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 ON THE NULL RECURRENCE AND TRANSIENCE

 OF A FIRST-ORDER SETAR MODEL

 MEIHUI GUO AND

 JOSEPH D. PETRUCCELLI,* Worcester Polytechnic Institute

 Abstract

 We consider the SETAR(I; 1,. * ., 1) model:

 x, = =(o, j) + 0(1, j)x, _1 + E,(j), ri - < X,  <f ri

 where - oo00 = ro < r < .. < ri = o00 and for eachj (,(j)} forms an i.i.d. zero-mean
 error sequence independent of {(,(i)} for i 1 j and having a density positive on the
 real line. Chan et al. (1985) obtained the region of the parameter space on which the
 process is ergodic, and showed the process to be transient on a subset of the
 remainder. They conjectured that the process was null recurrent everywhere else. In
 this paper we show that conjecture to be incorrect and under the assumption of finite
 variance of the error distributions we resolve the remaining questions of transience
 or null recurrence for this process.

 NON-LINEAR TIME SERIES; ERGODICITY; MARKOV CHAINS

 1. Introduction

 In this paper we consider the first-order SETAR(l; 1,- ., 1) model

 (1.1) X, = ~ (O, j) + (,j)X, _ I + e,(j), r_- I < Xt - 5 r

 where - oo = ro < r, < r, = oo. We assume the following two conditions on the
 error distributions.

 Cl. For eachj = 1,- , I ( {e,(j)) forms an i.i.d. zero-mean error sequence independent
 of {e,(i)) for i /j.

 C2. For each j = 1,- . 1, e, e,(j) has a density positive on the real line.

 For the no-intercept case (0(O, j) = 0, j = 1,. ? ., 1), Petruccelli and Woolford (1984)
 showed a necessary and sufficient condition for ergodicity of the process to be:

 (1, 1) <1, 0(1, l) <1, 0(1, 1)0(1, l) <1.
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 On the null recurrence and transience of a first-order SETAR model 585

 They showed the process to be transient on the complement of the closure of this set and

 conjectured it to be null recurrent on the boundary.

 Chan et al. (1985) considered the general model (1.1). They obtained as necessary and
 sufficient conditions for egodicity (2.1)-(2.5) below. They also showed that the process is
 transient under conditions (2.11), (2.12) and (2.15), and conjectured that the process is
 null recurrent otherwise.

 In this paper we show the conjecture of Chan et al. to be incorrect, and under the
 additional assumption of finite error distribution variance in regions 1 and I we resolve
 the remaining questions of transience or null recurrence for this process.

 For physical motivations for and applications of SETAR models, and for a discussion
 of types of non-linear phenomena which such models can capture, we refer the reader to
 Tong (1983).

 2. Results

 Throughout the rest of this paper, except where otherwise stated, we assume that in

 addition to the conditions on the error distributions detailed in Section 1, the following
 holds.

 C3. E(e(j)) < o,j = 1 andj = 1.

 The main result of the paper is the following theorem.

 Theorem. For model (1.1) with conditions C 1-C3 holding, the following characterize
 the ergodicity, null recurrence or transience of the process:

 I. The process is ergodic if and only if one of(2.1)-(2.5) holds:

 (2.1) (1, n 1)< I, (I, 1)a < 1, (, 1)(1, 1) < 1,

 (2.2) 1, 1)-= 1,1, l)O< 1, 0, 1)> 0,
 (2.3) 01,1)<1, 01 1) = 1, 0, 1) < 0,

 (2.4) (1, 1) =(1,1)1, (0,)1) < 0 < 0, 1),
 (2.5) T 1, 1) <t0, 1, 1) n1, 1)= 1, ) 0, 1)+ 1, 1)0, 1) >h0.

 II. The process is null recurrent if and only if one of(2.6)-(2.10) holds:

 (2.6) (1, 1) < 1, (1, l) = 1, 0, 1) = 0,

 (2.7) 0(,1) = 1, )01, 1)< 1, 0, 1)-= 0,
 (2.8) 1,1) --- 1,1)--1, 0,1)--0, 0,1) 0,
 (2.9) 1, 1)--1,1)-- 1, 0,1)<0, 0, 1)--0,
 (2.1)<0, 1, 1)0.
 III. The process is transient if and only if one of(2.11)-(2.16) holds:

 (2.1 1) 1, 1) > 1,

This content downloaded from 130.215.176.72 on Wed, 31 Jul 2019 20:21:28 UTC
All use subject to https://about.jstor.org/terms



 586 MEIHUI GUO AND JOSEPH D. PETRUCCELLI

 (2.12) O(1, )> ,
 (2.13) 0(1, 1)= 1, 0(1, )5 1, 0(, 1)<0,

 (2.14) (1,1)-<L0, 01, ) = , 0, 1) > 0,

 (2.15) (1,1)<0, (1,1) 1? 1) > 1,
 (2.16) (1,1)<0, (1,1)0(1, )=1, ) 0, 1) + 1, )(0,1)<0.

 The proof of the theorem will proceed by a series of lemmas in the next section. We
 remark here that:

 1. (2.1)-(2.5) and (2.11), (2.12) and (2.15) were derived in Chan et al. (1985) and do
 not depend on condition C3.

 2. (2.13) and (2.14) do not depend on condition C3.
 3. The theorem shows the conjecture of Petruccelli and Woolford (1984) to be correct

 under condition C3.

 4. Condition C2 ensures that the process is #-irreducible for # taken to be Lebesgue
 measure on the real line. This is needed to invoke Tweedie's (1976) criteria for null
 recurrence and transience.

 3. Proofs

 Lemma 3 below proves that (2.6)-(2. 10) define the region of null recurrence for (1.1).

 Lemma 4 below proves the transience of (1.1) in region (2.16). We begin with two
 technical lemmas used in the proof of Lemma 3.

 Lemma 1. Let I be a random variable, s a positive number and t any real number.

 Then for any A C (t: s + tt > 0), and B c ({: - s + tt > 0),

 (i) E[ln(s + ttl)IA] 5 P(A)ln(s) + (t/s)E[(IlA] - (t2/(2s2))E[tl2JIA n (:t,<o)l],i (ii) E[ln( - s + tt)I,] 5 P(B)(ln(s) - 2) + (t/s)E[tllB].

 Proof. (i) For all x > - 1, In(1 + x) 5 x - (x2/2)I[x<o1. Thus

 In(s + t1)IA = [In(s) + In(1 + tlq/s)]IA

 < [In(s) + trl/s - ((tq)2/(2s))Ii,,:t<0]A]IA,

 and taking expectations gives the result.
 (ii) For all x > 1, In( - 1 + x) 5 x - 2. Thus

 In( - s + tq)I = [In(s) + In( - 1 + tq/s)]I,

 _ (In(s) + tt1/s - 2)I,
 and taking expectations gives the result.

 Lemma 2. Let t be a random variable with distribution function G and finite
 variance, let t, c, u2, and v2 be positive numbers, and let s, > s, and u1, v1, s be real
 numbers. Then
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 On the null recurrence and transience of a first-order SETAR model 587

 (i) lim xE[qlt<,s+tx] = lim xE[ql,>,s+,x] = 0.
 X-- 00 X--O00

 Furthermore, if E() = 0, then

 lim xE[ql,>,s+1xj] lim xE[Iqlit<,+l,]= 0.
 X--- 00 X--00

 (ii) lim x2[ - G(s, + tx)ln(u, - u2x) + G(s2 + tx)(ln(v, - ?x) - c)] 5 0.
 X-- 00

 (iii) lim x2[ - (1 - G(s2 + tx))ln(vl + v2x) + (1 - G(s, + tx))(ln(u, + u2x) - c)] _ 0.

 Proof. (i) The first line follows from

 0 5 lim (s + tx) : dG(tl) 5 lim a tl2dG(t)= 0,
 X-0 oo+x X- OOs+t

 and

 0 5 lim (s + tx) f dG(j) 5 lim f I2dG() = 0.
 X"-'- 00 X"0x 00f- 00

 If E(j) = 0, then E[(It,>s+jl] = - E[rIt.<s+t~l]. (ii) Since
 lim x2G(s2 + tx) = 0

 X.---00

 and

 lim ln[(ul - u2x)/(vl - v2x)] = ln(u2/?), X- - 00

 lim x2[ - G(s, + tx)ln(u1 - u2x) + G(s2 + tx)(ln(v, - ?x) - c)]
 X" - 00

 Slim [ - x2(G(s, + tx) - G(s2 + tx))ln(ul - u2x) X"---00

 - x2G(s2 + tx)ln[(ul - u2x)/(vl - ?x)] - cx2G(s2 + tx)] 0.

 (iii) The proof of (iii) is similar to that of (ii).

 Lemmas 3 and 4 make use of results of Tweedie (1976) for null recurrence and
 transience of Markov chains. Chan et al. (1985) show in their Lemma 2.1 that compact
 sets are what Tweedie calls status sets. This fact is used in the proof of Lemma 3.

 Lemma 3. Process (1.1) is null recurrent if(2.6)-(2. 10) hold.

 Proof. Consider the function

 In(a + ax), x > M > ri_-
 g(x) = ln(B - bx), x < - M < r,

 0, otherwise,
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 588 MEIHUI GUO AND JOSEPH D. PETRUCCELLI

 where a, b and M are positive constants and a and fl are real numbers to be chosen for
 different regions (2.6)-(2.10). In what follows let e(j) be a generic random variable
 having the distribution of the (e,(j)) sequence and whenever there is no ambiguity
 denote its distribution function by F. For convenience, let

 k(x) = (0, 1) + ~(1, l)x, h(x) = (0, 1) + ~(1, 1)x.

 (i) Process (1.1) is null recurrent if (2.6) holds. First consider the region 01, 1) = 1,

 (0, 1)= 0, O -5(1, 1)<1, and choose a =b = a = fl=. Suppose x >M>rl_,,
 where M is to be chosen. Consider

 (3.1) E[ln(a + ak(x) + ae(l))I[k(x)+z(1)>Mj],

 (3.2) E[ln(f - bk(x) - be(1))I[k(x)+ (I)<-M)],

 (3.3) (a/(a + ak(x)))E[e(1)I[8(1)>M-k(x)],
 (3.4) (a2/(2(a + ak(x))2))E[e2(l)I[Mk(x)<e(l)<O],
 (3.5) (bl/( - bk(x)))E[e(l)I[,(1)< -M-k(x)].
 Since E(e2(l)) < oo,

 (3.4) = (a2/(2(a + ak(x))2))E[e2(l)I[,()<] - o(x - 2),

 and by Lemma 2.2(i), both (3.3) and (3.5) are o(x - 2).
 For x > M, a + ak(x) > 0, and thus by Lemma 1(i),

 (3.1) - (1 - F(M - k(x)))ln(a + ak(x)) + (3.3) - (3.4),

 while fl - bk(x) < 0, and thus by Lemma 1(ii),

 (3.2) - F( - M - k(x))(ln( - fl + bk(x)) - 2) + (3.5).

 By Lemma 2(ii),

 - F(M - k(x))ln(a + ak(x)) + F( - M - k(x))(ln( - fl + bk(x)) - 2) _5 o(x -2).

 Since

 E[g(X,) I X,_, = x] = (3.1) + (3.2),

 we see that by choosing M large enough

 E[g(X,) I X,_, = x] - g(x) - (a2/(2(a + ak(x))2))E[e2()I[,(,)<o01 + o(x-2)
 (3.6)

 Sg(x), for x > M.

 For x < - M < r, and ?(1, 1) = 0, E[g(X,) X,_, = x] is a constant and is therefore less
 than g(x).

 For x < - M < r, and 0< #(1, 1) < 1, consider

 (3.7) E[ln(a + ah(x) + ae(1))Ih(x)+,(l)>MJ],
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 (3.8) E[ln(# - bh(x) - be(l1))Ith(x)+(l)< -M]],
 (3.9) (a/(a + ah(x)))E[e( l)I(l()>uMh(x)J],

 (3.10) (b/(# - bh(x)))E[e(l)I(l1)<-_Mh(x)l],
 (3.11) (b2/(2(f - bh(x))2))E[e2( )I[-M-h(x)>,(1)>O]I.
 Since E(el2()) < oo

 (3.11) = (b2/(2(f - bh(x))2))E[e2( l)(l)>O]] - O(X-2),

 and by Lemma 2(i), both (3.9) and (3.10) are o(x-2).
 For x < - M, a + ah(x) <0, thus by Lemma 1(ii),

 (3.7) 5 (1 - F(M - h(x)))(ln( - a - ah(x)) - 2) - (3.9),

 and / - bh(x) > 0, thus by Lemma 1(i),

 (3.8) - F( - M - h(x))ln(# - bh(x)) - (3.10) - (3.11).

 Now as

 E[g(X,) I X_ = x] = (3.7) + (3.8),

 we see that by choosing M large enough I - bh(x) 5 f - bx, and thus

 F(- M - h(x))ln(# - bh(x)) 5 F(- M - h(x))ln(# - bx)

 = g(x) - (1 - F( - M - h(x)))ln(f - bx).

 By Lemma 2(iii) then,

 (1 - F(M - h(x)))(ln( - a - ah(x)) - 2) - (1 - F( - M - h(x)))ln(# - bx) 5 o(x-2),

 and thus

 E[g(X,) I X,_, = x] 5 g(x) - (b2/(2(f - bh(x))2))E[e2( ).(1)>0]J + o(x-2)
 (3.12)

 < g(x), for x < - M.

 Next consider the region 0(1, 1) = 1, (0, 1) = 0, 0(1, 1) < 0, and choose b = - a0(1, 1)
 and 9 - a = a0(0, 1). For x > M > r, _1, (3.6) is obtained in a manner similar to the

 above. For x < - M < rl, consider

 (3.13) (a2/(2(a + ah(x))2))E[?2()IIMh(x)<,(o)<ol].
 By Lemma 1

 (3.7) < (1 - F(M - h(x)))ln(a + ah(x)) + (3.9)- (3.13),
 and

 (3.8) _ F( - M - h(x))(ln( - , + bh(x))- 2) + (3.10).
 From the choice of a, b, a and 6, In(a + ah(x)) = In(f - bx) = g(x), and thus by
 Lemma 2(i) and (ii), for M large enough
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 E[g(Xt) I X, _ = x] 5 g(x) - (a2/(2(a + ah(x))2))E[e2(1)I[e(l)<O]] + O(X-2)
 (3.14)

 <-g(x), for x < - M.
 (ii) Process (1.1) is null recurrent if (2.7) holds. By considering Y, = - X,, the result is

 obtained from (i).

 (iii) Process (1.1) is null recurrent if (2.8) holds. Choose a = b = a = f = 1. For

 x > M > r,-1, (3.6) is obtained in a manner similar to the above. For x < - M < rl,
 since 1 - h(x) - 1 - x,

 F( - M - h(x))ln(1 - h(x)) - F( - M - h(x))ln(1 - x).

 From this, (3.12) is obtained in a manner similar to the above.

 (iv) Process (1.1) is null recurrent if (2.9) holds. By considering Y, = - Xt, the result is obtained from (iii).

 (v) Process (1.1) is null recurrent if (2.10) holds. Choose f - a = b 0(0, 1) = a0(0, 1),
 b = - a0l(1, 1) = - a/0(1, 1). For x > M > r 1_,, consider

 (3.15) (b2/(2(# - bk(x))2))E[e2()I_[-M-k(x)>&(1)>0O].
 By Lemma 1

 (3.1) - (1 - F(M - k(x)))(ln( - a - ak(x)) - 2) - (3.3),

 and

 (3.2) - F( - M - k(x))ln(# - bk(x)) - (3.5) - (3.15).

 From the choice of a, b, a and fl

 F( - M - k(x))ln(# - bk(x)) = In(a + ax) - (1 - F( - M - k(x)))ln(a + ax),

 and thus by Lemma 2(i) and (iii), for M large enough

 E[g(Xt) I X,_, = x] - g(x) - (b2/(2(f - bk(x))2))E[e2(l)I,(1)>0]j + O(X-2) (3.16)

 < g(x), for x > M.

 For x < - M < rl, since In(a + ah(x)) = In(# - bx), (3.14) is obtained similarly.
 It is obvious that the above test function g satisfies

 g(x) > sup g(y), for Ix l > M,

 and that the set B, = { y : g(y) - n } is a compact set for all sufficiently large n and thus is
 a status set in Tweedie's (1976) sense. We may then apply Theorem 10.2 of Tweedie

 (1976) with set A taken to be [ - M, M], and the above test functions g to conclude the
 process is recurrent if any of (2.6)-(2.10) holds. As it has previously been shown by
 Chan et al. (1985) that the process is not ergodic if any of(2.6)-(2.10) holds, the process
 must be null recurrent on these regions.

 Lemma 4. Process (1.1) is transient if(2.16) holds.
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 Proof. Let a and b be positive constants such that - b/a = (1, 1) = 1/0(1, 1).
 Since 0(0, 1) + 0(1, 1)0(0, 1) < 0 we may, and do, choose a and f such that - a 0(0, 1) <

 aa + bfl < - b(O, l). Choose c positive such that c/a - a> max(0, r,_ ) and

 - c/b - fl <min(0, rl). Consider the function

 1 - l/a(x + a), x > c/a - a

 g(x) = 1 -- /c, - c/b - fl <x < c/a - a
 1 + l/b(x + fl), x < - c/b - f.

 In what follows let e(j) be a generic random variable having the distribution of the
 {e,(j)} sequence. Suppose x > M > c/a - a, where M is to be chosen. Let

 y(x) = O(0, 1) + (1, 1)x + 6, (x) = (0, 1) + 01, 1)x + a.
 Consider

 (3.17) - a -'E[(1/(6(x) + e(1)))I,[()>c1a_6x)J],
 (3.18) - c-'P( - c/b - y(x) < e(l) < c/a - 6(x)),

 (3.19) 1/a(x + a) + b'-lE[(1/(y(x) + e(l)))I[t(1)<-c/b-Y(X)J].
 It is easy to show that both (3.17) and (3.18) are o(x-2). Since

 l/(y(x) + e(l)) = l/y(x) - e(l)/y(x)(y(x) + e(l)),

 the second summand of (3.19) equals

 F( - c/b - y(x))/by(x) - E[(e(l)/ly(x)(y(x) + e(1)))I[,(1)<-c,_b-Y(X)

 where F is the c.d.f. of e(l). Since

 1/(1 + e(l)/y(x)) 5 1 + be(l)/c, for 0 <e(l) < - c/b - y(x),

 <_ 1, for e(l) < 0,
 we have for x large enough

 0o - x2e(l)ly(x)(y(x) + e(l))

 - - x2e(l)(l + be(l)/c)/2(x)
 >- - 2e(l)(1 + be(l)/c)/12(1, 1), 0O< e(l) < - c/b - y(x),

 and

 o - - x2e(l)/y(x)(y(x) + e(l))

 S x2 Xe(l)y(x)

 __ - 2e(/)/~2(1, 1), e(l) __ 0.
 Thus, by the Lebesgue dominated convergence theorem,
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 592 MEIHUI GUO AND JOSEPH D. PETRUCCELLI

 (3.20) lim x2E[ - e(l)/7(x)(y(x) + e(1))I[e(l)<-c/b -y(x)1] = E[ - e(l)/2(1, 1)] = 0.
 X'- 00

 Thus, from (3.20) we see that (3.19) equals

 1/a(x + a) + 1/by(x) - [1 - F( - c/b - y(x))]/by(x) - o(x-2)

 = (b(0O, 1) + bf + aa)/aby(x)(x + a) - o(x -).

 Now as

 E[g(X,) Xt_, = x] = g(x) + (3.17) + (3.18) + (3.19),

 we see that by choosing M large enough

 E[g(X,) I X,_, = x] = g(x) + (b(O, 1) + bf + aa)/aby(x)(x + a) - o(x-2)

 > g(x), x > M.
 Similarly, for x < - M < - c/b - fl < r, it can be shown that

 E[g(X,) I X,_, = x] - g(x).

 We may thus apply Theorem 11.3 of Tweedie (1976) with the set A taken to be
 [ - M, M], and the above energy function g to conclude that the process is transient.

 Lemma 5. Process (1.1) is transient if(2.13) and (2.14) hold.

 Proof. Suppose (2.13) holds and begin the process at x0 < min(0, r1). Then until the

 first time the process exits ( - oo, min(0, r,)), it is a random walk with negative drift, and
 hence transient (see, e.g. Feller (1971), pp. 396-397). The proof of (2.14) is similar.
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