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Abstract

We use a Bayesian hierarchical model to study the problem of forecasting several com-
mensurate autoregressive time series, stationary or nonstationary. In particular, we use
the Metropolis-Hastings algorithm to obtain k-step ahead forecasts. One advantage of
this methodology is the natural ability to compute forecast intervals on the original
scale when the series are transformed. We applied our methodology to a set of earnings
data from 14 California metropolitan areas. We observed substantial differences in the
forecast performance of stationary, as opposed to nonstationary models on these data.

Surprisingly, we found that pooling did not give clear evidence of forecast improvement.
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1. INTRODUCTION

We consider the problem of forecasting autoregressive time series panel data. These data
consist of several time series generated by the same type of autoregressive model (e.g., an
AR(p)). The key advantage of simultaneously modeling several series is the possibility of
pooling information from all series. This not only can improve forecasting performance,
but also allows analysis of much shorter series (e.g., economic time series) than it would
be possible to model effectively as single series. In such situations the Bayesian paradigm
is particularly attractive because it offers a natural scheme for combining and weighting

data from several similar sources.

Chatfield (1993) reviewed methods for calculating interval forecasts, but had little
to say about Bayesian methods. Some references on Bayesian forecasting methods are

found in Nandram and Petruccelli (1996).

Ledolter and Lee (1993) also considered the problem of forecasting many short, corre-
lated time series. They extended the Bihlmann-Straub model, which assumes all series
vary independently about a fixed level, by allowing the level to change as a random
walk over time. They reported gains in forecasting for their model when compared with
the Bihlmann-Straub model. However, they did not consider forecasting gains for their

model when compared with forecasts for the individual series, as we do in this paper.

We adapt the hierarchical Bayesian normal linear model (Lindley and Smith, 1972) to
permit borrowing of strength over all series. The pooling takes place as the autoregres-
sive parameters of the series are assumed to arise from the same distribution. Our model
is very flexible in that it can accommodate restrictions on the autoregressive parame-
ters of the series. One difficulty with implementing our approach is that the posterior

distributions do not exist in closed forms.

Sampling-based approaches have been used successfully to perform integrations in

situations where the posterior distributions are not analytically tractable. We use the



Metropolis-Hastings (M-H) sampler; see Tierney (1994) for a general description, and
Chib and Greenberg (1996) for a tutorial.

Two general models for modeling several series simultaneously are the Bayesian vec-
tor autoregressive (BVAR) models (see Litterman, 1986) and the seemingly unrelated
regression (SUR) models (see Chib and Greenberg, 1995). Among the difficulties posed
by these models are the inability to handle large numbers of series due to the large
number of parameters in the covariance of the sampling process, and the complexity of

incorporating stationarity or nonstationarity restrictions.

Nandram and Petruccelli (1996), proposed an autoregressive model for several com-
mensurate autoregressive time series, which has neither of these drawbacks. They found
that pooling produced large gains in precision when estimating autoregressive parame-

ters. This paper also contains a review of past approaches to modeling such series.

In section 2 of the present paper we present the methodology for multi-step fore-
casting, and in section 3, we describe the computations necessary to implement the
methodology. In section 4 we illustrate the methodology with the analysis of a data
set on yearly averages of hourly earnings of production workers in fourteen California

metropolitan areas. Section 5 has concluding remarks.

2. METHODOLOGY

We briefly describe a methodology for modeling and forecasting any number of time series

of possibly varying lengths.

2.1 The Model

We observe m time series realizations {y;;},.,% = 1,...,m, possibly of different lengths,

with the i*" series starting at time #;, and each generated by an autoregressive model of



order p. We assume that the minimum of the ¢; equals 1 (i.e., the earliest observation
is at time 1), that the last observation occurs at the same time, n, for all series, and
that there are no missing observations between the first and last observations. We let
n; = n — t; + 1 denote the number of observations in the i** series. We also assume

(0)

the vectors of initial observations y; ' = (¥it;4p—1,Yititp-2,---»¥it;),2 = 1,...,m, and

m

©0) _ [0 (0)’ ' _ . —y
vy =y, ...,y . Foreach 1 <t <mn,welet I; ={1 <i<m:t <t} denote
the set of series which have observations at time ¢, and let m; denote the number of such

series.

(0)

The defining relation for the i*" series, given the parameters ¢, 7;, %% and y; /, is

Yii = DiYis-1 T Eigy t 2> 1 (1)

~ ~ .
where ¢'IL = (¢i07¢i)7 ¢i = (451'1,- : '7¢ip)7 y2,t = (17y‘i,t7y‘i,t—17' : '7y‘i,t—p+1)7 and €t 18
an error term. Letting e, be the vector whose components are {¢;;,7 € I,} and 7' =
(11,72, ..., Tm), We take

e | T, 97 % N(0,%,) (2)
where ¥, = diag{rfl,i € I} + v¥2J; and J; is an m; X m; matrix of ones.

The parameter 92 in the formulation described in (1) and (2) allows us to model
contemporaneous correlations among the series. Specifically, the correlation between

series 7 and j at any given time is

pig = {(1+ 1/ (rp®) (1 + 1/(r;4%))} /2. (3)
This feature is not available when the series are modeled individually.

The autoregressive parameters are modeled as

Observe that (4) permits pooling of information across series.



Next we take conjugate priors for @ and A~!. That is we take a normal prior
0 ~ N(007 00)7 (5)

and a Wishart prior
A_l ~ W((VOAO)_17V0)7 L4 Z D + 1 (6)

where 6y and Cy in (5) and o and Ag in (6) are to be specified.

We also take the prior distribution for 7 to be gamma and for %2 to be inverse gamma.

Specifically, we assume that

iid

Tl,Tg,...,TmNG(’I’]O/2,50/2) (7)

and
P? ~1G((o/2, Bo/2) (8)

where 79, 8 in (7) and (o, B in (8) are to be specified.

We can restrict the parameters ¢; in the model to be in the stationary region @, =
{¢; : series (1) is stationary}, or in its complement. See, e.g., Box and Jenkins (1976)
for details on stationarity. For each series, we can compute the posterior probabilities of

stationarity P(¢; € ¢, | y).

To evaluate the adequacy of the models, we compute a multivariate predictive diag-
nostic in the spirit of Gelfand, Dey and Chang (1992). Defining ¥ = {yi+,% € I}, ¥¢) =
(F1, 95> Fi-1)s we = E(Fe | §(),¥'?) and V, = var(3, | 5, y@),t =p+1...,m, the
diagnostic is

dt :Vt_l/z(j'ft—ut), t :tg,t0—|—]_,...,n. (9)

Denoting the components of d; as {d;:,7 € I;}, we note that if the model is appropriate,
the {d;:,7s € I, t = 1,...,n} will be approximately a random sample from a N(0,1)

distribution.



2.2 Multi-Step Forecasts

We use the model to predict, y;n.x, the value of the i** series k steps ahead. Let
Yi = (Yit:, Yitis1,-- > Yin) denote the data vector for the 5** series and y = (y4,...,y" )
the data vector for all m series. Let Q = {4/? 7,0, A}, and let A;(E) = {(¢,,Q) : ¢, € E}
denote the space in which the autoregressive parameters of the i** series are restricted to

the set E. Then the posterior distribution of y; ntx | y with ¢; restricted to E is

P(yinen | Y) = [ o o0 | ¥, 60 Dol @ | y)dghid2 (10)

Note that in (10), the predictive distribution p(yin+r | ¥, @;, 2) does not depend upon 8
or A, and its form is well known (see, e.g., Box and Jenkins, 1976). However, p(¢;, 2 | y)
1s intractable, so we use the M-H algorithm to perform the integration. We obtain
(1—+)100% credible k-step forecast intervals for y; ,+x by calculating the /2 and 1—+/2
quantiles of the posterior distribution of y; ,4x. This computation is facilitated by the

Metropolis-Hastings algorithm.

3. COMPUTATIONS

While our primary concern is in obtaining multi-step forecast intervals, we must first fit
the model and check the adequacy of that fit. Specifically, we need to estimate d; in (9)
and estimate the distribution of y; ,x in (10). Both estimates are obtained by drawing

from the posterior distribution p(¢, | y).

Defining g =>", (}i/m, we take v = p+ 2 and Ay = S¢/V0, where
S¢ = 27;1((;51 — 5)(«}51 — g)'/(m — 1). We also estimate 8¢, Co, vo, Ag, 70 and J§p using
the data. However, we take {; and B, to be zero, and therefore, 1)? has a noninformative

prior.



3.1 The Metropolis-Hastings Algorithm

In this section, we discuss the implementation of the Metropolis-Hastings sampler when
the ¢, are restricted to any subregion, CP™!, of RP*!. However, in our application CP*!

will be either ®, or its complement (i.e., the region of stationarity or nonstationarity).

Let to = p + 1. To facilitate computation, we rewrite (2) in terms of latent variables

ay:
e | o, % N(az, 1) (11)

and
a, | 4% % N(0,4?) (12)
where t = to,...,nand i € I;. Let & = (oy,, aty11, - . ., an) denote the vector of all latent

variables in (12).

We run the M-H sampler to obtain M stationary iterates of the ¢;, ¥? and =
{a,7,0,A}, which we denote by ¢£j),i =1,...,m, ¢2(j) and Q) respectively, j =
1,2,... M. In the M-H algorithm 6 and A are drawn from their posterior conditional
distributions using dependent rejection sampling, and the ¢; are drawn using independent
rejection sampling. The iterates obtained from the M-H algorithm are used for forecasting

and model assessment. For a simple illustration, see Chib and Greenberg (1996).

To implement the Metropolis-Hastings sampler, we must be able to sample from the

full conditional distributions of the parameters {¢;}™,, ¥* and Q.

First, we describe the conditional posterior distributions of the ¢;. Define the follow-
ing quantities for all 4 = 1,...,m: ¢; = 30, yi:yie-1, Gi = 27, Yi,t—1Y£,t_1,
A; = (G’L + (T’iA)_l)_lG’ia (ﬁi = Gi_lc’ia and (;51' = Ai_l(yi,to—layi,to—za SR 7yi,t0—P)a‘

Then the conditional posterior distribution ¢, |y, is

o) Q) — p(d; |y, Q)
Py ) = bl |, 0)d5

,$; € CPT, (13)
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1=1,...,m, where p(¢,; | y, ) is given by
?; |y, Q S N(Ai(d;i - ¢z) + (I -A:)6, (I - A)A)i=1,...,m.
In practice, ¢; is obtained from p(")(¢, | y, Q) by rejection sampling.

Second, letting ¢ = (¢7,...,d..), the conditional posterior distribution of 7; is
ind —
7 |y, ¥, 0,0 % G((n: —p +m0)/2,57) (14)

where b; = % {Z?:to eit + 50} and €;; = yi; — (Pyit—1 + ;) are the residuals. Also, the
posterior conditional distribution of %2 is
P [ ~IG((Co +n —to +1)/2,(Bo + D of)/2) (15)
t=tg
and the posterior conditional distribution of a; is

a |y, y?, ¢, 7,42 EN (Ur;z 3 i, Git) (16)

1€l

-1
where €;; = y;+ — ¢2Yi,t—1 and O'fit = (¢_2 + Z Ti) :

1€l
Third, we obtain the posterior conditional distributions of 8 | ¢, A and A~! | ¢,0,
which are much more complicated. Due to the restriction on the ¢;, the conditional
posterior of these hyperparameters is intractable, and therefore difficult to sample from

(Gelfand, Smith and Lee, 1992, Section 2).

The posterior conditional distribution of 8 given ¢, A is

9(6 | ¢,A)
[fze0p+1 n(z | 0,A)dz]

where n(z | 8, A) is the (p+1)-variate N(8, A) density, and g(8 | ¢, A) is

g (O] ¢,A) x —,0 ¢ R”"! (17)
0| ¢,A~ N+ (I -T)8,(I —T)Co)

where ¢ = ¥, ¢,/m, and T = [A~! + (mCo) 1AL
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The posterior conditional distribution of A™! given ¢, 0 is given by
d(A™" | ¢,0)

[feccrrrn(z | 0, A)dz]™

where A™! is positive definite and d(A™! | ¢, 8) is the Wishart distribution

d(A | ¢,6) o

(18)

ATV, 0 ~ WS (hs — 0)(hs — B + vo2o} ™ m + ).

While g(")(8 | ¢, A) and d")(A~! | ¢,8) are both complicated, it is easy to sample
from g(0 | ¢, A) and (A" | ¢,8). Also note that for each @ and A, [, cps1 (2 | 0, A)dz

can be obtained easily by Monte Carlo integration.

To obtain a random vector 8 from g(") (8 | ¢, A), or A~ from d™) (A~ | ¢, ), we use
the To obtain a random vector 8 from g™ (8 | ¢, A), we use g(8 | ¢, A) as a proposal

density. Thus, the probability of moving from state 1 to state 2 is

Jrecrrim(z | 0(1), A)dz m
szCP‘H 77(Z | 0(2)7 A)dz

where 6(;) is the current state, and 6 (3) is the proposed state, a value from the proposal

A(A) =

density g(@ | ¢,A). To obtain the random matrix A~ from d(A~! | ¢,80), we use
d(A~! | ¢,8) as the proposal density. The probability of moving from state 1 to state 2
1s

faecrrin(z ] 8, Ap)dz]™

Jecor1 (2 | 0, A(z))dz

To approximate A(@), we select L independent samples from n(z | 8, A(y)), and L inde-

A(6) =

pendent samples from 7(z | 8, A(y)) for each @ and count the number of z falling in C?*!
in either case. We estimate A(8) by using 121(0), the ratio of these counts. We choose L
by insisting that

P{|A(6)A(6)™" — 1] < .05} = .95.
In our application L=1000 suffices. The Metropolis algorithm for drawing 8 is utilized

in a similar manner.

The Metropolis-Hastings sampler is implemented in a conceptually simple manner.
Using appropriate starting values, one random deviate is drawn from each of (13)-(18)

in turn, repeating this process until convergence.

9



3.2 Model Adequacy and Forecasting

We use the iterates from the Metropolis-Hastings sampler to evaluate model adequacy

and compute forecast intervals.

To assess model adequacy, we compute the diagnostics d; given in (9). The stationary
iterates are used to compute the expectations by using weighted averages, in a manner
similar to that outlined by Gelfand, Dey and Chang (1992). For example, letting (z)t =

{¢;,1 € I}, we compute the conditional mean u;, as

M
~ ~ ~ ~ ~ ~ (5) . .
e = E¢ b |5,()[E(Yt | Y (&) P %) ~ E E(y: | Y(t),¢tj ,Eg”))wt(”)
1=ty (t =
where
G _ rto o 39 SN S (e 6 o 30 sy
Wy ™ = {f(Yt7Yt+17- R £ | Y(t)7¢t 72t )} /Z{f(yt;Yt+1,- oy ¥Yn | Y(t)7¢t 7Et )} ,
j=1

t=p+1,p+2,...,n,5=1,...,M,and f(- | ¥, (])Ej), Egj)) is the conditional multivariate
normal density of present and future observations given past observations, &Ej) and Z,E" ),

The other expectations are computed in a similar manner.

Forecasting k steps ahead in series 7 is straightforward. Using (10) an estimate of
the posterior distribution p(y; nix | y) is M ! Ejﬂil P(Yintk | Y, q’)z(j), Q). The posterior
mean and variance are obtained in an obvious manner. We note that the approach to
forecasting used here makes it very easy to create forecasts on the original scale when

the model is fit to differenced or transformed data.

4. AN APPLICATION: CALIFORNIA EARNINGS
DATA

We illustrate our methodology by forecasting one and two steps ahead for a set of fourteen

short series. The data (Liu and Tiao, 1980) consist of yearly averages of the hourly

10



earnings of production workers in fourteen California metropolitan areas. Each of the
fourteen series ends in 1977, but the series are of different lengths with the longest
beginning in 1945 and the shortest beginning in 1963. The series lengths are given in
column 2 of Table 1. We fit the model to all but the last two observations of each
series, reserving the last two observations to assess forecast performance. In principle,
our methodology can forecast any number of steps ahead, but because these are short

series, we choose to evaluate forecasts of length at most two.

The natural logarithm of each series serves to stabilize variances. Most, if not all
of the fourteen series are nonstationary, but taking a first difference transforms all of
them to stationarity. As did Liu and Tiao, we fit an AR(1) to the differenced data.
Our approach differs from theirs in that we restrict the autoregressive parameters to be

stationary. The first stage of the model is:
zi,t = ¢i0 —|— q’)ﬂzi,t_l —|— Ei,t; t = ti —|— 1, ey 33, ’L = 1 ceey 14 (19)

where the y;; is the average hourly earnings in area i during year ¢, and

Zit :ln(yi,t) _ln(yi,t—l )

In addition, in order to compare the forecast performance of the M-H sampler on
nonstationary series, we will also fit an AR(2) to the undifferenced series, restricting the

autoregressive parameters to be nonstationary. The first stage of this model is:

Tit = Gio+ PirTit—1+ binis 2+ €4, t=1;,...,33,1=1...,14 (20)

where z;; =In(y;.).

Forecasts were obtained on the original scale using the following methodology. The
model given by (19) or (20), (2), and (4)-(8) was fit to the transformed data using the
M-H sampler. Samples from the predictive distributions (10) for one and two-step-ahead
forecasts were obtained. Finally, estimates of the predictive distributions on the original

scale were generated by transforming these samples back to the original scale.

11



4.1 Computations

Using the conditional posterior distributions (13)-(18), we performed the M-H sampler
for both the AR(1) and AR(2) models with multiple runs (Gelman and Rubin, 1992).
Specifically, to begin the M-H sampler, we drew ten values of the ¢, from a dispersed

distribution. The M-H sampler was run on each of these ten trajectories.

For both the AR(1) model fit to the differenced logged earnings data and the AR(2)
model fit to the logged earnings data, we assessed the convergence of the M-H sampler
by studying the potential scale reductions (PSR) and their 97.5 percentile points as
suggested by Gelman and Rubin (1992). To do this we ran 500 iterations and used the
last 250 to compute the PSR values. (PSR values near 1 are indicative of convergence).
For the earnings data, we obtained reasonable PSR values. For example, for the AR(1)
model of differenced logged earnings the quartiles for the PSRs for ¢g and ¢; are 1.008,
1.012 and 1.021. The corresponding quartiles for the 97.5 percentile points of the PSRs
are 1.012, 1.019 and 1.032. Plots of the trajectories of the model parameters show rapid

convergence.

To be conservative, in each run of the M-H sampler we used 500 iterates as a “burn-in”.
We then used a single sequence, rather than multiple sequences for inference. Specifically,
we ran the M-H sampler for 4000 iterations. For all models we fit to the earnings data,
there is no indication of serial correlation in the iterates as indicated by the sample
autocorrelations. From these convergence diagnostics we conclude that the M-H sampler

performs satisfactorily in all cases studied.

For both models fit to the earnings data, we computed the diagnostics d;;. Figure 1
displays a normal probability plot of the d;; from the nonstationary restricted AR(2)
model fit to the logged earnings data. In this plot, the distribution of the d;; appears
reasonably normal; almost all the d;; are within the 95% confidence bands. The normal

probability plot for the AR(1) model shows similar patterns.
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In order to assess stationarity for the AR(1) model and nonstationarity for the AR(2)
model, we ran an unrestricted version of the M-H sampler by taking CP*! = RP*!; see,
for example, (13). The posterior probability of stationarity is then estimated by the
proportion of iterates for which ¢ € ®,. Column 3 of Table 1 contains the stationarity
probabilities for the AR(1) model while column 5 contains the stationarity probabilities
for the AR(2) model. Of the former, all but series 8 are virtually stationary, while of the

latter, all but series 10 are virtually nonstationary.

We also estimated the correlations p;; given in (3) using the iterates from the M-
H sampler. Table 1 displays ranges of these estimates for both the AR(1) and AR(2)
models. So, for example, for the AR(1) model the estimated correlations of series 1 with
the other thirteen series range from .26 to .48. The moderate sizes of these estimates

suggest that gains can be realized by modeling contemporaneous correlations.

Having obtained samples from the predictive distributions on the transformed scale,
the computations used to estimate the one and two-step-ahead predictive distributions
on the original scale were the following. For the AR(2) model, assume the j* it-
erate from the M-H sampler for the k-step-ahead predictive distribution for series 3
is ci:z(JT)L_l_k,k = 1,2. Then the transformation back to the original scale yields iter-
ates g)z(JTz_Hc = exp{:f:g,]2+k},j = 1,...,M. For the AR(1) model, assume the j** iter-
ate from the M-H sampler for the k-step-ahead predictive distribution for series z is

2§2+k,k = 1,2. Then the transformation back to the original scale yields the iterates

3)1(2“ = yi,nexp{éngH} and ?21(1734-2 = Q£2+1exp{2§2+2},j =1,...,M. The endpoints of
the 100(1 — )% forecast credible intervals are computed as the /2 and 1 —+/2 quantiles

of the M iterates on the original scale.

4.2 Forecasting

We have two main objectives in our study of forecasting performance on the California

earnings data: (a) to compare the forecasts obtained by pooling with those obtained from
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each individual series, and (b) to compare forecasts in original units obtained from the
nonstationary AR(2) model fit to the logged data with those obtained from the stationary
AR(1) model fit to the differenced logged data.

Here, forecasts obtained from individual series refer to those obtained from either
(19) or (20) together with (2) for 4> = 0, and the noninformative prior specification

p(¢;,7:) o< 77! only. That is, no “borrowing of strength” is allowed.

Let E(yi,n+k | ¥) denote an estimate of the posterior mean of y; ,1r obtained from

the M-H iterates. Let R g denote the relative forecast error

(E(Yintk | Y) — Yintk)/Yintk,

where the subscript I signifies individual series and the subscript S signifies the stationary
restricted AR(1) model. Similarly, R; n, Rps and Rpy denote this same quantity for in-
dividual, nonstationary restricted, pooled stationary restricted and pooled nonstationary

restricted respectively. In Table 2 we summarize the distributions of these ratios.

For both horizons, R;y and Rpy are very similar, as are Ry ¢ and Rpg. However,
both R;n and Rpy have more values greater than 0.05 for horizon 2 than for horizon
1. All forecasts have relative errors of magnitude at most 11%. Among the poorest
performers at horizon 1 are some of the shortest series: 4, 8, 10, 11 and 12, while the
longest series, 1, 2, 5 and 9, are among the best performers. This general pattern holds
for horizon 2 as well with the exception of series 8. While the one-step ahead forecast
for series 8 severely underpredicts when the stationary model is used, the two-step-ahead
forecast for series 8 severely overpredicts when the nonstationary model is used. We
believe this is connected with the low posterior probability of stationarity for series 8

under the AR(1) model; see Table 1.

Let Ws. 1 p denote the ratio of the width of the 95% forecast interval for individual
series (i.e., no pooling) to the width of the 95% forecast interval for pooled series when

the stationary model is used. Let Wy, r p denote the same quantity for the nonstationary

14



model. Table 3a displays the Ws.;p and Wy, p for the earnings data. Similarly, let
Wi. v s denote the ratio of the width of the 95% forecast interval for the nonstationary
model to the width of the 95% forecast interval for the stationary model for individual
series, and Wp. y s the same ratio for pooled series. Table 3b displays the Wr. x s and

Wp. n s for the earnings data.

In Table 3a, we see that there is little difference between Ws. ; p and Wy 1 p at horizon
1, but at horizon 2 substantial differences emerge: for example, series 1 and 2, the two
longest series, have W, ; p much less than 1 and Wy, 1 p slightly greater than 1. Table 3b
shows that the Wr. v s and Wp. v s tend to be less than 1 for horizon 1 and greater than
1 for horizon 2. None of these ratios lie in (0.99, 1.01) for horizon 2, indicating more

extreme behavior between nonstationary and stationary forecasts for the longer horizon.

We estimated the probability content of an individual 95% forecast interval relative to
pooled forecasts as follows. Having obtained the individual forecast interval, we computed
point forecasts for the pooled model for each M-H iterate. The probability content is
estimated as the proportion of these pooled forecasts that fall in the individual forecast
interval. For stationary series we denote this quantity by Ps, and for nonstationary series

we denote it by Py.

Table 4 shows that 95% forecast intervals for individual series can have quite different
coverage probabilities when these intervals are evaluated using the pooled models. For all
but two or three series in each case the estimated coverage probabilities of the individual
series evaluated using the pooled model lies more than 0.5% above or below the nominal
95% level. Some differences are extreme. In particular the coverages for series 14 for the
nonstationary case are 84.5% and 75.7% for horizons 1 and 2, coverages for series 1 for
the stationary case are 89.1% and 89.8%, and for series 6, coverages for the stationary
case are 83.8% and 84.9% and for the nonstationsry case 85.1% and 89.3%. In addition,
we note that there is similarity in patterns of behavior of the interval widths shown in

Table 3 and the probability content observed in Table 4. For example, series 1 and 2
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show low values of Wg. 1 p and Ps and high values of Wy.rp and Py.

Table 5 presents 95% forecast intervals on the original scale for four selected series.
Series 2 is a long series which is virtually stationary with the AR(1) model and non-
stationary with the AR(2) model. Series 14 is a short series with the same stationarity
properties. Series 8 and 10 are short series. The posterior probability of stationarity
for series 8 is only 0.59 for the AR(1) model, though it is virtually nonstationary for
the AR(2) model. The posterior probability of nonstationarity for series 10 is 0.25 for
the AR(1) model, though the series is virtually stationary for the AR(2) model. The
differences between individual and pooled intervals are small, but there are substantial

differences between stationary and nonstationary intervals, particularly at horizon 2.

Finally, we computed the correlations, g;;(k) = corr(yin+k,Yjntk | ¥) using the
M-H iterates. For the stationary model, the correlations range from 0.11 to 0.47 for
horizon 1 and are slightly smaller for horizon 2. These moderate correlations suggest
that pooling might be beneficial in forecasting using the stationary model. However, for
the nonstationary model the correlations do not differ substantially from zero, suggesting

that there may be little benefit from pooling using the nonstationary model.

5. CONCLUSIONS

Our main objective has been to use Bayesian methods to obtain forecast intervals for
time series panel data. We have accomplished this objective for both stationary and
nonstationary series by using a hierarchical Bayesian model via the Metropolis-Hastings

algorithm. Further, we developed sampling-based diagnostics to study model fit.

We applied the methodology to California earnings data, using both a nonstationary
model fit to the logs of the earnings and a stationary model fit to the differences of
those logs. Diagnostics showed a reasonable fit for both models. One advantage of

our sampling-based approach is that we were able to compute forecast intervals on the
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original scale in a natural way.

We found that in terms of relative forecast error individual and pooled forecasts per-
form similarly for the stationary model and for the nonstationary model at both horizons.
However, the forecast is biased upwards at each horizon, but especially at horizon 2, for
the nonstationary model for both pooled and individual forecasts. Nonstationary inter-
vals tend to be wider than their stationary counterparts at horizon 2. For stationary
intervals there is similarity between individual and pooled interval widths at both hori-
zons, but individual widths tend to be greater than pooled widths for nonstationary series
at horizon 2. At horizon 1, stationary pooled interval widths tend to be greater than
their nonstationary counterparts. The probability contents of the forecast intervals for
individual series are generally different from the nominal value of 95% when evaluated

using the pooled series.

One area for further research is the construction of optimal simultaneous multi-step

forecast intervals.
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Table 1: Characteristics of the 14 series: series length, posterior probability of station-
arity, and range of estimated correlations between each series and all other series

AR(1) AR(2)

Series Length Prob Range Prob Range

1 33 1.00 .26-.48 0.05 .18-.39
2 33 1.00 .28-.48 0.03 .20-.39
3 15 0.97 .23-42 0.01 .17-.35
4 20 1.00 .20-.36 0.01 .14-.29
5 26 1.00 .21-39 0.06 .14-.30
6 20 0.89 .25-.46 0.00 .19-.39
7 20 1.00 .20-.35 0.00 .14-.30
8 16 0.59 .18-32 0.01 .12-.25
9 27 1.00 .23-42 0.00 .17-.36
10 15 1.00 .16-.28 0.25 .10-.20
11 16 0.99 .18-31 0.00 .13-.26
12 20 0.98 .16-.30 0.00 .11-.24
13 16 1.00 .16-.29 0.02 .10-.21
14 16 0.98 .20-.36 0.00 .15-.32
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Table 2: Distribution of the relative errors of the point forecasts by horizon and type
of model (individual-stationary, pooled-stationary, individual-nonstationary or pooled—

nonstationary)

Ranges of Relative Errors

Horizon Measure (—0.11,—0.05] (-—0.05,—0.01] (—0.01,0.01] (0.01,0.05] (0.05,0.09)
1 Ris 8,12,11 13,6,5,1 3,7,9,2 14,104 -
Rps 12,8 11,13,6,1 5,3,2 7014104 -
Rin 12,8 11,13,6 15,3 97214 10,4
Rpny 12 8,11,13,6 15,3 97214 10,4
9  Ris 12,13 6,11,1,8,5 9,3 7914410 -
Rps 12,13 6,11,1,8 5.9,3 2147410 -
Rin 12 13,6,1 - 11,5983  2,7,14,10,4
Rpy 12 13,6,1 11 59832 147,104

NOTE: Entries are series identifiers; see Table 1. In each row of the table the series

identifiers are in order of increase of the measure for that row.
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Table 3: Distribution of ratio of forecast interval widths by horizon

Ranges of Ratios
Horizon Measure (0.53,0.94] (0.94,0.99] (0.99,1.01] (1.01,1.05] (1.05,1.45)

a. Individual versus pooled by stationarity

1 Ws.op  6,2,1,11 14,12 13,3 4 9,5,10,7,8
Wy.rp 6141121 13 4 12,3 9,7,8,10,5

2 Ws..p  6,1,11,2 12,13,14 3,5 10,4 9,7,8
Wr.rp 146,11 13 - 2,4,18 12,7,3,9,10,5

b. Nonstationary versus stationary by degree of pooling

1 Wrws 147,948 6,3 1 213512 1,10
Weons 791442 315611 81012 13 _

2 Wins 147,9 4,8 - 11 6,3,12,13,5,2,1,10
Wp.ns 1497 4,6,3 - 11,12)5 8,1,2,10,13

NOTE: Entries are series identifiers; see Table 1. In each row of the table the series

identifiers are in order of increase of the measure for that row.

Table 4: Distribution of probability content of individual 95% forecast intervals with
respect to forecasts for the pooled model, by horizon and stationarity

Ranges of Probability Contents

Horizon Measure (0.75,0.84] (0.84,0.90] (0.90,0.945]  (0.945,0.955] (0.955,0.99)

1 Ps 6 1,2 11,14,3 12,4,13 5,9,10,7,8

Py = 14,6 2,11,1 13,4 12,3,9,7,8,10,5
2 Ps = 6,1 11,2,12,14,13 3,5 4,10,9,7,8

Py 14 6,11 2,13 8,3 1,4,12,7,9,10,5

NOTE: Entries are series identifiers; see Table 1. In each row of the table the series

identifiers are in order of increase of the measure for that row.
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Table 5: Comparison of 95% forecast intervals for selected series by horizon, pooling and

stationarity
Individual Pooled
Series Horizon Stationary Nonstationary Stationary Nonstationary
2 (6.36, 6.65) (6.45, 6.82) (6.32, 6.75) (6.41, 6.80)
(6.65, 7.46) (6.82, 7.93) (6.57, 7.52) (6.74, 7.84)
8 (5.06, 5.81) (5.16, 5.86) (5.19, 5.78) (5.26, 5.85)
(5.20, 6.84) (5.59, 7.21) (5.34, 6.75) (5.55, 7.10)
10 (4.15, 4.73) (4.21, 4.84) (4.21, 4.73) (4.26, 4.78)
(4.25, 5.19) (4.29, 5.66) (4.29, 5.21) (4.36, 5.49)
14 (5.30, 5.82) (5.48, 5.83) (5.28, 5.82) (5.38, 5.87)
(5.54, 6.80) (6.16, 6.84) (5.48, 6.78) (5.86, 6.89)
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Figure 1: Normal probability plot of the d;; from the nonstationary restricted AR(2)
model fit to the logged earnings data, with 45 degree line and 95% pointwise critical bands
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