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A Bayesian Analysis of Autoregressive Time 
Series Panel Data 

Balgobin NANDRAM and Joseph D. PETRUCCELLI 
Department of Mathematical Sciences, Worcester Polytechnic Institute, Worcester, MA 01609-2280 
(balnan@wpi.edu) 

We describe a Bayesian hierarchical model to analyze autoregressive time series panel data. We 
develop two algorithms using Markov-chain Monte Carlo methods, a restricted algorithm that 
enforces stationarity or nonstationarity conditions on the series and an unrestricted algorithm that 
does not. Two examples show that restricting stationary series to be stationary provides no new 
information, but restricting nonstationary series to be stationary leads to substantial differences 
from the unrestricted case. These examples and a simulation study also show that, compared with 
inference based on individual series, there are gains in precision for estimation and forecasting 
when similar series are pooled. 

KEY WORDS: Forecasting; Hierarchical model; Latent variable; Markov-chain Monte Carlo al- 
gorithm; Stationarity. 

We consider the problem of parameter estimation and 
forecasting for autoregressive time series panel data. These 
data consist of several time series generated by the same 
type of autoregressive (AR) model [e.g., an AR(p)]. The 
key advantage of simultaneously modeling several series is 
the possibility of pooling information from all series. This 
can not only improve estimation and forecasting perfor- 
mance but also allows analysis of much shorter series (e.g., 
economic time series) than it would be possible to model 
effectively as single series. In such situations the Bayesian 
paradigm is particularly attractive because it offers a natu- 
ral scheme for combining and weighting data from several 
similar sources. 

We adapt the hierarchical Bayesian normal linear model 
(Lindley and Smith 1972) to permit borrowing of strength 
over all series. The pooling takes place as the autore- 
gressive parameters of the series are assumed to arise 
from the same distribution. Our model is very flexi- 
ble in that it can accommodate restrictions on the auto- 
regressive parameters of the series. In the sequel we fo- 
cus on the restrictions of most general interest-namely, 
restricting the series to be stationary and restricting them 
to be nonstationary. We use the same model for both the re- 
stricted and unrestricted series except that for the restricted 
series the parameters are constrained to lie in the proper 
region. One difficulty with implementing our approach is 
that the posterior distributions do not exist in closed forms. 

Sampling-based approaches have been used successfully 
to perform integrations in situations in which the poste- 
rior distributions are not analytically tractable. We use the 
Markov-chain Monte Carlo (MCMC) sampler; see Tierney 
(1994) for a general description. See also Gelfand, Smith, 
and Lee (1992), who described how to implement the Gibbs 
sampler (Gelfand and Smith 1990) when there are trunca- 
tion and order restrictions, and Chib and Greenberg (1994) 
for an application to a single time series with (autoregres- 
sive moving average) ARMA (p, q) errors. 

Several approaches to pooling time series have previously 
been considered. Among those using an empirical Bayes 

approach were Andrews (1976), Ravishanker, Wu, and Dey 
(1992), Ledolter and Lee (1993), and Li and Hui (1983). 
One common concern with this approach is that it tends to 
overestimate precision. 

Bayesian formulations have included those of Pai, Ravis- 
hanker, and Gelfand (1993), Chow (1973), who considered 
multistep forecasting, and Liu and Tiao (1980), who, in the 
article on panel data closest in spirit to ours, performed a 
full Bayesian analysis for AR(1) models. Even for this sim- 
plest of time series models, however, and even using the 
approximations Liu and Tiao (1980) were forced to make, 
the intractability of the computations eliminates any hope 
of routine application of their methodology. Our approach 
is much simpler than the one given by Liu and Tiao (1980) 
because it avoids the use of approximations due to the use 
of the nonconjugate beta prior. 

There is another reason that the Liu and Tiao (1980) ap- 
proach is extremely intractable-namely, the assumptions 
on the autoregressive parameters required for stationarity 
of the series. Most Bayesian approaches to time series anal- 
ysis explicitly or implicitly assume stationarity of the series 
but ignore the necessary stationarity restrictions; see, for ex- 
ample, Broemeling (1985). Recently Marriott, Ravishanker, 
and Gelfand (1992) incorporated these stationarity restric- 
tions using the Gibbs sampler (Gelfand and Smith 1990) 
to obtain a full Bayesian analysis of a single series. Their 
approach was to transform the autoregressive coefficients 
into partial autocorrelations and Fisher transform the par- 
tial autocorrelations to normality. This approach to incor- 
porating the stationarity restrictions was also used by Pai et 
al. (1993). Rather than transform first to partial autocorrela- 
tions and then to normality, we incorporate the stationarity 
restrictions directly into the modeling procedure. 

An alternative approach to modeling data such as these 
is to use Bayesian vector autoregressive (BVAR) models 
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(e.g., see Sims 1980; Litterman 1986; Kadiyala and Karls- 
son 1993), which capture interseries as well as within-series 
relations. Although BVAR models have proven useful in 
some applications, when there are many short series, the 
large number of parameters involved in the BVAR model 
forces overreliance on and oversimplification of prior spec- 
ifications. 

In contrast, our methodology is appropriate for many 
simultaneous commensurate series. Our approach differs 
from the BVAR approach in three major respects. First, in 
the BVAR model, dependence between series is built into 
the sampling process; for our model, it arises solely because 
of the prior specification and the error structure. Second, the 
BVAR approach models temporal dependence across series 
as well as within series; our approach models temporal de- 
pendence only within series. Third, our approach allows a 
more flexible prior specification than does the BVAR and 
can accommodate any number of series. 

Chib and Greenberg (1995) considered hierarchical ver- 
sions of Zellner's seemingly unrelated regression (SUR) 
model, one of which includes the model we consider here. 
They also used the MCMC method to analyze their models, 
although they did not incorporate restrictions on the autore- 
gressive parameters, which is one of our main contributions. 
Using Organization for Economic Cooperation and Devel- 
opment gross national product data, Chib and Greenberg 
(1995) found strong evidence for the pooled, as opposed 
to the unpooled, model. For our model, we investigate in 
detail the effects of pooling on estimation and forecasting. 
One difficulty posed by the greater generality of the SUR 
model is its inability to handle large numbers of series due 
to the many parameters in the covariance of the sampling 
process. Another difficulty with the greater generality of the 
BVAR and SUR models is the complexity of incorporating 
stationarity or nonstationarity restrictions. 

In Section 1 of the article, we present the methodology. 
In Section 2, we illustrate the methodology with the anal- 
ysis of a dataset on yearly averages of hourly earnings of 
production workers in 14 California metropolitan areas. We 
also perform a small simulation study to assess the gains 
in estimation and forecasting due to pooling. Section 3 has 
concluding remarks. 

1. METHODOLOGY 

We briefly describe a methodology for modeling and 
forecasting any number of time series of possibly varying 
lengths and the associated computations. Details were given 
by Nandram and Petruccelli (1995). 

1.1 The Model 

We observe m time series realizations {yi,t} L i = 
1, ... , m, possibly of different lengths, with the ith series 
starting at time ti and each generated by an autoregressive 
model of order p. We assume that the minimum of the ti 
equals 1 (i.e., the earliest observation is at time 1), that the 
last observation occurs at the same time, n, for all series, 
and that there are no missing observations between the first 
and last observations. We let n = n- ti + 1 denote the 

number of observations in the ith series. We also assume the 
unobservable vectors y0)= (yi,t-1, i,ti-2, 

f , Yi,ti-p) 

i = 1,. .,m, and y(O) = o (mO)1.,y()')'. For each 
1 < t < n, we let It = {1 < i < m : ti < t} denote 
the set of series that have observations at time t and let mt 
denote the number of such series. 

The defining relation for the ith series, given the param- 
eters, i, i 2, and y O), is 

Yi,t = oiYi,t-1 +i,t, t> ti, (1) 

where 40 = (OiO,, ),4 = (il,.. , ip) ,Y,t = (1,i,t, 
Yi,t-1, ..., Yi,t-p+), and Ei,t is an error term. Letting •E be 
the vector whose components are i,ti E It} and 7' = 
(Ti, T72, . , ,Tm), we take 

t 7,2 
% N(O, Et), (2) 

where Et = diag{7i-1, i E It} + 02 Jt and Jt is an mt x mt 
matrix of ones. The autoregressive parameters are modeled 
as 

0i O, 
A 

iitd N(0, A). (3) 

Observe that (3) permits pooling of information across se- 
ries. 

Next we take conjugate priors for 0 and A-'. That is, 
we take a normal prior 

0 N(Oo, Co) (4) 

and a Wishart prior 

A-1 - W((voo)-1, VO), Vo0 p + 1, (5) 

where 0o and Co in (4) and vo and Ao in (5) are to be 
specified. 

We also take the prior distribution for 7 to be gamma 
and for 42 to be inverse gamma. Specifically, we assume 
that 

iid 
71, T-2,. ., -d • G(r70/2,60/2) (6) 

and 

02 r IG(ao/2,lo/2), (7) 

where 710o, 60 in (6) and ao, 0o in (7) are to be specified. 
To complete the specification, we take 

Y•O) 
~ N(bo, Bo), (8) 

where bo and Bo are again parameters to be specified. By 
employing the latent variables y(0), we are able to use all 
the data because we need not condition on the first p ob- 
servations in each series. We will refer to the use of latent 
variables in this way as initialization. Although for station- 
ary series it is possible to obtain the full likelihood, this is 
not possible when some or all of the series are nonstation- 
ary. Initialization allows us to restrict model parameters to 
lie in any region. Specifically, we can restrict the parameters 
qi in the model to be in the stationary region P, = {( ? 
series (1) is stationary}, or in its complement. See, for ex- 
ample, Box and Jenkins (1976) for details on stationarity. 
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Finally, to carry out the analysis, Nandram and Petruc- 
celli (1995) described two MCMC samplers. Although in 
the first, or unrestricted, version, the autoregressive param- 
eters 4 are sampled from the normal distribution in (3), 
in the second, or restricted, version, the sampling is done 
from Distribution (3) with the qi restricted to Op or its 
complement. 

1.2 Computations 

Defining 4 = Z2,1 _i/m, we take o = p +2 and Ao = 

S/lvo, where So = im=l(•i - )(•i - k)'/(m - 1). We 
also estimate 0o, Co, vo, Ao, rqo, and 60o using the data. We 
take ao and 3o to be 0, however, and, therefore, ,2 has 
a noninformative prior. In addition, when initialization is 
done, using the data we obtain yi() for the ith series by the 
usual backcasting method applied to the ith series. Then we 
take bo = 

Zi=10)/m and Bo = 
Ei=1(y0o) 

- bo)(yM - 

bo)'/(m - 1) in the prior specification (8). 
Let to = 1 when initialization is done and to = p + 1 

otherwise. To facilitate computation, we rewrite (2) in terms 
of latent variables at: 

ind 
Eit at, 7ri--d N(at,7 1) (9) 

and 

at 2 rd N(0, 02), (10) 

where t = to,...,n and i E It. Let a = (ato,ato+l, 
..., an)' denote the vector of all latent variables in (10). 

For each dataset, we run both the restricted and unre- 
stricted versions of the MCMC sampler to obtain M station- 
ary iterates of the i,, )2, and Q = {y(O), a , 0, , when 
initialization is done (Q = {a, r, 0, A} when initialization 
is not done), which we denote by 4<J), i = 1,..., m, 02(j) 
and Q(J), respectively, j = 1, 2,..., M. Whenever the Oi are 
restricted, the MCMC algorithm is a Metropolis-Hastings 
algorithm (see Tierney 1994) in which 0 and A are drawn 
from their posterior conditional distributions using depen- 
dent rejection sampling and the 4 are drawn using inde- 
pendent rejection sampling. For the unrestricted problem, 
a straightforward Gibbs sampler is done. The iterates ob- 
tained from the MCMC algorithm are used to perform es- 
timation, forecasting, and model assessment. 

Details of the computations, which include the condi- 
tional posterior distributions, the Metropolis-Hastings al- 
gorithm, estimation and forecasting, and model assessment, 
were given by Nandram and Petruccelli (1995). 

2. EMPIRICAL STUDIES 

We apply our methodology to earnings data and 12 ex- 
amples of simulated data. 

2.1 Earnings Data 

The data (Liu and Tiao 1980) consist of yearly averages 
of the hourly earnings of production workers in 14 Califor- 
nia metropolitan areas. Each of the 14 series ends in 1977, 
but the series are of different lengths with the longest be- 

ginning in 1945 and the shortest beginning in 1963. These 
series are of six different lengths-15 (series 3 and 10), 16 
(series 8, 11, 13, and 14), 20 (series 4, 6, 7, and 12), 26 
(series 5), 27 (series 9), and 33 (series 1 and 2). The natural 
logarithm of each series serves to stabilize variances. The 
last observation of each series was set aside to assess pre- 
diction performance and the model was fit to the remaining 
data. Most if not all of the 14 series are nonstationary, but 
taking a first difference transforms all of them to stationar- 
ity. As Liu and Tiao did, we fit an AR(1) to the differenced 
data. The first stage of the model is 

zi,t =iO il Zi,t-1 Ei,t, 

t= ti -+ 1,...,33, i= 1,...,14, (11) 

where the yi,t is the average hourly earnings in area i during 
year t and zi,t = ln(yi,t) 

- In(yi,t-1). 
In addition, to compare the performance of the restricted 

and unrestricted MCMC sampler on nonstationary series, 
we will also fit an AR(2) to the undifferenced series. The 
first stage of this model is 

Xi,t = iO ? 
4ilii,t-1 + i2Xi,t-2 Ei,t, 

t = ti,...,33, i= 1,...,14, (12) 

where xi,t = ln(yi,t). 
In what follows, we obtain estimates of the posterior dis- 

tributions of the autoregressive parameters and one-step- 
ahead predictors for Models (11) and (12). 

Using the conditional posterior distributions (see Nan- 
dram and Petruccelli 1995), we performed the MCMC sam- 
pler for each dataset and for both the restricted and unre- 
stricted cases with multiple runs (Gelman and Rubin 1992). 
Specifically, to begin the MCMC sampler, we drew 10 val- 
ues of the Oi from a dispersed distribution. The MCMC 
sampler was run on each of these 10 trajectories. 

Within each step of the restricted MCMC sampler (i.e., 
the Metropolis-Hastings algorithm), the fifth iterated val- 
ues of 0 and A from their respective conditional posterior 
distributions were taken. For a similar discussion of the 
Metropolis algorithm, see Miiller (in press). 

For both the AR(1) model fit to the differenced logged 
earnings data and the AR(2) model fit to the logged earn- 
ings data, as well as for all variations of the MCMC sampler 
(unrestricted, nonstationary restricted, stationary restricted, 
with or without initialization), we assessed the convergence 
of the MCMC sampler by studying the potential scale re- 
ductions (PSR's) and their 97.5 percentile points as sug- 
gested by Gelman and Rubin (1992). To do this we ran 500 
iterations and used the last 250 to compute the PSR val- 
ues. (PSR values near 1 are indicative of convergence.) For 
the earnings data, we obtained reasonable PSR values. For 
example, for the stationary restricted AR(1) model of dif- 
ferenced logged earnings, the quartiles for the PSR's for 

?o and qi are 1.011, 1.014, and 1.023 with initialization 
and 1.008, 1.012, and 1.021 without initialization. The cor- 
responding quartiles for the 97.5 percentile points of the 
PSR's are 1.016, 1.021, and 1.031 and 1.012, 1.019, and 



Nandram and Petruccelli: Bayesian Analysis of Time Series Panel Data 331 

1.032, respectively. Plots of the trajectories of the model 
parameters show rapid convergence. 

To be conservative, in each run of the MCMC sampler 
we used 500 iterates as a "burn-in." We then used a sin- 
gle sequence rather than multiple sequences for inference. 
Specifically, we ran the MCMC sampler for 2,000 iterations 
and selected every other one to give 1,000 "stationary" iter- 
ates. For all models that we fit to the earnings data, there is 
no indication of serial correlation in the iterates as indicated 
by the sample autocorrelations. From these convergence di- 
agnostics, we conclude that the MCMC sampler performs 
satisfactorily in all cases studied. 

For all models fit to the earnings data, we computed diag- 
nostics (Gelfand, Dey, and Chang 1992) to assess model fit. 
In all cases, normal probability plots of standardized resid- 
uals showed consistency with appropriate fitted models and 
inconsistency with inappropriate fitted models (e.g., station- 
ary restricted models fit to nonstationary data). Details were 
given by Nandram and Petruccelli (1995). 

2.2 Numerical Results 

We consider the effect of pooling on the autoregressive 
parameters, Oi, the precision, Ti, and on the one-step pre- 
dictor of the last observation, i,n+, i = 1,..., m. With this 
object in mind, we study two ratios. The first is the ratio 
of the posterior expectations for each series when only the 
data for the individual series are used versus the case when 
all the series are pooled. 

For pooling under stationarity the ratio is 

RES = E(.Iy, Individual)/E(.ly, Pooled), 

where the expectation in the denominator is taken with 
respect to the stationary restricted model and y = 

(y,..., . y)' the data vector for all m series. We let RENS 
denote the ratio in which the expectation in the denomi- 
nator is taken with respect to the nonstationary restricted 
model. We use the analogous ratios of posterior standard 
deviations, Rss and RNSS, to study the gain in precision 
obtained by using the hierarchical model. 

The second ratio, which for each series compares the 
actual one-step prediction performance of the pooled 
stationary-restricted AR(1) or nonstationary-restricted 
AR(2) to the predictor based on the individual series, is 

RPE -Yi,n+l 
- 

E(yi,n+l y, Individual)J (13) 
lYi,n+l - E(yi,n+lly, Pooled)? 

Finally, we limit our discussion to the unrestricted pooled 
case because our results suggest that for stationary (or non- 
stationary) series the estimated posterior distributions of the 
requisite parameters computed under the unrestricted model 
are nearly indistinguishable from those computed under the 
stationary (nonstationary) model. 

2.2.1 Differenced Logged Earnings Data. For the dif- 
ferenced logged earnings data, the posterior probabilities 
of stationarity, P(Oi E , cly), computed from the MCMC 
sampler with initialization, except for series 6 and series 8 
(posterior probabilities of stationarity .75 and .40, respec- 
tively) are all near 1, and thus the series may be considered 
stationary. 

From columns 2-5 of Table 1, it can be seen that com- 
pared with individual estimation of 0o there is little dif- 
ference in pooled estimation of 0o for all except series 6 
and 8 under the stationarity restriction, but there are large 
differences in estimating 40 for all series under the non- 
stationarity restriction. Similarly, except for series 6, 8, 10, 
and 13, there is little difference in pooled estimation of 41 
compared with individual estimation, but large differences 
in estimating 01 for nearly all series under the nonstation- 
arity restriction. 

Columns 6-9 of Table 1 show substantial improvement 
in the stationary-restricted case when the series are pooled. 
For o0, the unpooled posterior standard deviations range 
from 22% (for series 1, the longest series) to 101% (for 
series 8, one of the shortest series) greater than the pooled 
posterior standard deviations. For q1 there are comparable 
increases. In the nonstationary-restricted case the unpooled 
posterior standard deviations are lower than the pooled pos- 
terior standard deviations for series 10 for both b0 and 01. 

Table 1. Unpooled to Pooled Ratios of Posterior Means and Standard Deviations for Each Series 
for the Autoregressive Coefficients, o0,I1, for the AR(1) Earnings Data 

Means Standard deviations 

Series ROES R 1ES ROENS R 1ENS ROss R 1ss ROsNs R 1SNS 

1 .97 1.00 -8.18 .56 1.22 1.23 1.26 3.27 
2 .95 1.02 -6.51 .65 1.33 1.31 1.51 3.70 
3 .91 1.07 -3.58 .56 1.70 1.76 1.73 2.14 
4 1.04 .86 -7.43 .39 1.54 1.55 1.83 3.03 
5 1.06 .85 -19.32 .37 1.48 1.46 1.98 3.06 
6 .54 1.21 -1.19 .73 1.48 1.48 1.36 1.44 
7 1.10 .84 -10.17 .35 1.71 1.65 1.88 3.12 
8 .35 1.42 -2.72 .91 2.01 2.20 1.45 1.73 
9 1.08 .92 -13.07 .41 1.55 1.52 2.19 3.44 

10 1.40 -.14 22.24 -.04 1.80 1.61 .69 .60 
11 1.27 .78 -13.81 .32 1.72 1.72 1.90 2.31 
12 1.24 .95 -12.62 .47 1.86 1.74 1.90 2.27 
13 1.44 .54 -15.12 .21 1.78 1.66 1.61 1.71 
14 1.07 1.02 -9.15 .57 1.67 1.55 1.67 2.14 

NOTE: The quantities indexed ES denote the ratio E(. IY, Individual)/E( IY, Pooled) under the restriction of stationarity. Those indexed 
ENS denote the same quantities under the restriction of nonstationarity. The ratios indexed SS and SNS denote the corresponding ratios 
of standard deviations. 
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For all other series the increases for b0 are comparable to 
those in the stationary-restricted case, but those for 01 are 
much larger, ranging from 44 to 244%. 

We used these same ratios to study the precisions -T of 
the process. We found that in the stationary-restricted case 
the unpooled posterior mean precisions range from 21% 
smaller to 98% greater than the pooled posterior means. 
The unpooled posterior standard deviations of precision 
range from 5% smaller to 123% greater than the pooled 
posterior standard deviations. On the other hand, for the 
nonstationary-restricted case the unpooled posterior mean 
precisions range from 16% to 190% greater than the pooled 
posterior means, whereas the unpooled posterior standard 
deviations of precision range from 8% smaller to 287% 
greater than the pooled posterior standard deviations. 

Table 2 reveals that pooled prediction is comparable to 
unpooled prediction under the stationarity restriction for 
all series except series 8 and 10. The corresponding pooled 
standard deviations are also comparable to the unpooled. 
For pooled predictors under the nonstationarity restriction, 
the difference is more pronounced, especially for series 10. 
The unpooled standard deviations are anywhere from 14% 
smaller to 48% larger than the pooled standard deviations. 

The models were fit to all but the last observation of 
the series, and that last observation was used as an out- 
of-sample value to evaluate the prediction error ratio RPE 
given by (13). The results show that the unpooled predictor 
performs worse than the pooled predictor on series 1-4, 8, 9, 
12, and 13 with absolute prediction error from 5% to 200% 
larger. On the remaining series the absolute prediction error 
of the unpooled predictor ranges from 9% to 91% smaller. 
This is not surprising in light of the results from Table 2 
that show comparable means and prediction errors for the 
pooled and unpooled cases. 

There is virtually no difference in the estimates and pre- 
dictors for the pooled stationary-restricted model with and 
without initialization. 

Finally, we study the contemporaneous correlations be- 
tween series i and j, 

Pi,j -- {(1 + 1/(7-V)2))(1 + 1/(r7j2))}-1/2. (14) 

Table 2. Unpooled to Pooled Ratios of Posterior Means and Standard 
Deviations for Each Series for the One-Step Predictor, Yi,n+ 1, 

for the AR(1) Earnings Data 

Series RES RENS RSS RSNS 

1 .99 .82 1.00 .91 
2 1.00 .91 1.00 .87 
3 1.02 .83 1.01 1.04 
4 .96 1.07 .99 1.09 
5 .94 .72 .98 1.10 
6 1.07 .87 1.02 .86 
7 .96 .79 .99 1.19 
8 1.30 .95 1.06 1.48 
9 .99 .81 .99 1.08 

10 1.19 2.41 1.08 1.21 
11 .95 .63 .98 1.19 
12 1.01 .66 .98 1.30 
13 .92 .63 .97 1.13 
14 1.04 .88 1.00 1.07 

NOTE: The quantities indexed ES, ENS, SS, and SNS are defined in the note to Table 1. 

For the stationary-restricted model with initialization, the 
pi,j range between .12 and .42. Without initialization, esti- 
mates of the pi,j are very similar. 

2.2.2 Logged Earnings Data. Except for series 10, 
which had posterior probability of stationarity .44, all series 
have near zero posterior probabilities of being stationary. 

From columns 2-7 of Table 3, we see that, with the 
exception of series 10, the overall difference for the 
stationary-restricted pooled estimators of b0 relative to 
the unpooled estimators is much greater than that for the 
nonstationary-restricted case. For 01, the difference is less 
for all series. Except for series 11, 12, and 14, the difference 
in estimating 02 is smaller for the nonstationary-restricted 
estimators. 

Columns 8-13 of Table 3 compare the pooled and 
unpooled standard deviations. We note that for virtu- 
ally all series there are large gains from pooling for the 
nonstationary-restricted case. There are larger increases in 
standard deviations of the pooled to the unpooled series for 
the stationary-restricted case. 

Analyzing the precisions, we found that the nonstationary- 
restricted AR(2) model is on average more precise for the 
pooled than for the unpooled case except for series 6. This is 
the reverse of what happens with the stationary-restricted 
AR(2) for all but series 5 and 10. With the exception of 
series 5 and 10, pooling reduces the standard deviation 
of T-. 

As for prediction, Table 4 shows that there is surprisingly 
little difference in predicting yi,n+l. For the stationary- 
restricted case, the standard errors of prediction are vir- 
tually identical for the pooled and unpooled cases. For the 
nonstationary case, there are small to moderate gains from 
pooling for 7 of the 14 series. Notice that the two longest 
series, series 1 and 2, show losses of 17% and 24%. 

The RPE ratios for the AR(2) series reveal much the 
same mixed performance in actual one-step prediction as 
was seen in the AR(1) model. 

We compare the estimates and predictors for the pooled 
nonstationary-restricted model with and without initializa- 
tion. In contrast to the AR(1) case, there are large differ- 
ences in estimates. For 00, the ratios of the estimates from 
the model with initialization to those without initialization 
range from .63 for series 5 to 11.2 for series 10. For q1, 
the range is .99 to 1.18 and for L2 the range is from .86 
for series 4 to 38.6 for series 13. The ratios of the standard 
deviations are in general much larger than 1, with ratios of 
1.089-1.665, 1.121-1.702, and 1.122-1.705 for 0o, 41, and 
b2, respectively. Surprisingly, the one-step-ahead predictors 

are extremely close to the actual observations for all series, 
both with and without initialization (for series 14, for ex- 
ample, the actual value is 1.792, but the predictor with ini- 
tialization is 1.808 and the predictor without initialization is 
1.815). The range of ratios of predictors with initialization 
to those without initialization is .996-1.002. Much differ- 
ent behavior is exhibited by the standard deviations of the 
predictors whose ratios range from 1.12 to 2.82. The fact 
that these increases in standard deviations did not occur for 
the AR(1) model fit to stationary series suggests that there 
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Table 3. Unpooled to Pooled Ratios of Posterior Means and Standard Deviations for Each Series 
for the Autoregressive Coefficients 0o,?1,02 for the AR(2) Earnings Data 

Means Standard deviations 

Series ROES R 1ES R2ES ROENS R iENS R2ENS ROss R iss R2sS ROsNs R lsNS R2sNS 

1 .32 1.04 1.09 .97 1.01 1.03 1.46 1.05 1.04 1.39 1.33 1.32 
2 .30 1.04 1.07 .89 1.01 1.02 1.25 .96 .96 1.28 1.25 1.25 
3 -1.22 .77 .25 1.15 .98 .81 1.94 1.59 1.71 1.37 1.62 1.60 
4 -.98 .68 -.11 1.20 .86 -.48 2.50 1.69 1.83 1.44 1.57 1.57 
5 .32 .93 .72 1.62 .99 .98 1.77 1.33 1.36 1.58 1.56 1.55 
6 -.60 .84 .57 1.03 1.05 1.21 1.23 1.57 1.63 .96 1.28 1.27 
7 -1.27 .61 -.47 1.16 .91 1.88 2.23 1.48 1.60 1.40 1.52 1.51 
8 -4.72 .86 .50 1.71 1.00 .90 5.26 2.91 3.44 1.87 1.83 1.91 
9 .30 .70 .03 1.18 .96 .22 1.16 1.27 1.32 1.31 1.42 1.42 

10 .83 .86 -.12 -35.03 .85 -.21 2.65 1.65 1.73 2.34 1.75 1.75 
11 -1.28 .52 -.72 1.21 .80 2.49 2.02 1.50 1.63 1.28 1.49 1.48 
12 -.67 .58 -.27 1.30 .88 7.87 1.81 1.76 1.86 1.25 1.47 1.46 
13 -.33 .77 .02 .82 .94 .12 2.57 1.59 1.68 1.71 1.65 1.63 
14 -2.47 .37 -.82 1.58 .64 3.32 2.80 2.39 2.66 1.42 1.50 1.50 

NOTE: The quantities indexed ES, ENS, SS, and SNS are defined in the note to Table 1. 

are difficulties involved in estimation and prediction when 
initialization is used for nonstationary series. 

Finally, we note that the contemporaneous correlations 
between series i and j, given by (14) are much smaller than 
those seen in the AR(1) model, ranging from .012 to .108 
with initialization and from .041 to .144 without initializa- 
tion. 

2.3 A Small Simulation Study 
To further assess the improvement in estimation and fore- 

casting due to pooling, we conducted a small simulation 
study using 10 AR(1) series. We used the model specified by 
(1)-(3) with all parameters fixed except 01 and 02. Specifi- 
cally, we fixed 0o = 1, 7- = 100, i = 1,..., 10, and we took 
the diagonal elements of the 2 x 2 matrix A to be .01 and 
the off-diagonal elements to be .005. We varied 01 at two 
levels, .3 and .8, and 42 at three levels, .00, .01, and .10, cor- 
responding to correlations of .00, .50, and .91, respectively; 
see (14). All 10 series were taken to be of equal length, and 
that length was varied at two levels, 10 and 20. Thus we 
studied 12 examples. 

Table 4. Unpooled to Pooled Ratios of Posterior Means and Standard 
Deviations for Each Series for the One-Step Predictor, yi,n+ 1, 

for the AR(2) Earnings Data 

Series RES RENS Rss RSNS 

1 1.01 1.00 1.00 .83 
2 1.00 1.00 1.00 .76 
3 1.01 1.00 1.00 .79 
4 1.02 1.00 1.00 1.15 
5 1.01 1.00 1.00 1.04 
6 1.01 1.00 1.00 .64 
7 1.03 1.00 1.00 .97 
8 1.02 1.01 1.00 1.16 
9 1.01 1.00 1.00 .85 

10 1.01 .99 1.00 1.46 
11 1.01 1.00 1.00 .82 
12 .99 1.00 1.00 1.01 
13 1.01 1.00 1.00 1.09 
14 1.04 1.01 1.01 1.03 

NOTE: The quantities indexed ES, ENS, SS, and SNS are defined in the note to Table 1. 

For each example we generated the data using (1)-(3). 
We then ran the MCMC sampler in exactly the same way 
as described previously except that we took rio = 60 = 0 
(i.e., an improper prior on the 7-) in (6). 

First we assess the accuracy of estimation and prediction 
using the ratios of the estimated autoregressive parameters 
and one-step-ahead predictors to the true values. We de- 
note the ratios for the unpooled case as Ru and those for 
the pooled case as Rp. For both the pooled and unpooled 
cases, the estimates of 01 tend to be biased downward (i.e., 
Rp, Ru < 1), but the bias disappears for the longer series 
and the larger value of 01. For the short series, variability of 
Rp and Ru increases with 02. There are a few extremely 
low outliers in the unpooled case for series of length 20, 
and 01 = .8. There are also outliers in the pooled case, 
but they are far less extreme. The situation for bo is just 
the reverse, with upward bias and extremely high outliers 
in the unpooled case for series of length 20 and 01 = .8. 
The ratios in the pooled case exhibit much less variability, 
however, than in the unpooled case for series length 10 and 
01 = .8. The accuracy of pooled and individual one-step- 
ahead predictors is comparable for all 12 examples. For the 
short series, there is upward bias that increases with 02, 
whereas for the long series there is downward bias that in- 
creases with 02 

We assess the performance of pooled versus individual 
estimators and one-step-ahead predictors by using two ra- 
tios, RE, the ratio of the posterior expectations for the indi- 
vidual versus the pooled, and Rs, the ratio of the posterior 
standard deviations for the individual versus the pooled. 
For 01 = .3, RE r 1 for both series lengths and all values 
of 402 for both autoregressive parameters and the one-step- 
ahead predictors. For both estimation and prediction, there 
are large gains in precision when the series are pooled, and 
these gains increase with 02. For example, for series of 
length 10 with 02 = .01, Rs for q0 ranges between 1.07 
and 2.03 and Rs for one-step-ahead prediction ranges be- 
tween 1.02 and 1.76, whereas for 02 = .1, Rs for qo0 ranges 
between 1.47 and 2.44 and Rs for one-step-ahead predic- 
tion ranges between 1.26 and 1.94. The gains are less for 
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the longer series; for example, for series length 20 and 
-12 = .1, RS for 0O ranges between 1.19 and 1.87 and Rs for 

one-step-ahead prediction ranges between 1.06 and 1.46. 
For 01 = .8 and series of length 20, RE 1 for q0. 

For series of length 10, however, RE is far more variable, 
and this variability increases with 0b2. For 01 and the one- 
step-ahead predictors, RE 1. The behavior of Rs is as 
described for 01 = .3. 

To sum up, we find little difference between unpooled 
and pooled point estimators and predictors for all examples 
and substantial gains in precision from pooling. 

3. CONCLUSIONS 

We have presented a summary of our methodology for 
estimation and forecasting any number of commensurate 
time series of possibly different lengths. 

By using a hierarchical Bayesian model, we have accom- 
plished four main tasks. First, we have shown that it is 
feasible to use sampling-based methods to analyze station- 
ary or nonstationary autoregressive time series panel data. 
Second, we have obtained estimates and forecasts for non- 
stationary autoregressive series without transforming them 
to stationary ones. Third, by using latent variables for the 
AR(p) model, we have shown that it is feasible to use all 
the data without conditioning on the first p observations 
whether the series are stationary or not. Fourth, we have 
also incorporated contemporaneous correlations among se- 
ries. 

Application of these methods to panel data reveals two 
main findings. First, overall, the benefits of pooling could 
effect substantial improvements in estimation and forecast- 
ing. As expected, relative to inference based on individual 
series, when all the series are pooled there is considerable 
improvement for shorter series with smaller improvement 
in longer series. Second, there are differences in perfor- 
mance when the same series are unrestricted, stationary re- 
stricted, or nonstationary restricted. It is not surprising that 
there is no substantial difference in performance between 
unrestricted and stationary-restricted fits for stationary se- 
ries. On the same note, there is no substantial difference 
in performance between unrestricted and nonstationary- 
restricted fits for nonstationary series. Restricting nonsta- 
tionary series to be stationary (or stationary series to be 
nonstationary), however, results in biased estimators with 
artificially low variances. 
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