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Abstract

We employ the Gibbs sampler to implement the Bayesian paradigm to analyze autoregres-
sive time series panel data which arise naturally in business and economics applications.
A hierarchical Bayesian normal linear model is developed for such data, and a Bayesian
diagnostic is proposed to assess model fit. Two versions of the Gibbs sampler are used:
A restricted version which enforces stationarity or nonstationarity conditions on the se-
ries, and an unrestricted version which does not. Two sets of latent variables are used:
The first set enables us to use all observations in fitting and forecasting, and the second
models contemporaneous correlations between series. We use two examples to show how
to implement both versions of the Gibbs sampler to do model checking, estimation, and
forecasting. As expected, we find that restricting stationary series to be stationary does
not add new information, but restricting nonstationary series to be stationary leads to es-
timators and predictors which differ substantially from those obtained in the unrestricted
case. Compared with inference based on individual series, there are gains in precision for
estimation and forecasting when similar series are pooled, with larger gains for shorter
series. We validate these conclusions with a small simulation study.
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1 Introduction

We consider the problem of parameter estimation and forecasting for autoregressive time
series panel data. These data consist of several time series generated by the same type
of autoregressive model (e.g., an AR(p)). The key advantage of simultancously modeling
several series is the possibility of pooling information from all series. This not only can
improve estimation and forecasting performance, but also allows analysis of much shorter
series (e.g., economic time series) than it would be possible to model effectively as single
series. In such situations the Bayesian paradigm is particularly attractive because it

offers a natural scheme for combining and weighting data from several similar sources.

There has been a shift inl recent years away from modeling such series with structural
equations and toward modeling them with Bayesian vector autoregressive (BVAR) models
(see, e.g., Sims, 1980, Litterman, 1986 and Kadiyala and Karlsson, 1993), which capture
inter-series as well as within-series relations. While BVAR models have proven useful
in some applications, when there is a large number of short series, the large number of
parameters involved in the BVAR model forces over-reliance on and over-simplification
of prior specifications. An example of this over-simplification is found in the so-called
“Minnesota prior” (see Litterman, 1980). More complex priors, such as the normal-
Wishart (see Kadiyala and Karlsson, 1993), remedy the over-simplification, but result
in computational intractability due to the large number of parameters involved. Thus
for such situations, an alternate approach is desirable. In this paper, we develop a

methodology which can model a large number of simultaneous commensurate series.

A number of alternate approaches to this problem has been previously considered.
Using a simpler model than we consider here, Anderson (1978) and Azzalini (1981)
considered the pooling of information from several series generated from exactly the same
autoregressive model. Other researchers have considered more general models in which
the autoregressive parameters vary from series to series, providing greater flexibility in

modeling (see, for example, Robinson, 1978).
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Several authors have tried empirical Bayes-type approaches to the problem. These
include Andrews (1976), Ravishanker et al (1992), Ledolter and Lee (1993), and Li and
Hui (1983). One common concern with such approaches is that they tend to overestimate

precision.

Bayesian formulations have included those of Chow (1973), who considered multistep
forecasting, Pai et al (1993), who proposed a model different from ours, and Liu and
Tiao (1980), who, in the paper on panel data closest in spirit to ours, performed a
full Bayesian analysis for AR(1) models. Even for this simplest of time series models,
however, and even using the approximations Liu and Tiao (1980) were forced to make,
the intractability of the computations eliminates any hope of routine application of their
methodology. Also we have evidence that for the stationary AR(1) process, even if the
exact computations are executed for the Liu and Tiao model, the posterior distributions
of the autoregressive parameters tend to have the undesirable property of being bimodal.
(This is due to the beta prior assumption.) For higher order models the task of making
this type of analysis accessible to non-expert users appears impossible. Our approach is
much simpler than the one given by Liu and Tiao (1980) because it avoids the use of

approximations due to the use of the nonconjugate beta prior.

There is another reason t];'tat the Lin and Tiao (1980) approach is extremely in-
tractable: namely the assumptions on the autoregressive parameters required for sta-
tionarity of the series. Most Bayesian approaches to time series analysis explicitly or
implicitly assume stationarity of the series, but ignore the necessary stationarity restric-
tions; see, for example, Broemeling (1985). Recently Marriott et al (1992) incorporated
these stationarity restrictions using the Gibbs sampler (Gelfand and .Smith, 1990) to
obtain a full Bayesian analysis of a single series. Their approach was to transform the
autoregressive coefficients into partial autocorrelations and Fisher transform the partial
autocorrelations to normality. This approach to incorporating the stationarity restric-

tions was also used in Pai et al (1993).




The modeling of stationarity restrictions raises some interesting questions of its own.
First, given that one is modeling uncertainty as to the values of the autoregressive param-
eters, might this not at times include uncertainty as to whether the process is stationary
or nonstationary? Especially in the case of panel data where there may be many short
series, one might be uncertain if a given series is stationary. If so, the stationarity restric-
tions could prove a hindrance. Second, given that modeling the stationarity restrictions
involves a significant effort, what advantages does it confer, if any, in a practical sense
when the series are stationary? Furthermore, what disadvantages, if any, does it confer

in a practical sense when at least some of them are not?

We believe the answer to the first question is yes. In this paper, we attempt to answer
the second and third questions using two examples; one consists of apparently stationary
realizations and the other nonstationary realizations. This permits comparisons between
methodology which enforces stationarity or nonstationarity restrictions (which we term
the restricted case), and methodology which does not (the unrestricted case) when applied

to both stationary and nounstationary series.

Our approach to the restricted case differs from that of Marriott et al (1992) in
two respects. First, as it is not possible to use the full likelihood when the series are
nonstationary, we use latent variables in both the stationary and nonstationary cases,
so as to avoid conditioning on the first p observations. This also facilitates comparison
between the restricted and unrestricted cases, and eliminates the bimodality problem
mentioned earlier. Second, rather than transform first to partial autocorrelations, and
then to normality, we incorporate the stationarity restrictions directly into the modeling

procedure.

In this paper we describe a fully Bayesian solution to the problem of estimation and
forecasting autoregressive time series panel data. We adapt the hierarchical Bayesian
normal linear model (Lindley and Smith, 1972) to permit borrowing of strength over

all series. The pooling takes place as the autoregressive parameters of the series are
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assumed to arise from the same distribution. Our model is very flexible in that it can
accommodate restrictions on the autoregressive parameters of the series. In the sequel
we focus on the restrictions of most general interest, namely restricting the series to be
stationary and restricting them to be nonstationary. We use the same model for both
the restricted and unrestricted series except that for the restricted series the parameters

are constrained to lie in the proper region.

In such settings, sampling-based approaches to the calculation of marginal posterior
densities can provide solutions. We use the Gibbs sampler (see Gelfand et al, 1992, for
a general description, and Chib and Greenberg, 1993, for an application to a single time
series with ARMA(p, ¢) errors) to perform integrations over the variance components for
both models. In the restricted case, we also apply the Metropolis algorithm (Tierney,
1991, 1994, Miiller, 1994) to obtain the otherwise intractable conditional posterior of the
hyperparameters of the restricted autoregressive parameters. In particular, we describe
computations for both stationary and nonstationary models and compare the perfor-
mance of the restricted and unrestricted methods on both stationary and nonstationary

series.

Our approach differs from the BVAR approach in three major respects. First, in
the BVAR model, dependence between series is built into the sampling process: for our
model, it arises solely because of the prior specification and the error structure. Second,
the BVAR approach models temporal dependence across series as well as within series; our
approach models temporal dependence only within series. Third, our approach allows a
more flexible prior specification than does the BVAR, and can accommodate any number

of series.

In section 2 of the paper we present the model. The computations are described
in section 3. The methodology is exemplified in section 4 with the analysis of a data
set on yearly averages of hourly earnings of production workers in fourteen California

metropolitan areas. We also perform a small simulation study to assess the gains in
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estimation and forecasting due to pooling. Section 5 has concluding remarks.

2 The Model

We observe m time series realizations {y;;:}7,..7 = 1,...,m, possibly of different lengths,
with the 5™ series starting at time #;, and each generated by an autoregressive model of
order p. We assume that the minimum of the ¢; equals 1 {(i.e. the earliest oBservation
is at time 1) and that the last observation occurs at the same time, n, for all series.
We let n; = n — t; + 1 denote the number of observations in the ** series. We also
assume the unobservable vectors y§°’ = (Yig—1, Yiti—2s-- - Yiti—p) ¢ = 1,...,m, and
y©@ = (ygu)’,...,y,(,ﬂ)')’. Foreachl <t<mn,welet I, = {1 <i<m:t <t} denote

the set of series which have observations at time ¢, and let m, denote the number of such

series.

The defining relation for the i** series, given the parameters ¢;, 7;, 1? and yg(]}, is:

Yig = Oi¥is—1 + Eig, t > & (1)

-t Py R
where ¢2 = (¢, ¢,;), ¢; = (¢z‘1,---a¢z‘p), y;,t = (1,%‘,1:, Yig—1s- -« Yig—p+1), and €t 18
an error term. Letting €] be the vector whose components are {g;;,¢ € I;} and 7 =
(11, T2y« Tr), We take

€ I T, ¢2 % N(Oa Et)a (2)

where ¥; = diag{7; !,4 € L} + ¢*J; and J, is an m,; % m, matrix of ones. The autore-

gressive parameters are modeled as
b, | 0,4 % N8, A). (3)
Observe that (3) permits pooling of information across series.
Next we take conjugate priors for @ and A~1. That is we take a normal prior

9 ~ N(eo, C[]), (4)

6




and a Wishart prior
AT~ W ((10A0) 1), o 2 p+ 1 (5)

where 8y and Cj; in (4) and vy and A in (5) are to be specified.

We also take the prior distribution for 7 to be gamma and for 12 to be inverse gamma.

Specifically, we assume that

Ty Tay - - T 8 G10/2, 60/2) (6)
and
¥ ~ 1G(g/2, Bo/2) (7)

where 79, 6 in (6) and ag,  in (7) are to be specified.
To complete the specification we take
y:” ~ N(bo, Bu), (8)

where by and By are again parameters to be specified. By employing the latent variables
y§°), we are able to use all the data as we need not condition on the first p observations

in each series.

Next we consider stationarity restrictions. Define the stationarity region of series i to
be

®, = {¢, : series (1) is stationary}.

See, e.g., Box and Jenkins (1976) for details on stationarity. Of the two fitted models
that we consider in section 4, the first is an ARI(1) (ie., an AR(1) in the differenced
series) and the second is an AR(2). For p = 1 and 2 the stationarity regions are &; =
{(di0:bi1) : [ @s1 [< 1}, and 5 = {(ds0, Pit, bi) * Gia + Bia < 1,59 — di1 < 1,

| ¢i2 |< 1}, respectively. Letting y; = (¥is, Yitit1---» ¥in)’ denote the data vector for
the i™ series and y = (y},...,¥..) the data vector for all m series, we note that the
stationary probabilities, a priori P(¢; € ®,) and a posteriori P(¢,; € @, | y), are well
defined.




In section 3 we describe two versions of the Gibbs sampler. While in the first, or
unrestricted, version, the auntoregressive parameters ¢, are sampled from the normal
distribution in (3), in the second, or restricted, version, the sampling is done from distzi-

bution (3) with the ¢; restricted to @, or its complement.

3 Computations

Defining ¢> T ¢,/m, we take vy = p+ 2 and Ay = S¢/u0, where

S¢ = Y7 (¢ — qﬁ)(qﬁi — ¢)’/(m — 1). We also estimate 0y, Cy, v, Ag, 7 and & using
the data. However, we take o and 3, to be zero, and therefore, 9? has a noninformative
prior. In addition, using the data, we obtain y§°) for the i** series by backcasting the
autoregressive process. Then we take by = Y7, y; © /mand By = 31 l(yfo) )(y(o)

bo)'/(m — 1) in the prior specification (8).

Let £y = 1 when backcasting is done, and £, = p + 1 otherwise. To facilitate compu-

tation, we rewrite (2) in terms of latent variables o:

Eit | o, T ey N{a, 77" (9)

and
o [ ¢ % N(0, 97 (10)
where t = t#,...,nand i € I,. Let ¢ = (oyy, Wgg41, - - -, @)’ denote the vector of all latent

variables in (10).

For each data set we run both the restricted and unrestricted versions of the Gibbs
sampler to obtain M stationary iterates of the ¢,;,%4? and Q = {y®, @, 7,8, A} when
backcasting (Q = {e,T,0,A} when not backcasting), which we denote by ¢\, i
1,...,m,4*% and QU) respectively, j = 1,2, ... M. We use these iterates for estimation,

forecasting and model assessment.




3.1 The Unrestricted Gibbs Sampler

To implement the Gibbs sampler, we must be able to sample from the full conditional

distributions of the parameters {¢;}7,, ¥* and .

First, we describe the conditional posterior distributions of the ¢;. Define the following
quantities for all 1 = 1,...,m: d; = 20, ¥i3¥ii-1, Gi = Xi s, Yig-1Yis 15
Ai = (Gi + (A )Gy, b = Gi'ds, and @, = A7 (Yigo -1, Vito-2, - - -» Vito—p) 0. Then

the conditional posterior distribution

¢; |y, 2% N(A(D; — ¢) + (I —A)8,(I - A)A),i=1,...,m. (11)
Second, letting ¢ = (¢1,...,¢.,)’, the conditional posterior distribution of 7; is
T | Y, y(0)1 o, ¢ 12"'1 G((nz -p + 7?0)/2: bi_l) (12)

where b; = £ [Eib:to e, + 6[,] and e;; = y;+ — (Pi¥is—1 + o) are the residuals. Also, the

posterior conditional distribution of 4? is

W e~ 16 (a0t n—to+1)/2, (B + 3 0d)/2). (13)
Third,
01 6,2 ~ NI + (I - 1)y, (I ~T)Co) (1)

where ¢ = S, ¢;/m, and I' = [A~ + (mCp) 1] *A~L. Also,

At | ¢, 0 ~ W({E(@ - 9)(¢é - 9)' + VaAo}_l, m -+ Vo)- (15)
i=1
Fourth,
Qi | Y, y(D), ¢: T, ¢2 if&d N (0’;2 Z é‘i,th" Jit) (16)
icls

-1
where &;; = yiz — @;yiz—1 and o2, = (¢—z +> Tz') :

i€l




Finally, we consider the conditional posterior distribution for ygo) . Lete; = (i1, - ., Cip)s
where ¢;1 = yi,1 — (¢t ), and ¢ = Yip — (dio+ rot Pig¥i+ Urn1)s b =2,...,p.
Also, let ®; be the p x p lower triangular matrix with the main diagonal having all entries
equal to ¢;, and the 5% subdiagonal having all entries equal to Pip—inj=1,...,p— 1.
Then

¥ | @y s, i1, - oy Qi4p-1,Ti ~ N(by, Bp) (17

where by = (7,8}, + By ')~} (1:@i®;¢; + By 'by) and B = (9P, + Byt) L.
The Gibbs sampler is implemented in a simple manner. Using appropriate starting

values, one random deviate is drawn from each of (11)-(17) in turn, repeating this process

until convergence.

3.2 The Restricted Gibbs Sampler

In this section, we discuss the implementation of the Gibbs sampler when the ¢, are
restricted to any subregion, C?*', of RP*1. However, in our application CP*' will be

either @, or its complement (i.e., the region of stationarity or nonstationarity).

The appropriate conditional posterior distributions for 7, ¥?, & and y©® are given by
(12), (13), (16) and (17), respectively.
If ¢, is restricted to C?*!, the conditional posterior distribution of ¢, | y, (2 is

() k. — p(d’z I y$‘Q)
A CADAY) Toeores 2@ | v, 9008,

¢; € CP*L i =1,...,m, where p(¢; | y, ) is given by (11). In practice, ¢, is obtained

from p")(¢; | y, Q) by rejection sampling.

The conditional distributions of 8 | ¢, A and A™! | @, & are much more complicated.
Due to the restriction on the ¢;, the conditional posterior of these hyperparameters is
mtractable, and therefore difficult to sample from (Gelfand, Smith and Lee, 1992, Section
2).
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Let g(@ | ¢, A) denote the conditional distribution of @ given ¢, A in the unrestricted

case. Then the conditional distribution of 8 given ¢, A in the restricted case is

(r) 0 A) g(e | ¢aA)
9701 A) o e e | 6, AV

@ € RP*!, where n(z | 8, A) is the (p+1)-variate N(8, A) density.

Similarly, let d(A~! | ¢, 8) denote the conditional distribution of A~! given ¢, 8 in the
unrestricted case. Then the conditional distribution of A~! given ¢, 8 in the restricted

case is
d(A™" | ¢,6)
[fzecrrrn(z | 8, A)dz]™
where the support of A~! is the same as that of an unrestricted Wishart distribution
in (15). Note that while g®}(8 | ¢,A) and d7)(A~! | ¢,0) are both complicated, it is

easy to sample from g(8 | ¢, A) and d(A~! | ¢,0). Also note that for each 8 and A,

d(A™] $,0)

Jzecrr1 (2 | 8, A)dz can be obtained easily by Monte Carlo integration.

To obtain a random vector € from g((@ | ¢, A), or A~! from dD (A1 | ¢, 8), we
use the Metropolis algorithm with an independence chain (Tierney, 1991, 1995; Miiller,
1994). We use g(@ | ¢, A) or d(A™! | ¢,0) as a proposal density. Thus, the acceptance
probability in the Metropolis algorithm is

fzecp-i-l H(Z | 9(1), A)dz]m
fzeCp+1 ?7(2 I 6(2), A)dz ?

where 61y is the current state, and 8y is the proposed state, a value from the proposal

A(A) = [

density ¢(@ | ¢, A). Similarly, the acceptance probability for drawing from d(A™! | ¢, 8)

18

Jaccrrin(z | 8, Agy)dz]™
A) = { S )
) Jaccrin(z | 8, A))dz
To approximate A(8), we select L independent samples from 7(z | 8, Apy), and L inde-

pendent samples from 7(z | 8, A)) for each 6 and count the number of z falling in C?*?
in either case. We estimate A(8) by using A(8), the ratio of these counts. We choose L
by insisting that

P{|A(6)A(6) ~ 1] < .05} = .95.
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The Metropolis algorithm for drawing @ is utilized in a similar manner.

Thus, we obtain one iterate in the restricted Gibbs sampler by drawing ¢; from
P (¢, | 8, A) by rejection sampling, 8 | ¢, A and A! | ¢, 8 by the Metropolis algorithm
with an independence chain in each case, and 7, ¥%,& and y® as in the unrestricted

case.

3.3 Checks on Model Adequacy

To evaluate the adequacy of the models, we compute a multivariate predictive diagnostic

in the spirit of Gelfand et al (1992).

Defining 71 = {yit,% € I}, ¥y = FL T4+ »Fta)s U = EFt | Fy) and V; =
var(y; | ¥(n),t =p+1...,n, the diagnostic is

dy = Vi (F, —w), t=to,to+1,...,n. (18)

Denoting the components of d; as {d;s, ¢ € I;}, we note that if the model is appropriate,
the {d;;,i € I, t = 1,...,n} will be approximately a random sample from a N(0,1)

distribution.

We use the stationary iterates from the Gibbs sampler to compute the expectations
by using weighted averages, in a manner similar to that outlined by Gelfand et al (1992).
For example, letting ¢, = {¢,,i € L,}, we compute the conditional mean u;, as
; < 0 )y, ()
w =By oo [BFs | T, b6 2] & 3 EF | Jay, b T Jwd’
114 (&) j=1
where
(3 20} sx(iyy-1 %0 7))
th = {f(i’t, j}t+11 v aj}n I Yty ¢t 3 Etj )}_ /Z{f(i’t, ?t+11 ree 13771 I Sr(t}y t 12tj )}_11
=1
t=p+1,p+2,...,n,5=1,...,M,and f(: | 7, &ﬁj), 2&")) is the conditional multivariate
normal density of present and future observations given past observations, ~Ej) and z&" ),

The other expectations are computed in a similar manner.
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3.4 Estimation and Forecasting

For both the restricted and unrestricted Gibbs sampler, we study the sampling process
by computing the posterior distributions of ¢, | y and 7; | y. We also obtain the posterior

distributions of one-step-ahead forecasts from time n for each series.

First for the unrestricted case, as an estimate of the posterior distribution p(¢; | y)
we compute 20, p(¢; | y,Q29)/M, where the distribution of ¢; | y, Q) is given by
(11). Thus letting B; = £, b’ /M, where h{¥) = A9 (3, — ésij)) + (I — AP,
we estimate the posterior mean and variance of ¢; by h; and {M (I — AY NAG 4
Eﬁil(hgﬁ ~B) (b —8,)'}/M, respectively.

For the restricted case these simple Rao-Blackwellized estimators do not exist. The
posterior density of ¢, | ¥ is obtained directly from the empirical distribution of the
stationary iterates, using nonparametric density estimation (Silverman, 1986). Letting

M . qS(j) /M, we estimate the posterior mean and variance by @; and

&; =
EJ 1(4?5(3) 9?51')(9?5?)—32-)’/]\4, respectively.

For both the restricted and unrestricted cases, as an estimate of the posterior distri-
bution p(7; | y), we compute Ej‘il (7 | v, y© (j), o), ¢§" )) /M, where the distribution of
7 | ¥,¥%, @, ¢ is given by (12). We obtain posterior distributions of other parameters

in a similar way.

Forecasting the next observation in series ¢ is straightforward. Noting that
Yint1 | y,y( o, 0, i~ N (¢zYz,n +oni1, T ) we estimate the posterior distribution of
Yimt1 by T2 2Wimr1 | ¥, ¥OP, 0@, ¢, 79 /M. Thus, letting g = ¢P'y:n + ol
and 7; = ZJ - gf)/M we estimate the posterior mean and variance of y; 41 by 7, and

(M, 1/ + 5K (69 ~ 5,)%}/M, respectively.

The Gibbs sampler also allows computation of the estimated posterior probability that
a given series is stationary. This is done by counting the number of the 1000 stationary

Gibbs iterates that yield autoregressive parameters in the region of stationarity. That is,
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we estimate P(¢; € ®, | y).

4 Empirical Studies

We apply our methodology to earnings data and twelve examples of simulated data.

4.1 Earnings Data

The data (Liu and Tiao, 1980) consist of yearly averages of the hourly earnings of produc-
tion workers in fourteen California metropolitan areas. Each of the fourteen series ends
in 1977, but the series are of different lengths with the longest (of length 33) beginning
in 1945 and the shortest (of length 15) beginning in 1963. The natural logarithm of each
series serves to stabilize variances. The last observation of each series was set aside to
assess prediction performance and the model was fit to the remaining data. Most, if not
all of the fourteen series are nonstationary, but taking a first difference transforms all of
them to stationarity. As did Liu and Tiao, we fit an AR(1) to the differenced data. The

first stage of the model is:
Zig =0 + PunZig-1 + € b=t +1,...,33,i=1...,14 (19)

where the ;¢ is the average hourly earnings in area ¢ during year t, and

Zit =hl(yz',t)'_ln(yi,t—l)'

In addition, in order to compare the performance of the restricted and unrestricted
Gibbs sampler algorithm on nonstationary series, we will also fit an AR(2) to the undif-

ferenced series. The first stage of this model is:
Tit = Qo + PuaSip-1 + PuaPip—s + €1y t=1;,...,33, i=1...,14 (20)
where z; ¢ =In(ysz).

In what follows we obtain estimates of the posterior distributions of the autoregressive

parameters and one-step-ahead predictors for models (19} and (20).
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4.1.1 Computations and Model Assessment

Using the conditional distributions (11)-(17) we performed the Gibbs sampler algorithm
for each data set and for both the restricted and unrestricted cases using multiple runs
(Gelman and Rubin, 1992). Specifically, to begin the Gibbs sampler, we drew ten values
of the ¢, from a dispersed distribution. The Gibbs sampler was run on each of these ten

trajectories.

Within each step of the restricted Gibbs sampler the Metropolis algorithm was run
five times (Miiller, 1994) to obtain values of & and A from their respective conditional
posterior distributions. To obtain an estimate of the acceptance probability when € (orA)
was selected from its conditional posterior distribution, 1000 values of z were drawn from

T](Z [ 8(':.)a A) (OI' ??(Z | 0, A(z)))az =1,2.

Figure 1 displays the first 50 iterates of the trajectories for ¢q and ¢, for series 6 of
the differenced logged earnings data. Plots (a) and (b) use backcasting while (¢} and (d)
do not. We note that the trajectories converge rapidly. Plots for the other series and for
other parameters showed similar rapid convergence, as did plots for the AR(2) model fit

to the logged earnings data.

For both the AR(1) model fit to the differenced logged earnings data and the AR(2)
model fit to the logged earnings data, as well as for all variations of the Gibbs sampler
algorithm (unrestricted, nonstationary restricted, stationary restricted, with or without
backcasting) we assessed the convergence of the Gibbs sampler algorithm by studying the
potential scale reductions (PSR) and their 97.5 percentile points as suggested by Gelman
and Rubin (1992). To do this we ran 500 iterations and used the last 250 to compute the
PSR values. (PSR values near 1 are indicative of convergence.) For the earnings data,
we obtained reasonable PSR values. For example, for the stationary restricted AR(1)
model of differenced logged earnings the quartiles for the PSRs for the ¢y and ¢, are
1.011, 1.014 and 1.023 with backcasting and 1.008, 1.012 and 1.021 without backcasting.
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The corresponding quartiles for the 97.5 percentile points of the PSRs are 1.016, 1.021
and 1.031 and 1.012, 1.019 and 1.032 respectively.

To be conservative, in each run of the Gibbs sampler we used 500 iterates as a “burn-
in”. We then used a single sequence, rather than multiple sequences for inference. Specif-
ically, we ran the Gibbs sampler for 2000 iterations and selected every other one to give
1000 “stationary” iterates. For all models we fit to the earnings data, there is no indica-

tion of serial correlation in the iterates as indicated by the sample autocorrelations.

From these convergence diagnostics we conclude that the Gibbs sampler algorithm

performs satisfactorily in all cases studied.

For all models fit to the earnings data, we computed the diagnostics d;s. Figure 2
displays a normal probability plot of the three d;; from AR(2) models fit to the logged
earnings data: the unrestricted, stationary restricted and nonstationary restricted. In
this plot, the distributions of d;; appear reasonably normal. As expected, the d;+ for the
unrestricted and nonstationary restricted cases stay within or close to the 95% confidence
bands. For the inappropriate stationary restricted case, the values of the diagnostic stray

well outside the 95% confidence bands indicating an overestimate in the residual variance.

Normal probability plots for the AR(1) models showed similar patterns.

4.1.2 Numerical Results

We consider the effect of pooling on the autoregressive parameters, ¢;, the precision,
7;, and on the one-step predictor of the last observation, ;11,4 = 1,...,m. With this
object in mind we study two ratios. The first is the ratio of the posterior expectations
for each series when only the data for the individual series are used versus the case when

all the series are pooled. For pooling under stationarity the ratio is

Rgs = E(- | y,Individual)/E(- | y, Pooled)
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where the expectation in the denominator is taken with respect to the stationary re-
stricted model. We let Rgys denote the ratio where the expectation in the denominator
is taken with respect to the nonstationary restricted model. We use the analogous ratios
of posterior standard deviations, Rgs and Rygg, to study the gain in precision obtained

by using the hierarchical model.

The second ratio, which for each series compares the actual one-step prediction per-
formance of the pooled stationary-restricted AR(1) or nonstationary-restricted AR(2) to

the predictor based on the individual series, is

Rpg = lyz',n+1 - E(%‘,n+1|¥: Individual)|/ lyé,n+l - E(yi,n+1|3’: Pooled)|. (21)

Finally, we limit our discussion on the unrestricted pooled case because our results
suggest that for stationary (or nonstationary) series the estimated posterior distributions
of the requisite parameters computed under the unrestricted model are nearly indistin-

guishable from those computed under the stationary (nonstationary) model.

Differenced Logged Earnings Data Table 1(a) shows that for the differenced logged
earnings data the posterior probabilities of stationarity computed from the Gibbs sampler

with backcasting, except for series 8, are all near 1, and thus may be considered stationary.

From Table 2(a)(i), it can be seen that compared with individual estimation of ¢,
there is little difference in pooled estimation of ¢, for all except series 6 and 8 under
the stationarity restriction, but large differences in estimating ¢, for all series under the
nonstationarity restriction. Similarly, except for series 6, 8, 10 and 13 there is little
difference in pooled estimation of ¢; compared with individual estimation, but large

differences in estimating ¢, for nearly all series under the nonstationarity restriction.

Table 2(a)(ii) shows substantial improvement in the stationary-restricted case when

the series are pooled. For ¢y the unpooled posterior standard deviations range from 22%
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Table 1
Series Lengths and Posterior Probabilities of Stationarity

a. AR(1) Earnings Data

Series 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Length 31 31 13 18 24 18 18 14 25 13 14 18 14 14
PPgB 100 1.00 90 98 99 75 99 40 99 .98 .94 92 97 95
PP;NB 100 1.00 .92 100 1.00 .77 1.00 .38 1.00 1.00 .98 .95 .99 .96
b. AR(2) Earnings Data
Series 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Length 32 32 14 19 25 19 19 15 26 14 15 19 16 15
PPsNB 12 09 04 04 .11 02 .00 .02 .00 .44 .00 .01 .07 .02

NOTE: PPgB denotes the posterior probability of stationarity computed with
backcasting, PPsN B denotes the posterior probability of stationarity computed
without backcasting.

(for series 1 the longest series) to 101% (for series 8, one of the shortest series) greater
than the pooled posterior standard deviations. For ¢; there are comparable increases. In
the nonstationary-restricted case the unpooled posterior standard deviations are lower
than the pooled posterior standard deviations for series 10 for both ¢y and ¢;. For all
other series the increases for ¢y are comparable to those in the stationary-restricted case,

- while those for ¢; are much larger, ranging from 44 to 244%.

Table 2(b) shows that in the stationary-restricted case the unpooled posterior mean
precisions range from 21% smaller to 98% greater than the pooled posterior means.
The unpooled posterior standard deviations of precision range from 5% smaller to 123%
greater than the pooled posterior standard deviations. On the other hand, for the
nonstationary-restricted case the unpooled posterior mean precisions range from 16 to
190% greater than the pooled posterior means, while the unpooled posterior standard
deviations of precision range from 8% smaller to 287% greater than the pooled posterior

standard deviations.
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Table 2(c) reveals that pooled prediction is comparable to unpooled prediction under
the stationarity restriction for all series except series 8 and 10. The corresponding pooled
standard deviations are also comparable to the unpooled. For pooled predictors under
the nonstationarity restriction, the difference is more pronounced, especially for series 10.
The unpooled standard deviations are anywhere from 14% smaller to 48% larger than

the pooled standard deviations.

The models were fit to all but the last observation of the series, and that last observa-
tion was used as an out-of-sample value to evaluate the prediction error ratio Rpz given
by (21). The results show that the unpooled predictor performs worse than the pooled
predictor on series 1-4, 8, 9, 12 and 13 with absolute prediction error from 5 to 200%
larger. On the remaining series the absolute prediction error of the unpooled predictor
ranges from 9 to 91% smaller. This is not surprising in light of the results from Table
2(c) which show comparable means and prediction errors for the pooled and unpooled

Ccases.

We consider the plots of the estimated bivariate posterior distributions of ¢, ¢;.
Figure 3 presents these plots for series 6 in the unrestricted and stationary restricted
case with and without backcasting. These plots are typical of the plots for the other

series. As expected, the plots reveal negative correlation.

We compare the estimates and predictors for the pooled stationary-restricted model
with and without backcasting. There is virtually no difference in the estimates and
predictors with and without backcasting. Figure 3 shows this for the estimates of ¢ and

¢, for series 6.
Finally, we study the contemporaneous correlations between series i and 7,
pig = {1+ 1/(rp*)) 1 + 1/(mp®))} /2. (22)

For the stationary-restricted model with backcasting, the p; ; range between .42 and .12.

Without backcasting, estimates of the p; ; are very similar.
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Logged Earnings Data Table 1(b) shows that, except for series 10, all series have

near zero posterior probabilities of being stationary.

From Table 3(a)(i), we see that with the exception of series 10, the overall difference
for the stationary-restricted pooled estimators of ¢, relative to the unpooled estimators
is much greater than that for the nonstationary-restricted case. For ¢; the difference is
less for all series. Except for series 11, 12 and 14 the difference in estimating ¢, is smaller

for the nonstationary-restricted estimators.

Table 3(a)(ii) compares the pooled and unpooled standard deviations. We note that
for virtually all series there are large gains from pooling for the nonstationary-restricted
case. There are larger increases in standard deviations of the pooled to the unpooled

series for the stationary restricted case.

From Table 3(b) we see that the nonstationary-restricted AR(2) model is on average
more precise for the pooled than for the unpooled case except for series 6. This is the
reverse of what happens with the stationary-restricted AR{(2), for all but series 5 and 10.

With the exception of series 5 and 10, pooling reduces the standard deviation of 7;.

As for prediction, there is surprisingly little difference in predicting ;4. For the
stationary-restricted case the standard errors of prediction are virtually identical for the
pooled and unpooled cases. For the nonstationary case, there are small to moderate
gains from pooling for 7 of the 14 series. Notice that the two longest series, series 1 and

2, show losses of 17% and 24%.

The Rpg ratios for the AR(2) reveal much the same mixed performance in actual

one-step prediction as was seen in the AR(1) model.

We compare the estimates and predictors for the pooled nonstationary-restricted
model with and without backcasting. In contrast to the AR(1) case, there are large
differences in estimates. For ¢, the ratios of the estimates from the model with back-

casting to those without backcasting range from 0.63 for series 5 to 11.2 for series 10. For
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¢1 the range is 0.99 to 1.18 and for ¢ the range is from 0.86 for series 4 to 38.6 for series
13. The ratios of the standard deviations are in general much larger than 1, with ratios
of 1.089-1.665, 1.121-1.702 and 1.122-1.705 for ¢y, ¢; and ¢, respectively. Surprisingly,
the one-step-ahead predictors are extremely close to the actual observations for all series
for both the backcasting and no backcasting cases (for series 14, for example, the ac-
tual value is 1.792 while the backcast predictor is 1.808 and the no backcast predictor is
1.815.) The range of ratios of backcast predictors to no backeast predictors is 0.996-1.002.
Much different behavior is exhibited by the standard deviations of the predictors whose
ratios range from 1.12 to 2.82. The fact that these increases in standard deviations did
not occur for the AR(1) model fit to stationary serics suggests that there are difficulties

involved in estimation and prediction when nonstationary series are backcast.

Finally, we note that the contemporaneous correlations between series 7 and §, given
by (22) are much smaller than those seen in the AR(1) model, ranging from 0.012 to
0.108 for the backcasting case and from 0.041 to 0.144 for the no backcasting case.

4.2 A Small Simulation Study

In order to further assess the improvement in estimation and forecasting due to pooling,
we conducted a small simulation study using 10 AR(1) series. We used the model specified
by (1)-(3) with all parameters fixed except §; and ¢?%. Specifically, we fixed 8§, = 0,
7; = 100,7 = 1,...,10, and we took the diagonal elements of the 2 x 2 matrix A to be
0.01 and the off-diagonal element to be 0.005. We varied 8, at two levels, 0.5 and 0.8,
and % at three levels, 0.00, 0.01 and 0.10, corresponding to correlations of 0.00, 0.50
and 0.91 respectively (see (22)). All 10 series were taken to be of equal length and that

length was varied at two levels: 10 and 20. Thus we studied 12 examples.

For each example we generated the data using (1)-(3). We then ran the Gibbs sampler
in exactly the same way as described above except that we took 7 = § = 0 (ie. an

improper prior on the 7;) in (6).
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The results of the simulations show little difference in the two levels of 61, so we will
report the results for #; = 0.5. For all examples, while there is little bias in either pooled
or individual estimation of ¢, the pooled and unpooled estimates of ¢y, are considerably
different from the actual ¢y values. Further, the estimates are substantially worse at
the largest )2 level. The accuracy of pooled and individual one-step-ahead predictors is

comparable at all factor levels.

To assess the performance of pooled versus individual estimators, for each series we
looked at the ratios of the posterior expectations (Ry) and standard deviations (Rg) for
the individual versus the pooled for the autoregressive parameters and the one-step-ahead
predictors; see Table 4. While the Rg values vary substantially for ¢, for ¢, Rg ~ 1.
For prediction, there are large differences in Bg. The Eg values indicate that there are
substantial gains in precision for pooled estimation of ¢p and ¢. Further these gains
increase with decreasing series length and with increasing between-series correlation. In
terms of prediction, the picture is more mixed. All series of length 10 have Rg values
considerably larger than 1 except one series at ¢ = 0.01. Further, the gains increase
with increasing correlation. However, for series of length 20, 4 series at /% = 0.01 and
three series at t? = 0.10 show decreases in precision. Thus the benefits of pooling on

one-step-ahead prediction are less clear with longer series.

5 Conclusions

Assuming a hierarchical Bayesian linear model, we have accomplished five main tasks.
First, we have shown that it is feasible to use sampling-based methods to analyze station-
ary autoregressive time series panel data. In particular, we have successfully implemented
the Gibbs sampler algorithm to obtain reasonable estimates and forecasts. Second, we
have also developed and implemented a Bayesian diagnostic for the difficult problem of
assessing model fit of autoregressive time series. Third, we have obtained estimates and

forecasts for nonstationary autoregressive series without transforming them to station-
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ary ones. Fourth, by using latent variables for the AR(p) model, we have shown that it
is feasible to use all the data without conditioning on the first p observations whether
the series are stationary or not. Fifth, we have also used latent variables to incorporate

contemporaneous correlations among series.

Application of these methods to panel data reveals two main findings. First, overall
the benefits of pooling could effect substantial improvements in estimation and forecast-
ing. As is expected, relative to inference based on individual series, when all the series
are pooled there is considerable improvement for shorter series with smaller improvement
in longer series. Second, there are differences in performance when the same series are
unrestricted, stationary restricted, or nonstationary restricted. It is not surprising that
there is no substantial difference in performance between unrestricted and stationary-
restricted fits for stationary series. On the same note, there is no substantial difference
in performance between unrestricted and nonstationary-restricted fits for nonstationary
series. However, restricting nonstationary series to be stationary (or stationary series to

be nonstationary) results in biased estimators with artificially low variances.

Table 4
Ranges of Rg and Rg for ¢y, ¢y
and One-Step-Ahead Prediction for the Twelve Simulated Examples

Estimation Prediction
®o &

Length ’l,bz Rg Rg Rg Rg Ry Rz
10 0.00 | 0.69-1.82 | 1.14-1.36 || 0.99-1.01 | 1.10-1.22 || 0.86-1.36 | 1.10-1.18
0.01 || -0.55-1.73 | 1.14-3.17 |} 0.98-1.01 | 1.09-3.10 |} -0.01-1.69 | 0.87-1.44

0.10 { 0.36-1.17 | 2.52-8.73 || 0.99-1.01 | 2.50-8.46 || 0.92-1.34 | 1.11-1.58

20 0.00 || 0.71-3.16 § 0.97-1.16 || 1.00-1.01 | 1.02-1.14 || 0.92-1.06 | 1.01-1.05
0.01 ] 0.63-1.83 | 0.92-1.76 || 1.00-1.01 | 0.92-1.69 || 0.81-1.13 | 0.68-1.20

0.10 || -9.73-1.10 | 2.66-5.38 || 0.99-1.00 | 2.68-5.18 || 0.89-2.53 | 0.85-1.17
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Table 2

Unpooled to Pooled Ratios of Posterior Means and Standard Deviations
for Each Series for Characteristics Associated with the AR(1) Earnings Data

a. Autoregressive Coefficients, ¢o,

i. Means ii. Standard Deviations
Series | R0gs Rlps ROgns Rlgns | RE0ss Rlss ROsns Rlgws
1 0.97 1.00 -8.18 0.56 1.22 1.23 1.26 3.27
2 0.95 1.02 -6.51 0.65 1.33 1.31 1.51 3.70
3 0.91 1.07 -3.58 0.56 1.70 1.76 1.73 2.14
4 1.04 0.86 -7.43 0.39 1.54 1.55 1.83 3.03
5 1.06 0.85 -19.32 0.37 1.48 1.46 1.98 3.06
6 0.54 1.21 -1.19 0.73 1.48 1.48 1.36 1.44
7 1.10 0.84 -10.17 0.35 1.71 1.65 1.88 3.12
8 0.35 1.42 -2.72 0.91 2.01 2.20 1.45 1.73
9 1.08 092 -13.07 0.41 1.55 1.52 2.19 3.44
10 140 -0.14 22.24 -0.04 1.80 1.61 0.69 0.60
11 1.27 078 -13.81 0.32 1.72 1.72 1.90 2.31
12 1.24 095 -12.62 0.47 1.86 1.74 1.90 227
13 1.44 0.54 -1512 0.21 1.78 1.66 1.61 171
14 1.07 1.02 -9.15 0.57 1.67 1.55 1.67 2.14

b. Precision of the Process, T

c. One-Step Predictor, y; ny1

Series | Res Rewns Rgs Rsns | Res Rens Rss Rsns
1 1.33 1.95 1.39 1.59 §| 0.99 0.82 1.00 0.91
2 141 1.97 1.49 1.64 j{ 1.00 091 1.00 0.87
3 1.24 1.87 1.53 1.85 lf 1.02 0.83 1.01 1.04
4 0.93 1.45 1.09 1.19 i 0.96 1.07 0.99 1.09
5 0.95 1.45 1.06 1.21 §{ 0.94 0.72 0.98 1.10
6 1.98 2.90 2.23 2.87 4| 1.07 0.87 1.02 0.86
7 0.79 1.38 0.95 1.06 {| 0.96 0.79 0.99 1.19
8 0.88 1.16 1.05 1.28 || 1.30 0.95 1.06 1.48
9 0.95 145 1.06 1.19 || 0.99 0.81 0.99 1.08
10 0.84 1.60 1.09 1.08 || 1.19 241 1.08 1.21
11 1.03 1.71 1.40 1.37 || 0.95 0.63 0.98 1.19
12 0.90 1.33 1.17 1.13 || 1.01 0.66 0.98 1.30
13 0.97 1.63 1.24 1.29 || 0.92 0.63 0.97 1.13
14 1.04 1.65 1.30 1.51 || 1.04 0.88 1.00 1.07

NOTE: The quantities labelled Egs denote the ratio
E(- | Y,Individual)/E(- | Y,Pooled) under the restriction of stationarity.
Those labelled Epyxg denote the same quantities under the restriction of

nonstationarity the ratios labelled Rgs and Rsys denote the
corresponding ratios of standard deviations.
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Table 3

Unpooled to Pooled Ratios of Posterior Means and Standard Deviations for Each Series

for Characteristics Associated with the AR(2) Earnings Data

a. Autoregressive Coeflicients, ¢g, ¢, ¢z

i. Means ii. Standard Deviations

Series | R0gs Rlgs R2gs ROgns Rlpys R2gns | R0ss Rlss R2ss ROsys Rlsys R2gng
1 0.32 1.04 1.09 0.97 1.01 1.03 1.46 1.05 1.04 1.39 1.33 1.32
2 0.30 1.04 1.07 0.89 1.01 1.02 1.25 0.96 0.96 1.28 1.25 1.25
3 -1.22 0.77 0.25 1.15 0.98 0.81 1.94 1.59 1.71 1.37 1.62 1.60
4 -0.98 0.68 -0.11 1.20 0.86 -0.48 2.50 1.69 1.83 1.44 1.57 1.57
5 0.32 0.93 0,72 1.62 0.99 0.98 1.77 1.33 1.36 1.58 1.56 1.55
6 -0.60 0.84 0.97 1.03 1.05 1.21 1.23 1.57 1.63 0.96 1.28 1.27
7 -1.27 061 -0.47 1.16 0.91 1.88 2.23 1.48 1.60 1.40 1.52 1.51
8 -4.72 0.86 0.50 1.71 1.00 0.90 5.26 2.0 3.44 1.87 1.83 1.91
9 0.30 0.70 0.03 1.18 0.96 0.22 1.16 1.27 1.32 1.31 1.42 1.42
10 (.83 0.86 -0.12 -35.03 0.85 -0.21 2.65 1.65 1.73 2.24 175 1.75
11 -1.28 052 -0.72 1.21 0.80 2.49 2.02 1.50 1.63 1.28 1.49 1.48
12 -0.67 058 -0.27 1.30 0.88 7.87 1.81 1.76 1.86 1.25 1.47 1.46
13 -0.33 0.77 0.02 0.82 0.94 0.12 2.57 1.59 1.68 1.71 1.65 1.63
14 -2.47 037 -0.82 1.58 0.64 3.32 2.80 2.39 2.66 1.42 1.50 1.50

b. Precision of the Process, 7 || c. One-Step Predictor, y; n11

Series | Rgs Rewns Rgg Rsns | Res Rgns Rss  Rswns

1 1.12 0.70 1.33 115 || 101 1.00 1.00 0.83

2 1.24 0.67 1.43 1.27 {| 1.00 1.00 1.00 0.76

3 1.75 0.80 1.84 223 | 1.01 1.00 1.00 0.79

4 1.05 0.64 1.08 1.18 || 1.02 1.00 1.00 1.15

5 0.84 0.62 0.98 093 | 1.01 1.00 1.00 1.04

6 2.39 1.19 2.37 2.84 || 1.01 1.00 1.00 0.64

7 1.22 0.63 1.06 1.39 § 1.03 1.00 1.00 0.97

8 1.13 0.71 1.11 140 i 1.02 1.01 1.00 1.16

9 1.21 0.65 1.14 1.27 || 1.01 1.00 1.00 0.85

10 0.66 0.56 0.80 093 || 1.01 .99 1.00 1.46

11 1.70 0.89 1.35 2.17 || 1.01 1.00 1.00 0.82

12 1.25 0.80 1.08 1.51 |} 0.99 1.00 1.00 1.01

13 1.02 0.73 1.03 1.33 ¢ 1.01 1.00 1.00 1.09

14 1.87 0.88 1.61 234 || 1.04 1.01 1.01 1.03

NOTE: The quantities labelled Rgs, Rpns, Ess and REsng
are defined in the note to Table 2.
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Figure 1: Trajectories of Ten Sequences for Series 6 of the Logged Earnings Data under
the AR(1) Model: (a) ¢o with Backcasting; (b) ¢, with Backcasting; (c) ¢o with No
Backcasting; (d) ¢, with No Backcasting;
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Figure 2: Normal Probability Plot of d;y Diagnostic: Logged Earnings Data with Ez-
pected 45 Degree Line and 95% Pointwise Critical Bands; Qbserved Values: Unrestricted
(Diamond), Restricted Stationary (Square), Restricted Nonstationary (Plus)
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Figure 3: Bivariate Densities of ¢g and ¢, for the AR(1) Model Fit to the Logged Earnings
Data: (a) Unrestricted with Backcasting; (b) Stationary Restricted with Backcasting; (c)
Unrestricted with No Backeasting; (d) Stationary Restricted with No Backcasting
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