Appendix 6-1: Hypothesis Test Guide

This appendix provides a guide to the hypothesis tests covered in the chapter.

Hypothesis Tests for Means in the C+E Model: One Population

Case 1: Known Variances

Assumptions

- 1. The data are Y_1, Y_2, \ldots, Y_n where $Y_j = \mu + \epsilon_j$.
- 2. Either
 - (a) n is large, or
 - (b) The ϵ_j are from a $N(0, \sigma^2)$ population.
- 3. σ^2 is known.

Formulas

Standardized Test Statistic¹: $Z = \frac{\overline{Y} - \mu_0}{\sigma(\overline{Y})}$.

Hypotheses:	H_0 :	μ	=	μ_0	H_0 :	μ	=	μ_0	H_0 :	μ	=	μ_0
	$H_{a_{-}}$:	μ	<	μ_0	H_{a^+} :	μ	>	μ_0	$H_{a\pm}$:	μ	\neq	μ_0
p-value ² :	$p_{-} = P(N(0,1) \le z^*)$				$p^+ = I$	$\geq z^*)$	$p\pm = 2\min(p, p^+)$					

$${}^{1}\sigma(\overline{Y}) = \sqrt{\frac{\sigma^2}{n}}.$$

 ${}^{2}z^{*}$ is the observed value of Z, $P(N(0,1) \leq z^{*})$ is the proportion of a N(0,1) population less than z^{*} , and $P(N(0,1) \geq z^{*})$ is the proportion of a N(0,1) population greater than z^{*} .

Case 2: Unknown Variance, n Large

Assumptions 1 and 2a from Case 1 are assumed to hold. This case is treated exactly as Case 1 except that $\sigma(\overline{Y})$ is replaced by $\hat{\sigma}(\overline{Y}) = \sqrt{\frac{S^2}{n}}$ in the computation of the standardized test statistic Z, where S^2 is the sample variance computed from the data.

Case 3: Unknown Variance, n Small

Assumptions

- 1. The data are Y_1, Y_2, \ldots, Y_n where $Y_j = \mu + \epsilon_j$.
- 2. The ϵ_i are from a $N(0, \sigma^2)$ population.
- 3. σ^2 is unknown.

Formulas

Standardized Test Statistic¹: $t = \frac{\overline{Y} - \mu_0}{\hat{\sigma}(\overline{Y})}$.

Hypotheses:	H_0 :	μ	=	μ_0	H_0 :	μ	=	μ_0	H_0 :	μ	=	μ_0
	$H_{a_{-}}$:	μ	<	μ_0	H_{a^+} :	μ	>	μ_0	$H_{a\pm}$:	μ	\neq	μ_0
p-value ² :	$p_{-} = 1$	$t^*)$	$p^+ = P(t_{n-1} \ge t^*)$				$p \pm = 2\min(p, p^+)$					

 ${}^{1}\hat{\sigma}(\overline{Y}) = \sqrt{\frac{S^{2}}{n}}.$

 ${}^{2}t^{*}$ is the observed value of t, $P(t_{n-1} \leq t^{*})$ is the proportion of a t_{n-1} population less than t^{*} , and $P(t_{n-1} \geq t^{*})$ is the proportion of a t_{n-1} population greater than t^{*} .

Hypothesis Tests for the Proportion in the Binomial Model: One Population

Case 1: An Exact Test

Assumption

The datum is Y from a b(n, p) population.

Formulas

Test Statistic: Y.

Hypotheses:	H_0 :	p	=	p_0	H_0 :	p	=	p_0	H_0 :	p	=	p_0			
	$H_{a_{-}}$:	p	<	p_0	H_{a^+} :	p	>	p_0	$H_{a\pm}$:	p	\neq	p_0			
p-value ¹ :	$p_{-} = F$	$p = P(b(n, p_0) \le y^*)$				$p^+ = P(b(n, p_0) \ge y^*)$) $p\pm$ is given by Equation (6.4)				

 ${}^{1}y^{*}$ is the observed value of Y, $P(b(n, p_{0}) \leq y^{*})$ is the proportion of a $b(n, p_{0})$ population less than or equal to y^{*} , and $P(b(n, p_{0}) \geq y^{*})$ is the proportion of a $b(n, p_{0})$ population greater than or equal to y^{*} .

Case 2: An Approximate Test for n Large

Assumptions

- 1. The datum is Y from a b(n, p) population.
- 2. *n* is large: $Y \ge 10$ and $n Y \ge 10$ is a good rule of thumb overall. If $0.3 \le \hat{p} = Y/n \le 0.7$, then $Y \ge 5$ and $n Y \ge 5$ is a good rule of thumb.

Formulas

Standardized Test Statistic: $Z = \frac{Y - np_0}{\sigma(Y)}$ where $\sigma(Y) = \sqrt{np_0(1 - p_0)}$.

Hypotheses:	H_0 :	p	=	p_0	H_0 :	p	=	p_0	H_0 :	p	=	p_0
	$H_{a_{-}}$:	p	<	p_0	H_{a^+} :	p	>	p_0	$H_{a\pm}$:	p	\neq	p_0
p-value ¹ :	$p_{-} = P(N(0,1) \le z_{l}^{*})$				$p^+ = I$	(0, 1)	$\geq z_u^*$)	$p\pm = 2\min(p, p^+)$				

 ${}^{1}z_{l}^{*} = \frac{y^{*} - np_{0}(1-p_{0}) + 0.5}{\sigma(Y)}, z_{u}^{*} = \frac{y^{*} - np_{0}(1-p_{0}) - 0.5}{\sigma(Y)}$, where y^{*} is the observed value of Y. $P(N(0,1) \leq z_{l}^{*})$ is the proportion of a N(0,1) population less than z_{l}^{*} , and $P(N(0,1) \geq z_{u}^{*})$ is the proportion of a N(0,1) population greater than z_{u}^{*} .

Hypothesis Tests for Differences in Means in the C+E Model: Two Independent Populations

Case 1: Known Variances

Assumptions

1. The data are

 $Y_{1,1}, Y_{1,2}, \dots, Y_{1,n_1}$, where $Y_{1,j} = \mu_1 + \epsilon_{1,j}$, (population 1) $Y_{2,1}, Y_{2,2}, \dots, Y_{2,n_2}$, where $Y_{2,j} = \mu_2 + \epsilon_{2,j}$, (population 2).

- 2. The two populations are independent.
- 3. Either
 - (a) n_1 and n_2 are large, or
 - (b) The $\epsilon_{1,j}$ are from a $N(0, \sigma_1^2)$ population, and the $\epsilon_{2,j}$ are from a $N(0, \sigma_2^2)$ population.
- 4. σ_1^2 and σ_2^2 are known.

Formulas

Standardized Test Statistic¹: $Z = \frac{\overline{Y}_1 - \overline{Y}_2 - \delta_0}{\sigma(\overline{Y}_1 - \overline{Y}_2)}$.

Hypotheses:	H_0 :	$\mu_1 - \mu_2$	=	δ_0	H_0 :	$\mu_1 - \mu_2$	=	δ_0	H_0 :	$\mu_1 - \mu_2$	=	δ_0
	$H_{a_{-}}$:	$\mu_1 - \mu_2$	<	δ_0	H_{a^+} :	$\mu_1 - \mu_2$	>	δ_0	$H_{a\pm}$:	$\mu_1 - \mu_2$	\neq	δ_0
p-value ² :	$p_{-} = P(N(0,1) \le z^*)$				$p^+ = P(N(0,1) \ge z^*)$				$p\pm =$	$= 2\min(p_{-})$	$(, p^+)$)

 ${}^{1}\sigma(\overline{Y}_{1}-\overline{Y}_{2})=\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}.$

 ${}^{2}z^{*}$ is the observed value of Z, $P(N(0,1) \leq z^{*})$ is the proportion of a N(0,1) population less than z^{*} , and $P(N(0,1) \geq z^{*})$ is the proportion of a N(0,1) population greater than z^{*} .

Case 2: Unknown Variances, n_1 and n_2 Large

Assumptions 1, 2 and 3a are assumed to hold. This case is treated exactly as Case 1 except that $\sigma(\overline{Y}_1 - \overline{Y}_2)$ is replaced by $\hat{\sigma}(\overline{Y}_1 - \overline{Y}_2) = \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}$ in the computation of the standardized test statistic Z, where S_1^2 and S_2^2 are the sample variances computed from the data from populations 1 and 2 respectively.

Case 3: Variances Unknown, but Assumed to Be Equal, n_1 and n_2 Not Both Large Assumptions

1. The data are

 $Y_{1,1}, Y_{1,2}, \ldots, Y_{1,n_1}$, where $Y_{1,j} = \mu_1 + \epsilon_{1,j}$, (population 1) $Y_{2,1}, Y_{2,2}, \ldots, Y_{2,n_2}$, where $Y_{2,j} = \mu_2 + \epsilon_{2,j}$, (population 2).

- 2. The two populations are independent.
- 3. The $\epsilon_{1,j}$ are from a $N(0,\sigma_1^2)$ population, and the $\epsilon_{2,j}$ are from a $N(0,\sigma_2^2)$ population.
- 4. σ_1^2 and σ_2^2 are unknown, but are assumed to be equal.

Formulas

Standardized Test Statistic¹: $t^{(p)} = \frac{\overline{Y}_1 - \overline{Y}_2 - \delta_0}{\hat{\sigma}_p(\overline{Y}_1 - \overline{Y}_2)}$

Hypotheses:	H_0 :	$\mu_1 - \mu_2$	=	δ_0	H_0 :	$\mu_1 - \mu_2$	=	δ_0	H_0 :	$\mu_1 - \mu_2$	=	δ_0
	$H_{a_{-}}$:	$\mu_1 - \mu_2$	<	δ_0	H_{a^+} :	$\mu_1 - \mu_2$	>	δ_0	$H_{a\pm}$:	$\mu_1 - \mu_2$	\neq	δ_0
p-value ² :	$p_{-} = P$	$P(t_{n_1+n_2-2}$	$p^+ = I$	$P(t_{n_1+n_2-2}$	$p\pm =$	$= 2\min(p_{-})$	(p^+))				

 ${}^{1}\hat{\sigma}_{p}(\overline{Y}_{1}-\overline{Y}_{2}) = \sqrt{S_{p}^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}$, where $S_{p}^{2} = \frac{(n_{1}-1)S_{1}^{2}+(n_{2}-1)S_{2}^{2}}{n_{1}+n_{2}-2}$, and S_{1}^{2} and S_{2}^{2} are the sample variances computed from the data from populations 1 and 2 respectively.

 ${}^{2}t^{(p)*}$ is the observed value of $t^{(p)}$, $P(t_{n_1+n_2-2} \leq t^{(p)*})$ is the proportion of a $t_{n_1+n_2-2}$ population less than $t^{(p)*}$, and $P(t_{n_1+n_2-2} \geq t^{(p)*})$ is the proportion of a $t_{n_1+n_2-2}$ population greater than $t^{(p)*}$.

Case 4: Variances Unknown, and Not Assumed to Be Equal, n_1 and n_2 Not Both Large Assumptions

1. The data are

 $Y_{1,1}, Y_{1,2}, \ldots, Y_{1,n_1}$, where $Y_{1,j} = \mu_1 + \epsilon_{1,j}$, (population 1)

 $Y_{2,1}, Y_{2,2}, \ldots, Y_{2,n_2}$, where $Y_{2,j} = \mu_2 + \epsilon_{2,j}$, (population 2).

- 2. The two populations are independent.
- 3. The $\epsilon_{1,j}$ are from a $N(0, \sigma_1^2)$ population, and the $\epsilon_{2,j}$ are from a $N(0, \sigma_2^2)$ population.
- 4. σ_1^2 and σ_2^2 are unknown, and are not assumed to be equal.

Formulas

Standardized Test Statistic¹: $t^{(ap)} = \frac{\overline{Y}_1 - \overline{Y}_2 - \delta_0}{\hat{\sigma}(\overline{Y}_1 - \overline{Y}_2)}$.

Hypotheses:	H_0 :	$\mu_1 - \mu_2$	=	δ_0	H_0 :	$\mu_1 - \mu_2$	=	δ_0	H_0 :	$\mu_1 - \mu_2$	=	δ_0
	$H_{a_{-}}$:	$\mu_1 - \mu_2$	<	δ_0	H_{a^+} :	$\mu_1 - \mu_2$	>	δ_0	$H_{a\pm}$:	$\mu_1 - \mu_2$	\neq	δ_0
p-value ² :	<i>p</i> _ =	$= P(t_{\nu} \le t$	$p^+ =$	$= P(t_{\nu} \ge t$)	$p\pm =$	$= 2\min(p_{-})$	(p^+))			

 ${}^{1}\hat{\sigma}(\overline{Y}_{1}-\overline{Y}_{2}) = \sqrt{\frac{S_{1}^{2}}{n_{1}} + \frac{S_{2}^{2}}{n_{2}}},$ where S_{1} and S_{2} are the sample standard deviations computed from the data from

populations 1 and 2 respectively. Under H_0 , the distribution of $t^{(ap)}$ is approximately t_{ν} where the degrees of freedom ν is taken as the largest integer less than or equal to $\left[\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2\right] / \left[\frac{\left(\frac{S_1^2}{n_1}\right)^2}{n_1 - 1} + \frac{\left(\frac{S_2^2}{n_2}\right)^2}{n_2 - 1}\right]$

 ${}^{2}t^{(ap)*}$ is the observed value of $t^{(ap)}$, $P(t_{\nu} \leq t^{(ap)*})$ is the proportion of a t_{ν} population less than $t^{(ap)*}$, and $P(t_{\nu} \geq t^{(p)*})$ is the proportion of a t_{ν} population greater than $t^{(ap)*}$.

Hypothesis Tests for Proportions in the Binomial Model: Two Independent Populations

Case 1: A Test of the Equality of Two Proportions

Assumptions

- 1. The data are Y_1 from a $b(n_1, p_1)$ population and Y_2 from a $b(n_2, p_2)$ population.
- 2. The two populations are independent.
- 3. n_1 and n_2 are large: $Y_i \ge 10$ and $n_i Y_i \ge 10$, i = 1, 2, is a good rule of thumb overall. If $0.3 \le \hat{p}_i = Y_i/n_i \le 0.7$, then $Y_i \ge 5$ and $n_i Y_i \ge 5$, i = 1, 2, is a good rule of thumb.

Formulas

Standardized Test Statistic¹: $Z = \frac{\hat{p}_1 - \hat{p}_2}{\hat{\sigma}_0(\hat{p}_1 - \hat{p}_2)}$.

Hypotheses:	H_0 :	$p_1 - p_2$	=	0	H_0 :	$p_1 - p_2$	=	0	H_0 :	$p_1 - p_2$	=	0
	$H_{a_{-}}$:	$p_1 - p_2$	<	0	H_{a^+} :	$p_1 - p_2$	>	0	$H_{a\pm}$:	$p_1 - p_2$	\neq	0
p-value ² :	$p_{-} =$	P(N(0,1)	$p^+ =$	P(N(0,1)	$\geq z$	$p\pm =$	$= 2\min(p_{-})$	$(, p^+)$)			

$${}^{1}\hat{\sigma}_{0}(\hat{p}_{1}-\hat{p}_{2})=\sqrt{\hat{p}(1-\hat{p})\left(rac{1}{n_{1}}+rac{1}{n_{2}}
ight)},$$
 where $\hat{p}=rac{Y_{1}+Y_{2}}{n_{1}+n_{2}}$

 ${}^{2}z^{*}$ is the observed value of Z, $P(N(0,1) \leq z^{*})$ is the proportion of a N(0,1) population less than z^{*} , and $P(N(0,1) \geq z^{*})$ is the proportion of a N(0,1) population greater than z^{*} .

Case 2: A Test of the General Difference of Two Proportions

Assumptions

- 1. The data are Y_1 from a $b(n_1, p_1)$ population and Y_2 from a $b(n_2, p_2)$ population.
- 2. The two populations are independent.
- 3. n_1 and n_2 are large: a guideline is given in Case 1.

Formulas

Test Statistic¹: $Z = \frac{\hat{p}_1 - \hat{p}_2 - \delta_0}{\hat{\sigma}(\hat{p}_1 - \hat{p}_2)}$.

Hypotheses ² :	H_0 :	$p_1 - p_2$	=	δ_0	H_0 :	$p_1 - p_2$	=	δ_0	H_0 :	$p_1 - p_2$	=	δ_0
	$H_{a_{-}}$:	$p_1 - p_2$	<	δ_0	H_{a^+} :	$p_1 - p_2$	>	δ_0	$H_{a\pm}$:	$p_1 - p_2$	\neq	δ_0
p-value ³ :	$p_{-} =$	P(N(0,1))	$p^{+} =$	P(N(0, 1))	(*)	$p\pm =$	$= 2 \min(p_{-}$	$-, p^+$)			

$${}^{1}\hat{\sigma}(\hat{p}_{1}-\hat{p}_{2}) = \sqrt{\frac{\hat{p}_{1}(1-\hat{p}_{1})}{n_{1}} + \frac{\hat{p}_{2}(1-\hat{p}_{2})}{n_{2}}}, \text{ where } \hat{p}_{1} = Y_{1}/n_{1} \text{ and } \hat{p}_{2} = Y_{2}/n_{2}.$$

 $\delta_0 \neq 0.$

 ${}^{3}z^{*}$ is the observed value of Z, $P(N(0,1) \leq z^{*})$ is the proportion of a N(0,1) population less than z^{*} , and $P(N(0,1) \geq z^{*})$ is the proportion of a N(0,1) population greater than z^{*} .