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ABSTRACT
As a part of an effective self-exciting threshold autoregressive (SETAR) 
modeling methodology, it is important to identify processes exhibiting SETAR-
type nonlinearity. A number of tests of nonlinearity have been developed in 
the literature. However, it has recently been shown that all these tests perform 
poorly for SETAR-type nonlinearity detection in the presence of additive out-
liers. In this paper, we develop an improved test for SETAR-type nonlinearity 
in time series. The test is an outlier-robust test based on the cumulative sums 
of ordered weighted residuals from generalized maximum likelihood fi ts. A 
Monte Carlo study confi rms that the proposed test is competitive with existing 
tests for data from uncontaminated SETAR models and superior to them for 
SETAR data contaminated with additive outliers. Copyright © 2008 John 
Wiley & Sons, Ltd.
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INTRODUCTION

A number of tests of time series nonlinearity have been developed in the literature, including those 
of Petruccelli and Davies (1986), Petruccelli (1990), Tsay (1986, 1989), Luukkonen et al. (1988), 
and Chan and Tong (1986, 1990). Chan and Ng (2004) have recently shown that all these tests 
perform poorly for self-exciting threshold autoregressive (SETAR)-type nonlinearity detection in 
the presence of additive outliers. Indeed, outliers may be responsible in at least some instances for 
apparent nonlinearity in time series data. Balke and Fomby (1994) give some examples in this sense 
using real economic data.

In this paper we propose a test for SETAR-type nonlinearity in time series which is robust 
against outliers. The proposed test, which we call CUSUM-GM, is a robust version of a modifi ed 
Petruccelli–Davies (1986) test based on the cumulative sums of ordered weighted residuals from 
generalized maximum likelihood (GM) fi ts.
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Because the exact and asymptotic distributions of the CUSUM-GM test statistics are intractable, 
resampling is used to obtain the p-value for the test. Monte Carlo simulations show that, unlike the 
fi ve tests considered by Chan and Ng, the CUSUM-GM test maintains its size in the presence of 
additive outliers.

BACKGROUND

This section details models and notation used in this paper.
The AR(p) model is defi ned as

 x x t p Tt l t l
l

p

t= + + = +−
=
∑φ φ0

1

1� , , ,…  (1)

where the �t are i.i.d. N(0,s 2
�) errors.

A straightforward extension of AR models is the class of AR-type nonlinear models defi ned as

 x f x x xt t t t p t= ( ) +− − −1 2, , ,… �  (2)

where f : �p → � and �t are i.i.d. N(0, s 2
�) errors. We will refer to model (2) as GAR(p), for general-

ized AR(p).
A special case of the GAR(p) model is the SETAR(d; p1, p2,  .  .  .  , pk) model, defi ned by

 x x x r rt
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for j = 1, 2,  .  .  .  , k. The thresholds, ri, satisfy −∞ = r0 < r1 < … < rk = ∞, d, k and p1, p2,  .  .  .  , pk are 
positive integers, and �t are i.i.d. N(0,s 2

�) random variables with s 2
� < ∞. We say that the process is 

in the jth regime when rj−1 < xt−d ≤ rj.
We say that yt is a GAR(p) time series with additive outliers (AO) if yt satisfi es

 y x v t Tt t t= + ≤ ≤, 1  (4)

where xt is as defi ned in (2) and the vt are independent random variables, independent of the sequence 
xt and having the mixture density (1 − g)d0(·) + g p, where 0 ≤ g ≤ 1, d0(·) is a degenerate density at 
0, and p follows a N(0,w2s 2

�). g represents the proportion of contamination in the time series. In 
general, it is assumed that g is small (g ≤ 0.1) because it appears that outliers in time series are 
present only a small fraction of the time (Denby and Martin, 1979).

We say that yt is a GAR(p) time series with innovational outliers (IO) if yt satisfi es

 y x t Tt t= ≤ ≤, 1  (5)

where xt is as defi ned in (2) and the �t are i.i.d. with density gp1 + (1 − g)p2, where p1 and p2 are 
independent with p1 ∼ N(0, s 2

�), and p2 ∼ N(0, ∆2s 2
�).

GM ESTIMATION

Throughout this section, we will assume the data follow the AR(p) model given by (1). This can be 
written in the obvious vector notation as
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 x t p Tt t t= ′ + = +−x 1 1f � , , ,…  (6)

The GM estimator for an AR(p) model can be defi ned as the solution of the minimization 
problem

 min
φ

ρW x xt t t
t p

T

− −
= +

( ) − ′( )∑ 1 1
1

x f  (7)

where r(·) is a symmetric robustifying loss function, and W(·) is a non-negative symmetric robustify-
ing weight function (Denby and Martin, 1979).

If r is differentiable, with derivative y, f̂GM is the solution of the system of equations
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Following Beaton and Tukey (1974), we express (8) in terms of the weight function, w(u) = y(u)/u, 
as

 w e W x xt t t t t
t p

T

( ) ( ) − ′( ) =− − −
= +
∑ x x1 1 1

1

0f̂GM  (9)

where et = xt − x′t−1f̂GM for t = p + 1,  .  .  .  , T are the residuals.
Equation (9) can be solved by the iteratively reweighted least squares (IRLS) method as 

follows:

1. Get an initial estimate of f, say f̂ 0, usually by ordinary least squares.
2. Given f̂ 0, compute the initial weights as
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where e0
t  = xt − x′t−1f̂ 0, for t = p + 1,  .  .  .  , T.

3. For j = 0 to convergence do the following:
• obtain the weighted LS estimator f̂ j+1 by regressing xt on xt−1 with weights W(xt−1)w(e j

t );
• compute the residuals et

j+1 = xt − x′t−1f̂ j+1, for t = p + 1,  .  .  .  , T.

Convergence can be defi ned in a number of ways: relative change in the estimates; relative change 
in the scaled residuals; relative change in weights; preselected number of steps.

A number of infl uence functions have been proposed. Two of the most commonly used are those 
from the Huber family (H) and from the bisquare family (B). The Huber family is defi ned by

 ψ H c u uI u c cI u c, ( ) = ≤( ) + >( )  (10)

and the bisquare family by

 ψ B c u u u c I u c, ( ) = −( ) ≤( )1 2 2 2  (11)

where I(·) is an indicator function, and c > 0.
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An effective strategy for obtaining a GM estimate is as follows: the initial estimate is computed 
by using least squares estimation; then the GM estimate based on the Huber infl uence function 
(the GM-H estimate) is computed by the IRLS method described above; the corresponding GM-H 
estimate is used as a starting point for computing the GM estimate based on the bisquare infl uence 
function (the GM-B estimate), again using the IRLS method. The use of the Huber infl uence func-
tion ensures that a unique root of equation (9) is obtained and the choice of the bisquare infl uence 
function leads to a more robust estimator in the case of AO model (Denby and Martin, 1979).

M estimation is GM estimation done with W(·) ≡ 1. Denby and Martin (1979) show that the M 
estimator is robust to IO outliers, but not to AO outliers. In fact, they show that M estimators can 
have asymptotic bias nearly as large as least squares estimators in the AO case. They also show that 
GM estimation is successful in reducing asymptotic bias when the data are contaminated with 
additive outliers.

The proposed test, which will be fully described in the next section, is based on the residuals 
obtained from the GM fi t. In order to obtain the GM estimates, we need to defi ne the W(·) and y(·) 
functions. Following Denby and Martin (1979), we take

 ψ ψu c s
u

c s
r r

r r

( ) = 



0  (12)

and generalizing their choice for a zero-mean AR(1), we defi ne the weight function W(·) by
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where Mx is a robust estimate of location for xt, sx and sr are robust estimates of scale for xt and �t 
respectively, and g0, y0 are infl uence functions. In our application Mx = median(xi) and

 s x Mx i x= −( )median 0 6745.  (14)

are computed only once, while sr is obtained from the residuals (ei) at each step of the IRLS proce-
dure, using the formula

 s e er i i= − ( )( )median median 0 6745.  (15)

We also choose g0 = y0 to be either the Huber or bisquare infl uence function, and denote the 
resulting estimators GM-H and GM-B. For the GM-H estimator, we will take cx = cH,x = 1 for g0 and 
cr = cH,r = 1.5 for y0. For the GM-B estimator, we will take c is defi ned as cx = cB,x = 3.9 for g0 and 
cr = cB,r = 1.5 for y0. These parameters are chosen to get 95% asymptotic effi ciency on the standard 
normal and non-normal distributions simultaneously.

The GM-B estimator is preferred to the GM-H estimator because of its superiority in the AO 
model along with its reasonable robustness in the IO model (Denby and Martin, 1979). This leads 
us to choose GM-B estimation for the proposed test. Using equation (8), we compute the GM-B 
estimator as follows: we get an initial estimate by using ordinary least squares; then we compute the 
GM estimator based on the Huber infl uence function (the GM-H estimate) by choosing g0(·) = yo(·) 
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= yH (·); then the GM-H estimate is used as a starting point for GM-B estimation for which g0(·) = 
yo(·) = yB(·). For our computations, we consider that the convergence is obtained when the relative 
change in the parameter estimates is less than 10−4.

CUSUM-GM TEST FOR SETAR-TYPE NONLINEARITY

In order to obtain a robust test for SETAR-type nonlinearity, we apply GM estimation to the ordered 
autoregression defi ning the CUSUM test of Petruccelli and Davies (1986).

The proposed CUSUM-GM test statistic is given by

 Z
A T p

Z T=
−

( )
≤ ≤

( )sup
0 1

1

λ
λCGM  (16)

where T is the number of observation in the time series, A is defi ned as

 t p
T

t t tW x
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−
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2
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where f̂GM is the GM estimate defi ned in (7).
Note that we use the ordinary residuals rather than the predictive residuals used in Petruccelli 

and Davies (1986). This is because in the absence of recursive updating operations the amount of 
computation involved in trying to assess the performance of the test through Monte Carlo simula-
tions is prohibitive.

Because the exact and asymptotic distributions of Z under the assumption of linearity are intrac-
table, we use resampling to obtain a p-value.

The algorithm is as follows:

1. Compute f̂GM and ŝ�, where ŝ� is calculated using (15).
2. Compute the CUSUM-GM test statistic Z*.
3. For j = 1 to 1000:

(i) generate an AR(p) ∼ f̂GM, ŝ�, T;
(ii) compute the CUSUM-GM statistic Z*

j.
4. Compute the empirical p-value as the proportion of Z*

j ≥ Z*.

An R program for computing the test is available from the authors upon request.

SIMULATION RESULTS

A Monte Carlo simulation study was conducted to evaluate the performance of the CUSUM-GM 
test on simulated data and compare that performance with corresponding published results for fi ve 
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other nonlinearity tests: C-PD, the CUSUM test of Petruccelli and Davies (1986); RC, the reverse 
CUSUM test of Petruccelli (1990); F, the F test of Tsay (1989); LM, the Lagrange multiplier test 
of Luukkonen et al. (1988); and LR, the likelihood ratio test of Chan and Tong (1986). Chan and 
Ng (2004) provide a good description of these tests.

The simulation results for all but the CUSUM-GM test were obtained from Chan and Ng (2004), 
and are reproduced here for comparison. The model parameters for the CUSUM-GM test were 
chosen to match those simulations done by Chan and Ng. Namely, all were from a SETAR(1;1,1) 
with r1 = 0 and f 1

(1) = 0.5, and the effect of varying f 1
(2) = 0.5, 0.8, −0.3 and f 0

(1) = f 0
(2) = 0, 1 were 

considered.
All of the simulations were based on 1000 replications of the AO or IO model with g = 0.05, and 

s 2
� = 1. Sample sizes T = 100 and 200 were used. The fi rst 1500 observations in each replication 

were discarded to avoid dependence on the initial value, which was set to zero. The outlier magni-
tudes considered were w = 0, 3, 6, 10 for the AO model and ∆ = 1, 3, 6, 10 for the IO model. It 
should be noted that w = 0 under AO and ∆ = 1 under IO correspond to the no-outlier case. We 
assumed that p = 1 and d = 1 are known. We compared the tests both in terms of size and power 
when the level of signifi cance is fi xed at a nominal α = 0.05. The results, displayed in Tables I–IV, 
show the following.

Table I. The empirical frequencies of rejecting the null hypothesis of linearity at the nominal 5% level, additive 
outlier case; sample size T = 100

Parameters Tests for SETAR-type nonlinearity

f 0 
(1) f 1(1) f 0(2) f 1(2) w C-GM C-PD RC LR LM F

0.0 0.5 0.0 0.5  0 0.038 0.041 0.013 0.056 0.033 0.043
 3 0.069 0.160 0.034 0.129 0.212 0.162
 6 0.081 0.289 0.083 0.231 0.333 0.275
10 0.059 0.372 0.126 0.222 0.268 0.246

1.0 0.5 1.0 0.5  0 0.036 0.032 0.013 0.047 0.039 0.036
 3 0.061 0.163 0.044 0.154 0.247 0.182
 6 0.066 0.295 0.086 0.260 0.349 0.293
10 0.064 0.365 0.116 0.215 0.263 0.242

0.0 0.5 0.0 0.8  0 0.111 0.093 0.039 0.119 0.106 0.095
 3 0.093 0.328 0.130 0.318 0.460 0.298
 6 0.107 0.545 0.267 0.561 0.693 0.530
10 0.119 0.580 0.319 0.512 0.582 0.505

1.0 0.5 1.0 0.8  0 0.057 0.043 0.020 0.059 0.048 0.039
 3 0.058 0.276 0.099 0.286 0.477 0.307
 6 0.092 0.569 0.323 0.646 0.791 0.688
10 0.048 0.659 0.402 0.665 0.754 0.723

0.0 0.5 0.0 −0.3  0 0.270 0.157 0.280 0.466 0.471 0.430
 3 0.252 0.127 0.172 0.284 0.253 0.309
 6 0.261 0.162 0.089 0.160 0.144 0.204
10 0.282 0.245 0.075 0.105 0.101 0.162

1.0 0.5 1.0 −0.3  0 0.175 0.338 0.205 0.341 0.381 0.393
 3 0.180 0.166 0.102 0.210 0.188 0.202
 6 0.158 0.123 0.116 0.141 0.118 0.153
10 0.181 0.142 0.102 0.071 0.077 0.102
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Outlier-free case
There is no test unacceptable for size in this case. The power of C-GM is comparable with that of 
the best of the other tests for f 1

(1) = 0.5, f 1
(2)  = 0.8. For f 0

(1) = 0.0, f 1
(1) = 0.5, f 0

(2) = 0.0, f 1
(2) = −0.3, 

it performs comparably with RC and outperforms only C-PD. For f 0
(1) = 1.0, f 1

(1) = 0.5, f 0
(2) = 1.0, 

f 1
(2) = −0.3, it either performs worst (T = 200), or tied for worst (T = 100).

Additive outlier case
C-GM maintains an acceptable size for all w. Tests C-PD, LR, LM, and F perform unacceptably 
due to loss of size for w > 0. RC maintains size better, but performs unacceptably for T = 100, 
w = 10, and for T = 200, w ≥ 6. For the four nonlinear parameter sets, the power of C-GM is 
largely unaffected by w values, in marked contrast to the other tests. For f 1

(1) = 0.5, f 1
(2) = 0.8, 

the power of C-GM is much lower than that of the other tests, whereas for f 1
(1) = 0.5, f 1

(1) = −0.3, 
the power of C-GM is comparable to or better than that of the other tests. Further, it should be 
noted that the low power of the test for f 1

(1) = 0.5, f 1
(2) = 0.8 is expected because the series is 

essentially linear for this confi guration since the proportion of time spent in the fi rst regime 
is negligible.

Table II. The empirical frequencies of rejecting the null hypothesis of linearity at the nominal 5% level, additive 
outlier case; sample size T = 200

Parameters Tests for SETAR-type nonlinearity

f 0 
(1) f 1(1) f 0(2) f 1(2) w C-GM C-PD RC LR LM F

0.0 0.5 0.0 0.5 0 0.043 0.028 0.013 0.044 0.026 0.033
3 0.063 0.334 0.100 0.259 0.477 0.346
6 0.076 0.634 0.233 0.532 0.658 0.647

10 0.055 0.576 0.243 0.415 0.394 0.476
1.0 0.5 1.0 0.5 0 0.044 0.025 0.010 0.039 0.031 0.029

3 0.044 0.330 0.083 0.253 0.496 0.363
6 0.063 0.610 0.227 0.539 0.652 0.619

10 0.065 0.597 0.251 0.420 0.405 0.498
0.0 0.5 0.0 0.8 0 0.188 0.143 0.121 0.209 0.207 0.204

3 0.173 0.601 0.302 0.507 0.745 0.546
6 0.178 0.857 0.590 0.864 0.932 0.874

10 0.200 0.848 0.643 0.838 0.796 0.844
1.0 0.5 1.0 0.8 0 0.036 0.042 0.018 0.057 0.048 0.040

3 0.060 0.455 0.184 0.435 0.703 0.515
6 0.085 0.825 0.590 0.884 0.971 0.930

10 0.065 0.911 0.741 0.937 0.937 0.964
0.0 0.5 0.0 −0.3 0 0.530 0.299 0.495 0.771 0.796 0.765

3 0.496 0.218 0.321 0.517 0.427 0.567
6 0.482 0.352 0.146 0.315 0.181 0.429

10 0.482 0.358 0.082 0.153 0.110 0.249
1.0 0.5 1.0 −0.3 0 0.396 0.655 0.490 0.636 0.722 0.731

3 0.325 0.217 0.232 0.330 0.271 0.376
6 0.309 0.100 0.113 0.141 0.087 0.171

10 0.324 0.100 0.078 0.076 0.069 0.112
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Table III. The empirical frequencies of rejecting the null hypothesis of linearity at the nominal 5% level, 
innovational outlier case; sample size T = 100 

Parameters Tests for SETAR-type nonlinearity

f 0 
(1) f 1(1) f 0(2) f 1(2) ∆ C-GM C-PD RC LR LM F

0.0 0.5 0.0 0.5 1 0.057 0.036 0.014 0.046 0.032 0.037
3 0.069 0.034 0.015 0.035 0.030 0.035
6 0.062 0.059 0.032 0.038 0.035 0.052

10 0.069 0.153 0.040 0.037 0.041 0.073
1.0 0.5 1.0 0.5 1 0.054 0.034 0.009 0.045 0.035 0.034

3 0.046 0.036 0.009 0.043 0.034 0.033
6 0.072 0.057 0.024 0.039 0.038 0.049

10 0.062 0.128 0.053 0.039 0.040 0.069
0.0 0.5 0.0 0.8 1 0.110 0.087 0.033 0.099 0.102 0.088

3 0.116 0.089 0.049 0.107 0.098 0.113
6 0.146 0.096 0.055 0.095 0.105 0.133

10 0.147 0.162 0.077 0.099 0.087 0.146
1.0 0.5 1.0 0.8 1 0.061 0.023 0.008 0.044 0.043 0.026

3 0.068 0.023 0.014 0.039 0.038 0.035
6 0.067 0.052 0.032 0.055 0.056 0.067

10 0.074 0.165 0.049 0.074 0.081 0.110
0.0 0.5 0.0 −0.3 1 0.260 0.149 0.243 0.444 0.471 0.429

3 0.269 0.141 0.242 0.444 0.505 0.490
6 0.246 0.126 0.256 0.549 0.598 0.575

10 0.259 0.212 0.244 0.558 0.654 0.626
1.0 0.5 1.0 −0.3 1 0.202 0.366 0.194 0.367 0.411 0.407

3 0.220 0.422 0.287 0.444 0.493 0.512
6 0.249 0.427 0.350 0.533 0.593 0.620

10 0.231 0.435 0.362 0.565 0.646 0.669

Innovational outlier case
C-GM maintains an acceptable size for all ∆, as do all other tests, except for C-PD when ∆ = 10. 
The power of C-GM is comparable to that of the other tests for f 1

(1) = 0.5, f 1
(2) = 0.8. For f 0

(1) = 0.0, 
f 1

(1) = 0.5, f 0
(2) = 0.0, f 1

(2) = −0.3, C-GM outperforms C-PD, and is outperformed by LR, LM, and F. 
For T = 100, it outperforms RC. For T = 200 and ∆ = 3, if performs comparably with RC, while for 
∆ = 6 and 10 it outperforms RC. For f 0

(1) = 1.0, f 1
(1) = 0.5, f 0

(2) = 1.0, f 1
(2) = −0.3, all other tests 

outperform C-GM.
If in model (3) we know that f 0

(j) = 0, j = 1,  .  .  .  , k, then we may improve the power of the C-GM 
test by fi tting AR models without intercepts. Tables V–VIII show the results of a simulation study 
in which the performance of the C-GM statistic is compared with that of C-GM*, the C-GM statistic 
obtained by fi tting AR models without intercepts. In this setting, C-GM* outperforms the other tests 
considered.

CONCLUSION

We have developed a test for nonlinearity in time series based on Cusums of weighted residuals 
from GM autoregressive fi ts. Simulation results show that the test is effective in maintaining the 
nominal signifi cance levels while exhibiting reasonable power in the presence of additive and 
innovational outliers.
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Table IV. The empirical frequencies of rejecting the null hypothesis of linearity at the nominal 5% level, 
innovational outlier case; sample size T = 200 

Parameters Tests for SETAR-type nonlinearity

f 0 
(1) f 1(1) f 0(2) f 1(2) ∆ C-GM C-PD RC LR LM F

0.0 0.5 0.0 0.5 1 0.048 0.039 0.016 0.059 0.038 0.053
3 0.061 0.042 0.015 0.042 0.040 0.038
6 0.053 0.055 0.032 0.038 0.038 0.047

10 0.065 0.064 0.030 0.039 0.050 0.076
1.0 0.5 1.0 0.5 1 0.051 0.044 0.010 0.059 0.048 0.052

3 0.043 0.046 0.011 0.037 0.042 0.041
6 0.063 0.040 0.023 0.048 0.041 0.054

10 0.060 0.057 0.024 0.023 0.044 0.054
0.0 0.5 0.0 0.8 1 0.197 0.197 0.099 0.212 0.252 0.252

3 0.210 0.190 0.121 0.224 0.229 0.260
6 0.230 0.158 0.126 0.196 0.221 0.288

10 0.249 0.169 0.162 0.227 0.274 0.351
1.0 0.5 1.0 0.8 1 0.048 0.034 0.015 0.053 0.048 0.031

3 0.058 0.058 0.010 0.051 0.049 0.054
6 0.055 0.118 0.031 0.068 0.090 0.131

10 0.074 0.231 0.082 0.118 0.146 0.210
0.0 0.5 0.0 −0.3 1 0.533 0.320 0.507 0.770 0.792 0.766

3 0.514 0.309 0.524 0.840 0.851 0.841
6 0.493 0.263 0.451 0.882 0.933 0.914

10 0.506 0.231 0.400 0.905 0.933 0.923
1.0 0.5 1.0 −0.3 1 0.410 0.627 0.502 0.627 0.700 0.710

3 0.443 0.706 0.634 0.779 0.809 0.850
6 0.437 0.756 0.726 0.893 0.931 0.939

10 0.479 0.628 0.635 0.921 0.952 0.954

Table V. The empirical frequencies of rejecting the null hypothesis of linearity at the nominal 5% level, additive 
outlier case; sample size T = 100 

Parameters Tests for SETAR-type nonlinearity

f 0 
(1) f 1(1) f 0(2) f 1(2) w C-GM* C-GM C-PD RC LR LM F

0.0 0.5 0.0 0.5 0 0.052 0.038 0.041 0.013 0.056 0.033 0.043
3 0.056 0.069 0.160 0.034 0.129 0.212 0.162
6 0.056 0.081 0.289 0.083 0.231 0.333 0.275

10 0.052 0.059 0.372 0.126 0.222 0.268 0.246
0.0 0.5 0.0 0.8 0 0.194 0.111 0.093 0.039 0.119 0.106 0.095

3 0.223 0.093 0.328 0.130 0.318 0.460 0.298
6 0.210 0.107 0.545 0.267 0.561 0.693 0.530

10 0.206 0.119 0.580 0.319 0.512 0.582 0.505
0.0 0.5 0.0 −0.3 0 0.644 0.270 0.157 0.280 0.466 0.471 0.430

3 0.580 0.252 0.127 0.172 0.284 0.253 0.309
6 0.534 0.261 0.162 0.089 0.160 0.144 0.204

10 0.551 0.282 0.245 0.075 0.105 0.101 0.162
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Table VI. The empirical frequencies of rejecting the null hypothesis of linearity at the nominal 5% level, 
additive outlier case; sample size T = 200 

Parameters Tests for SETAR-type nonlinearity

f 0 
(1) f 1(1) f 0(2) f 1(2) w C-GM* C-GM C-PD RC LR LM F

0.0 0.5 0.0 0.5 0 0.050 0.043 0.028 0.013 0.044 0.026 0.033
3 0.050 0.063 0.334 0.100 0.259 0.477 0.346
6 0.058 0.076 0.634 0.233 0.532 0.658 0.647

10 0.051 0.055 0.576 0.243 0.415 0.394 0.476
0.0 0.5 0.0 0.8 0 0.377 0.188 0.143 0.121 0.209 0.207 0.204

3 0.416 0.173 0.601 0.302 0.507 0.745 0.546
6 0.408 0.178 0.857 0.590 0.864 0.932 0.874

10 0.376 0.200 0.848 0.643 0.838 0.796 0.844
0.0 0.5 0.0 −0.3 0 0.968 0.530 0.299 0.495 0.771 0.796 0.765

3 0.926 0.496 0.218 0.321 0.517 0.427 0.567
6 0.933 0.482 0.352 0.146 0.315 0.181 0.429

10 0.915 0.482 0.358 0.082 0.153 0.110 0.249

Table VII. The empirical frequencies of rejecting the null hypothesis of linearity at the nominal 5% level, 
innovational outlier case; sample size T = 100 

Parameters Tests for SETAR-type nonlinearity

f 0 
(1) f 1(1) f 0(2) f 1(2) ∆ C-GM* C-GM C-PD RC LR LM F

0.0 0.5 0.0 0.5 1 0.056 0.057 0.036 0.014 0.046 0.032 0.037
3 0.064 0.069 0.034 0.015 0.035 0.030 0.035
6 0.055 0.062 0.059 0.032 0.038 0.035 0.052

10 0.046 0.069 0.153 0.040 0.037 0.041 0.073
0.0 0.5 0.0 0.8 1 0.178 0.110 0.087 0.033 0.099 0.102 0.088

3 0.175 0.116 0.089 0.049 0.107 0.098 0.113
6 0.217 0.146 0.096 0.055 0.095 0.105 0.133

10 0.232 0.147 0.162 0.077 0.099 0.087 0.146
0.0 0.5 0.0 −0.3 1 0.611 0.260 0.149 0.243 0.444 0.471 0.429

3 0.550 0.269 0.141 0.242 0.444 0.505 0.490
6 0.487 0.246 0.126 0.256 0.549 0.598 0.575

10 0.444 0.259 0.212 0.244 0.558 0.654 0.626

Table VIII. The empirical frequencies of rejecting the null hypothesis of linearity at the nominal 5% level, 
innovational outlier case; sample size T = 200 

Parameters Tests for SETAR-type nonlinearity

f 0 
(1) f 1(1) f 0(2) f 1(2) ∆ C-GM* C-GM C-PD RC LR LM F

0.0 0.5 0.0 0.5 1 0.054 0.048 0.039 0.016 0.059 0.038 0.053
3 0.052 0.061 0.042 0.015 0.042 0.040 0.038
6 0.054 0.053 0.055 0.032 0.038 0.038 0.047

10 0.063 0.065 0.064 0.030 0.039 0.050 0.076
0.0 0.5 0.0 0.8 1 0.380 0.197 0.197 0.099 0.212 0.252 0.252

3 0.411 0.210 0.190 0.121 0.224 0.229 0.260
6 0.427 0.230 0.158 0.126 0.196 0.221 0.288

10 0.478 0.249 0.169 0.162 0.227 0.274 0.351
0.0 0.5 0.0 −0.3 1 0.970 0.533 0.320 0.507 0.770 0.792 0.766

3 0.935 0.514 0.309 0.524 0.840 0.851 0.841
6 0.897 0.493 0.263 0.451 0.882 0.933 0.914

10 0.902 0.506 0.231 0.400 0.905 0.933 0.923
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