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ON A CLASS OF THRESHOLD AR(k) PRGCESSES

J.D.PETRUCCELLI and S.W. WOOLFORD

Department of Mathematical Sciences, Worcester Polytechnic Institute, Worcester,
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Abstract

We consider the model

k
Z =2 o(i,)Z,_;+afywhen|Z,_ |, Z . Z,_ ) € R,

i=1 -2

where {R(j); 1 < j < ¢} is a partition of le, and foreachl < j < Q,{a,(]'); t>0}
are i.i.d. zero-mean random variables, having a strictly positive density. Sufficient
conditions are obtained for this process to be transient. In addition, for a particular
class of such models, necessary and sufficient conditions for ergodicity are ob-
tained. Least-squares estimators of the parameters are obtained and are, under mild
regularity conditions, shown to be strongly consistent and asymptotically normal.
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1. Introduction

The framework for the study of self-exciting threshold autoregressive (SETAR)
processes was established in Tong and Lim [8]. The usefulness of these nonlinear
time series models was further discussed in Tong [7], while an application of a SETAR
model to the Canadian lynx data was discussed in Lim and Tong [3]. In recent papers
(see Petruccelli and Woolford [6] and Chan et al. [2]), necessary and sufficient
conditions for the ergodicity of the SETAR(2; 1. 1) and the SETAR(k; 1,...,1) were
established. In particular, it was shown that these simplest of SETAR models were
ergodic over a surprisingly broad set of parameter values.
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This paper deals with a generalization of the SETAR(Y; k, . . . , k) model as
defined in Tong and Lim [8]. In particular, we suppose there is an mteger 2 and a
parntlon{R(])} , of R¥ Jie.

Q
R(NHC RS I<j<SH REONRG) =6, 1<i#j<R ; u R(j)=R¥,

such that our model is, for ¢ > 0,

k
= 2. 6GNZ,_, + a,(j) if [Z,_,, Z,_,.....Z,_]' €R(). (1.1)

i=1

Here, {¢(i, j); 1 < i< k,1 < j < 2} are real constants, and for each 1 < i<y
{a,(j); t > 0} is a sequence of mdependent identically distributed (i.i.d.) random
variables, each having a strictly positive density f;(+) on R and zero mean. Addition-
ally, we assume {a,(i); t > 0} is independent of{a,(]) t=>0hifl<i#j< L

It will be convenient to regard (1.1) as a vector-valued Markov chain with state
space R¥. Thus, we define

z;=12,2,_,,....2,_,, 1, t>0
A7) = [a(),0,...,0], t>0
[ 01, 9@, )...0Gk=1,1) 1ok )]
L0
(k=1) X (k- 1) !
I ;0

Then (1.1) is equivalent to the k-dimensional Markov chain

Q
= > {ez,_, + 4D} 1,2 ). (12)
j=1

where I, () is the indicator function of the set A.
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We note here that the class of SETAR(X; k&, . . . , k) models is obtained from
models (1.1) and (12) by taking R(j) = R*™' X (r;_,, r] X R¥"¥ for some
I<d<k,and - =p,<r <...<rg=o.

In sect. 2, we consider some general results for models (1.2) and establish
the status sets for {Z,} (see Tweedie [9]). In sect. 3, we consider a particular class
of models of the form (1.2) and give necessary and sufficient conditions on the
matrices {®(j); 1 < j < 2} for models in this class to be ergodic. A consequence
of this work is a simple (and, we believe, new) proof of the conditions for ergodicity
of an AR(k) process.

Under the assumptions of ergodicity of {Z,} and finiteness of 02 (j) = E(a,(j)?),
1 < j < R, we establish the strong consistency of the least-squares estimators for
{03, )1 <i<k 1<j< 2} and {0*(j); 1 <j < 2} in sect. 4. In addition, a
central limit theorem is shown to hold for the estimators of {(¢(i, j); 1 < i < k,
1 < j < 2} Finally, in sect. 5, we give some concluding remarks.

2. Preliminaries

The transition density for the process (1.2) is

k-1 Q k
pee) = [110, = x,.) 2 (@50, = 2 061x, 1)) @D

j:l i=1

where

L La—
AR S S I A LA R N L

Using the definitions of Orey [5], we also note that {Z,, ¢t > 0} is p-irreducible and
aperiodic for u taken to be the product Lebesque measure on R¥. As in Chan et al.
[2], the transition law P(x, +) corresponding to (2.1) is not in general strongly con-
tinuous (see Tweedie [9]). Moreover, lemma 2.1 in the paper by Chan et al. [2] can
not be used to here establish that the relatively compact sets of positive Lebesque
measure in R¥ are status sets (Tweedie [9]), a result that will be used in proving the
ergodicity conditions in sect. 3.

However, as the following lemma shows, we obtain the desired result for the
relatively compact sets if we assume lower semicontinuity of the densities { f,-(-);
1<j<eh:

LEMMA 2.1

If f;(+) is lower semicontinuous for each 1 < j < &, then the relatively com-
pact sets of positive measure in [R¥ are status sets for {Z }
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Proof
From (2.1) we have, for 4 € ¥ (the Borel sets in R¥):

Q

Pl A) = 3 Iy () /f(u — S 66y,
j=1 i=1
l

where A, ={y: [y, x,, x,_,,...,x,] € A}.Now

p(x,A) = / ]glm filw - Z ¢, j)x, _;, ) du = p(x, A), say.

i=1
Al

By proposition 5.5 of Tweedie [9], the result will follow if

/ p(x,dp)g(y)
le

is lower semicontinuous in x, whenever g(-) is a bounded lower semicontinuous
function.

Since fi(' ) is lower semicontinuous, a
k
[ =3 66 D%, )
i=1

and hence

min f(u = Zﬁb(l Dxe i)

1<j< i=1

is lower semicontinuous in x = [x,, .. . ,xl] . Fatou’s lemma then implies, for any
A B,

lim p(x,4) > p(x,, A),

X—’Xo

which shows 'E( , A) to be lower semicontinuous. For g(-) bounded and lower semi-
continuous on R" take g () to be an increasing sequence of simple functions on
R¥ which converge a.e. to g( )- Then
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lim /?J'(x.y)g(y)dy> lim lﬁ(x.y)g,,(y)dy
k

> / p(xy ¥)e,(¥)dy. 22)
Rk
Since (2.2) holds for all n, the result follows. O

In view of lemma 2.1, we shall assume throughout the rest of this paper that
f;(+ ) is lower semicontinuous foreachl <j< &

Using lemma 2.1 above and theorem 9.1(]) of Tweedie [9] with
g(x) = lxl = ((x, x)'/? (where (-,-) is the usual inner product on the complex
vector space C¥), one obtains that {Z,} is ergodic if the maximum eigenvalue of
®(j) ®(j)is less than 1, for 1 < j < . In fact, Tong and Lim [8] state this sufficient
condition. However, this condition is vacuous since it is easy to show that the largest
eigenvalue of ®(j) ®(j)is at least 1. This fact is alluded to in Tong [7].

General conditions which ensure the ergodicity of {Z,} for model (1.2) seem
to be difficult to obtain. However, in the next theorem we establish sufficient condi-

. tions for {Z,} to be transient.

THEOREM 2.1

If the smallest eigenvalue of ®(j) ®(j) exceeds 1 for all 1 < j < &, then
{Z,} is transient.

Proof

We first note that A(j), the smallest eigenvalue of ®(j)' ® (), satisfies
A() = min (®()x, ®()x) = min [D()x)?.
1% = 1 Ixl =1
For Z,_, € R(j),
Ie(HZ,_ I = hA,(DIl < 1Z ) < 19(HZ,_ I + A4, G,

which implies that

19()Z,_,I - EQA,(D) < E(IZ)1Z,_))

< 1e(NZ,_, 1 + EAQA, (D).
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Hence
E( [IZtII —E(IthII IZt_ 1)"21-1) < 2E(IlAt(i)|l) <K < oo,

for some constant K independent of j. Now let 1 < 1 < min, <i<9?\(j)1/2. Then
there is an M, > O such that | Z,_, | > M, implies

E(I1Z11Z,_)) > nlZ,_,I.

1

But by Markov’s inequality
PUZN <27+ DIZ,_ 11Z,_ ) < 2K/m-DIZ,_, .

From this point, the proof follows that of lemma 2.2 of Petruccelli and Woolford [6],
to show that P(| Z,| = «|Z,) > 0. O

3. A specific class of models

The condition for models to belong to the class of models we are considering
in this section is that all but one of the R(j), 1 <j < 2, be a bounded subset of R. -
Specifically, we will assume throughout this section that there is an M > 0 such that

R-1 :
Y R()C {xe R*: Ix) < M}.
I=

Among models in this class are models having R (j) = {x € R¥: roy S Ixll< ri}, for
I <j< Qwhere0=r,<r <...<ry=o0. These models are natural extensions of
SETAR(R; 1, ..., 1) models, considered in Chan et al. [2].

For models in this class, we obtain necessary and sufficient conditions for
ergodicity in the following theorem.

THEOREM 3.1

The process {Z,}, defined by (1.2) with R(j) a bounded subset of R¥,
1 <j< Q-1,isergodicif and only if

p(®(®) <1,

where p(A) is the spectral radius of 4.

The proof of theorem 3.1 is divided into the following three lemmas:
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LEMMA 3.1

If p(@(®) < 1,then Z, isergodic.

Proof

We begin by noting that to each distinct eigenvalue A(i) of ®(2) there corre-
sponds a unique (up to scalar multiplicity) eigenvector w(i, 1), | < i < m.Here, m
is the number of distinct eigenvalues of ®(f). It is easy to show that for any ¢ > 0
there is a matrix W(c) such that

2AG) "
J, () 0

W)™ @@ W) = J(c) = (3.1)

| 0 T @]

where J;(c) is the same as the Jordan block corresponding to A(i) except for values of
. ¢ (instead of 1) on the superdiagonal.
Equation (3.1) yields a system of equations analogous to those which define
the generalized eigenvectors of ®(R)' (see Noble [4],p.364).In particular, the columns
- of W(c) are independent vectors defined by
@® - N Dw@,j) =cw(j-1), j=2,...,q,
where a is the algebraic multiplicity of A(i).
We now define

m «;

gx) =3 S Kx,w@ijpl, x€RK
i=1 j=1
and take
4 =1{x € R*:lxl < M}

for some M, > M to be determined. Then, for x ¢ 4

L(x) = E(g(Z)IZ,_, =x) < KE(la, (D)) +  Dnax (DI + c] g(x)

1
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forsome 0 < K < o . However,since p(®(2)) < 1, we can choose ¢ > 0 small enough
so that max; ¢, <, [IN()] + ¢] < 1. Hence, for all € > 0, there is an M, > M such
that

Lix)<glx)-e, x¢&A.

For x € 4, we see that L(x) < B < . Hence, the ergodicity of {Z,} follows from
theorem 9.1(i) of Tweedie [9]. [m]

LEMMA 3.2
If p(@(R)) > 1,then{Z,} is transient.

Proof

Suppose ®(2)'w = Aw for some vector w € C* with | wl = 1 and some scalar
A€ € with [A] > 1. Define the Markov chain {¥,; ¢ > 0} on [0, =), by

V, = KZ,,w).

Suppose V,_, > M. This implies Z,_, € R(?) and so B

EWIV,_)) = /l(u + @@ Z,_ W f,(u)du *
R

= NV, = lw 1E(la, (D),

1
where u' = [u,0,...,0] and w, is the first component of w. Hence, for Vi_,>M > M,

EWIV,.) >0,

forsome 1 < 5 < |Al. Also, for Vi.,>M

E(IV, = EV,IV,_)IV,_ ) < 2E(KA,(®),w)]) < B < oo,

1

independent of t. Thus, following the argument of lemma 2.2 of Petruccelli and Wool-
ford [6], we obtain that

P(V, > =|V,) > 0.
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This, in tum, implies that

P(IZ) > =IZ) > 0. o

LEMMA 3.3

If p(®(®)) = 1, then {Z,} is not ergodic.

Proof

Let A and w be asin the proof of the previous lemma, except that here [A] = 1.
Consider the process

U, =(Z,w.
Then, if | U,_,1> M,

U =2U,_, +4,0),w, (3.2)

1

*where \ is the complex conjugate of A. By considering the real and imaginary parts of
U,, we can define the Markov chain {Y,} on R? by

Yt' = [Re w,), Im(Ut)].
Then (3.2) may be written, for | Y,_, | > M, as
Yt = AYt—l * €
where, for some 8, A is the orthogonal matrix
cos@ -—sind
A= »
sin 8 cos @
and E(e,) = 0.
The result will follow from theorem 9.1(ii) of Tweedie [9] by defining
g(x) = lIxll, for x € R?,and 4 ={x € R?: lx| < M}. Then, by Jensen’s inequality,
E(g(Y)Y, | =x)=E(g(Ax+e,)) > gE(Ax te)) = gx)

for x & A. Since A is orthogonal
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E(1g(Y,) —g()IY,_ =x) < E(le,l) < f < oo
for x & A, whereas for x € A4 it is clear that
E(lg(Y) —g(x)IY,_, =x)<f<eoo.

Finally, g(x) > sup, 4 8(») for x & A and so Tweedie’s conditions are satisfied
and we conclude that 1Y,} is not ergodic. From this it follows that { Z,} is not ergodic. O

Remarks

(1) It is interesting to note that the condition that p(®(2)) < 1 is equivalent
to requiring that the roots of the backshift polynomial for (1.1) when Z,_,€R®,

k
1 -3 ¢G,9B' =0,

i=1

lie outside the unit circle. The classical AR(k) process is obtained from model (1.1)
by taking & = 1. In this case, theorem 3.1 gives what we believe to be a new proof of _
the ergodicity conditions for AR (k) processes.

(2) In lemma 3.2 we have proved something stronger than what is stated in
theorem 3.1: that not only is {Z,} not ergodic when p(®(R)) > 1, but that it is in fact -
transient. The reader should be aware that while in lemma 3.3 we have proved {Z,} to
be what Tweedie [9] calls “null” (by which he means “not ergodic”), we have not
proved it “null recurrent” (by which we mean “neither ergodic nor transient” ). How-
ever, we conjecture the latter to be the case.

THEOREM 3.2

Assume E(Iat(i)l") < o,1<i<{ and some integer ¥ > 0. Then, if
p(@(2)) < 1, the invariant probability distribution for the chain {Zt} has a finite kth
moment and the model is geometrically ergodic.

Proof

For x € R¥, let g(x) be defined as in lemma 3.1. Then, for x large and some
0<K<eoo,

1

E(g(Z)Z,_ =x) < KE(la,(®)1) + max [IA@)I + c] g(x).
1<i<m
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Since p(P(2)) < 1, we can choose ¢ > 0 so that

£§E= max [IN@I+c] <1
1<i<m

But g(x) = o as [[x[| = o0, so there is an M > 0 such that for [x]| > M
E(g(Z)1Z,_ = x) < (1-€)g(x)

for some 1 > e > 0. The result then follows from Tweedie [10]. O

4. Estimation of model parameters

Throughout this section, we make the following assumptions.

Al: {Z,} is ergodic and its stationary distribution has a finite second moment,
and

A2: (= E@(j)) <=, 1<j<
In order to facilitate the following discussion, we reformulate our model. Let
Z,GN=2 I(Z_€RW®)=2Z,1G])

1

for1 i< 2, m 2 0and 1 < j—m < k. Then we can rewrite our model, for each
n=0,as

Y=X¢+ A, 4.1)
where

Y =(2,.....2])], 4.2)

n

FZo(1L, 1), 2 (LD, L Z @), 2, (/1) 7

Lz, _(Ln),....2 _ (,n),....Z _ ®n),....Z _ (& n)]
4.3)
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¢ = [o(1,1),...,0k, 1), ..., 0(1,0),...,0(k O] 4.4)

and

Q Q
A = [ > aOIGE,. .., 2 a, (I, n)]. (4.5)

i=1 i=1

We further define J() = {1 < t < n: Z,_, € R()}, 1 < i< L andlet n(i) be the
cardinality of J(i). Then, we note that E(4) = 0 and

2

E(A'A) = 3 d*(i) E(m(i)).

i=1

Assuming that the partition { R(-)} is known, the least-squares estimators for
the parameters ¢ are given by

$=X'X)'X'y.

We note that X' X = diag (B, .. ., B,), where

M s
M=

2 .
Zm_l(l,m),...
m=1 m 1

B = : @.7)

Zm-l(i' m)Zm_k(ir m) *

M=

n
. , 2 .
Z, (i, m)Zm elim), Z z, _ m)
m=1 m=1

Under the assumption of ergodicity of {Z,}, we define Z' = [Z(1),...,Z(k)] tobe a
random vector having the same distribution as the stationary distribution of {Z,}.
Then,as n = oo

n(n > n(i) = P(Z€R®U)) as,, 1 <i<{y

and

nt Yy Z,_m\ip)Z,_;(i,p) > E[Z(m)Z(j)I(Z € R(i))]
p=1

= p(m,j, i) as., 1<i<? 0<m—-j<k
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Hence,as n = oo,

n'B, > H = {p(mj,D), 1 <m<kl<j<klas,1<i<t (48

However, under our assumptions, the matrix H = diag (H,, . . ., Hy) is positive definite.
Thus, for large n, X' X is invertible and (4.6) holds.

The next two theorems establish the strong consistency and asymptotic
normality of the estimators (4.6).

THEOREM 4.1
Under assumptions Al and A2,as n > 0,
é > ¢ as.

and

k
P =Gyt 2 2, - 2 $mz,_, ) - o*(j) as. (4.9)

tEJ(j) m=1
Jorl<j< g

Proof
Using (4.1) and (4.6), we obtain

ups (X2 XA

n n

But X'A/n is a vector whose terms are of the form

-1

2
n Zm_p(j, m)y a (DIGm), 1<p<k 1<j<Q

1 i=1

M =

m

Hence,asn > o, X'A/n > Oas.and (X'X/n)"' > H ! as.andso ¢ > pas.
Expanding (4.9) yields
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k
62(j) = n(j)"[ 2. {a,GY + ¥ @) -ém)Z}
tEJ(j) m=1
k -~
+2 Y a()) () ~émN)Z,_,
m=1
k k
DY Z @(m, j) — ém, /) (@ )) -, iNZ,_,,Z,_ ,,}]
m=1 n=
But n(j)™! ,e,(,)a,(]) - 0%(j) as., as n = o, and all other terms converge

almost surely to zero. Hence, the result follows
Remark

We note that the above result implies that

2
nlA'A > ) a(i)o*(i) as.,asn > oo,
i=1

THEOREM 4.2

Under assumptions Al and A2,as n > =,

-1 ) £
VAR 2 ($-¢) > N,01L,),

where H = A'A, I is an nx n identity matrix, =™ = diag (Z(1)"?,

2(j) = 0(j)I, and = is convergence in law.

Proof
Using (4.6), we obtain, for A € R¥%,

\fx( )(¢ -¢) = "”X'A=n"/2fss,

s=1

where

e k
8= 2 2 NgonyemZe-mUs (D).

]

., Z@)"1), with
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However, since E(¢1&_,,...,%)=0and
lim EE?) =N LH2,
n— o

{£,} is a martingale sequence. Hence, by theorem 23.1 in Billingsley [1],

Yy g £ NO,N 2 H2 ).

s=1

But H is positive definite and so there is a matrix A such that H = AQA'. Consequently,

-1 N L '
nENAY D H($ - 8) > Np(0,NN).

Since A" Z!H=AT'HZ ™! = A7, the result follows. O
5. Concluding remarks
' We note that we can define a slightly more general model than that defined by

- (1.2). In particular, we can define

-

Q
Z, = Y te(j) + ®(NZ,_, + A, (M I (2, ), (5.1)
ji=1

where, for 1 < j < &, e(j) = [¢(0,7),0, ..., 0], with (0, j) a constant, and all
other quantities are as defined in sect. 1. This model is the natural extension of the
AR(1) model studied by Chan et al. [2]. In addition, the SETAR(%; %, . . ., k) process
by Tong and Lim [8] is a special case of (5.1).

Under the assumption that {R(j)} is an arbitrary partition of R, it is not
difficult to show that theorem 2.1 still holds for { Z,} as defined by 5.1). If we make
the additional assumption that all but one of the R(j) be a bounded subset of R¥, as
in sect. 3, then it is easy to show that lemma 3.1 and lemma 3.2 also hold for { Zt} as
defined by (5.1). It is conjectured that lemma 3.3 also holds in this case, but we have
been unable to obtain a proof of this.
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