p) + BoXo(Z1,Z2, ..., Zp)
b BaX(Z1y Doy Zp) + €,

where the Zs are the predictor variables and ¢ is a
random error. Examples are

Y = Bo+B1Z1+ 8227 + ¢
Y = Bo+ 8121+ BoZo + B3Z3 + BaZ1Zo + B5Z5 + e,
Y = Bo+ B1109(Z2) + B3/ Z17Z2 + .

We will write these models generically as

Y =060+ 51 X1+ BoXo+ ...+ B¢ Xq+ e



Fitting the MLR Model as we did for SLR

model, we use least squares to fit the MLR model.
T his means finding estmators of the model parameters
Bo,B1,-..,8¢ and ¢2. The LSEs of the 3s are those
values, of bg,b1,...,bq, denoted Bg,f1,-.-,8¢, Which
minimize

SSE(bg, b1, .. .,bq) =

SV — (bo + b1 X51 + baXio + - + bg X; )]
i=1

The fitted values are
Y; = Bo + B1Xi1 + BaXio + -+ + B¢ Xig
and the residuals are

e; =Y, — Y.

Let's see what happens when we fit models to sas-
data.eg10_2a and sasdata.eg10_2c.



Assessing Model Fit Residuals and studen-
tized residuals are the primary tools to analyze model
fit. We look for outliers and other deviations from
model assumptions. Let’s look at the residuals from
some fits to sasdata.egl10_2c.



Interpretation of the Fitted Model

The intercept has the interpretation “expected re-
sponse when the X; all equal 0”. The coefficient j3;
IS interpreted as the change in expected response per
unit change in X; when the other Xs are held fixed (if
that is possible).

Otherwise can interpret the model using multivariate
calculus: change in expected response per unit change
in Z; (with the other predictors held fixed) is

o
0Z;
So, for example, if the fitted model is

(Bo 4+ B1 X1+ ...+ BgXg).

Bo + B1Z1 + BaZo + B37Z1 25,

o ~ . N N N
8—Z1(50 + 8121 + BoZo + B3Z17Z2) = B1 + B3Z>.



T heory-Based Modeling

Two ways of building models:
e Empirical modeling

e T heoretical modeling



Comparison of Fitted Models
e Residual analysis
e Principle of parsimony (simplicity of description)

e Coefficient of multiple determination, and its ad-
justed cousin.



ANOVA

Idea:

e Total variation in the response (about its mean)
IS measured by

n
SSTO = Y (V; -Y)2
i=1
This is the variation or uncertainty of prediciton if
no predictor variables are used.

e SSTO can be broken down into two pieces: SSR,
the regression sum of squares, and SSE, the error
sum of squares, so that SSTO=SSR+SSE.

2 is the total sum of the squared

1

e SSE=}"e

residuals. It measures the variation of the re-
sponse unaccounted for by the fitted model or the
uncertainty of predicting the response using the
fitted model.



o SSR = SSTO — SSR is the variability explained by
the fitted model or the reduction in uncertainty of
prediction due to using the fitted model.



Degrees of Freedom The degrees of freedom
for a SS is the number of independent pieces of data
making up the SS. For SSTO, SSE and SSR the de-
grees of freedom are n— 1, n—qg— 1 and g. These
add just as the SSs do. A SS divided by its degrees
of freedom is called a Mean Square.

The ANOVA Table Tnhis is a table which

summarizes the SSs, degrees of freedom and mean
squares.

Analysis of Variance

Source DF SS MS F Stat Prob > F
Model q SSR | MSR | F=MSR/MSE p-value
Error n—q—1 SSE | MSE

C Total n—1 | SSTO




Inference for the MLR Model:
The F Test

e T he Hypotheses:

Ho: Br=Bo==Pg=0

e The Test Statistic: F=MSR/MSE

e The P-Value: P(F,,_4,—1>F*), where F, ,_, 1
IS @ random variable from an F,,_,_1 distribution
and F* is the observed value of the test statistic.
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T Tests for Individual Predictors

e T he Hypotheses:

HO: BZ-—O
Ha: Bz7+—o

—~

e T he Test Statistic: ¢ = P
U(/Bz)

e The P-Value: P(|t,_,_1|> [t*]), wheret,_,_ 1 is
a random variable from a ¢,_,_41 distribution and
t* is the observed value of the test statistic.
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Summary of Intervals for MLR Model

e Confidence Interval for Model Coefficients: A
level L confidence interval for 3; is

(Bi— 3(Bz')tn_q_1,(1+L)/2> B+ 3(Bz')tn_q_1,(1-|_L)/2)-

e Confidence Interval for Mean Response: A
level L. confidence interval for the mean response
at at predictor values Xqq, Xo0,...,Xg40 IS
(Yo—6(Yo)t,_g—1,(141)/2> Yo+ (Yo)t,_g—1,(14L)/2)s
where

Yo = Bo + B1X10+ - + B¢X,0,

and &(Yp) is the estimated standard error of the
response.
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e Prediction Interval for a Future Observation:
A level L prediction interval for a new response at
predictor values X9, X2g,-..,Xq0 IS

(Ynew — 6’(Yne'w — Ynew)tn_q_l,(1_|-L)/27

Ynew + 6'(Yne'w — Ynew)tn_q_l,(1+L)/2)a
where
Ynew — BO + BleO + -+ BquO7

and




Multicollinearity Multicollinearity is correlation
among the predictors.
e Consequences
o Large sampling variability for 3;

o Questionable interpretation of 3; as change in
expected response per unit change in Xj;.
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e Detection R?, the coefficient of multiple determi-
nation obtained from regressing X; on the other
Xs, iIs a measure of how highly correlated X; is
with the other Xs. This leads to two related mea-
sures of multicollinearity.

o Tolerance TOL; = 1 — R? Small TOL; indi-
cates X; is highly correlated with other Xs. We
should begin getting concerned if TOL; < 0.1.

o VIF VIF stands for variance inflation factor.
VIF, = 1/TOL,;. Large VIF; indicates X; is
highly correlated with other Xs. We should
begin getting concerned if VIF; > 10.

e Remedial Measures

o Center the X; (or sometimes the Z;)

o Drop offending X;



Empirical Model Building selection of vari-
ables in empirical model building is an important task.
We consider only one of many possible methods: back-
ward elimination, which consists of starting with all
possible X; in the model and eliminating the non-
significant ones one at at time, until we are satisfied

with the remaining model.
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