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 A MULTIPLE-THRESHOLD AR(1) MODEL

 K. S. CHAN,* Chinese University of Hong Kong
 JOSEPH D. PETRUCCELLI,** Worcester Polytechnic Institute
 H. TONG,* Chinese University of Hong Kong
 SAMUEL W. WOOLFORD,** Worcester Polytechnic Institute

 Abstract

 We consider the model Z, = 4(0, k)+ 4(1, k)Z,_1 + a,(k) whenever rk_ <

 Z,_-I rk, 1 - k _ l,with ro= -oo and r, = oo. Here{4(i, k); i =0,1; 1 5 k _ l}is
 a sequence of real constants, not necessarily equal, and, for 1 k _ 1, {a,(k), t 1} is a sequence of i.i.d. random variables with mean 0 and with {a,(k),
 t 1} independent of {a, (j), t ? 1} for j$ k. Necessary and sufficient conditions
 on the constants {4(i, k)} are given for the stationarity of the process. Least
 squares estimators of the model parameters are derived and, under mild
 regularity conditions, are shown to be strongly consistent and asymptotically
 normal.

 NON-LINEAR TIME SERIES; SETAR MODELS; AUTOREGRESSIVE MODELS; MARKOV

 CHAINS

 1. Introduction

 It seems generally agreed (see, for example, the discussion of Tong and Lim
 (1980)) that the class of threshold time series models forms one useful class of
 non-linear time series models. The practical relevance of non-linear analysis of
 time series data seems to be self-evident (see for example Tong (1983)).

 Recently, Petruccelli and Woolford (1984) have discussed a simple first-order
 threshold model, which we denote by SETAR (2;1,1) following the usual
 convention in the area (see for example Tong (1983)). In fact they have
 considered the model

 Z, = 41Z;tml + 42Z)--+ a,, t = 1,2,.- -,
 where x'= max(x,0), x-= min(x,0) and {a,} is a white noise sequence. They
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 have obtained the surprising result that for {Z, } to be ergodic it is both necessary
 and sufficient that

 di<1, 22<1 and dhd2 <l.
 Thinking linearly, we could perhaps expect to require something like

 1 #; < 1, i = 1,2,
 which is in fact used in Tong (1983). Non-linearity seems to allow us greater
 freedom.

 The present paper deals with the more general SETAR(l; 1,' ', 1) model
 defined in Tong and Lim (1980). In particular, for any integer 1, let

 - = ro< rl < " =.< rt =
 and define

 (1.1) Z, = 4(0, k)+ 4(1, k)Z,_~ 1+ a, (k) if Z,_ E Rk,

 where Rk (rk-1, rk], 1 ? k 1. Equivalently, (1.1) may be written as

 (1.2) Z, = I(Z, E Rk){(, k)+ (1, k)Z, + a,(k)}, k=l

 where I(A) is the indicator function of the set A. In both (1.1) and (1.2) we take

 {4(i,k); i = 0, 1; 1 ?k - l} to be real constants and assume that for each k,
 1 = k ? 1, {a, (k); t = 1} is a sequence of independent and identically distributed
 (i.i.d) random variables, each having a strictly positive density fk (), on R, and
 mean 0. Additionally, we assume that {a,(k)} and {a, (j')} are independent for
 j k.

 In Section 2, we obtain necessary and sufficient conditions on the parameters

 {4(i, k); i = 0, 1; 1 ? k - l} for the process (1.2) to be ergodic. These conditions are broader than those given by Tong and Lim (1980) and more complex than
 those in Petruccelli and Woolford (1984).

 In Section 3, assuming that {Z,} has a stationary distribution which has a
 second moment and that o-2(k)= E(a,(k)2) is finite, we establish the strong

 consistency of the least squares estimators for {I(i, k); i = 0, 1; 1 k = l} as well
 as for the estimator for o2(k). In addition, a central limit theorem is shown to
 hold for the estimators for {I(i, k); i = 0, 1; 1 ? k ? l}. Finally, in Section 4, we
 give some concluding remarks.

 2. Ergodicity

 We note, as in Petruccelli and Woolford (1984), that {Z,; t 0}, as defined in
 (1.2), is a Markov chain with state space (R, 2), where A is the Borel o-algebra
 on the real numbers R. The transition density is given by
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 A multiple-threshold AR(1) model 269

 (2.1) p(x, y)= I(x E Ra)fa (y- #(Ok)- 4(1, k)x).
 Using the definitions in Orey (1971), we note also that {Z,; t 0} is -irreducible

 and aperiodic for , taken to be Lebesgue measure on R. However, contrary to
 the situation in Petruccelli and Woolford (1984), the transition law {P(x, )},
 corresponding to (2.1), is not necessarily strongly continuous (a condition
 required to obtain ergodicity in Petruccelli and Woolford (1984)). Hence, we
 shall require the following lemma to prove the ergodicity results in Theorem 2.1
 below.

 Lemma 2.1. Let {P(x, . )} be the transition law corresponding to the transition
 density (2.1). Then if X is the set of compact sets in 4 having positive Lebesgue

 measure, then 0< ir(K)< oo for all K E 9, where ir( ) is a subinvariant measure
 for {Z,}.

 Proof. Let D be the set of discontinuities of {P(x, ')}. Then, by construction,

 D is finite. By irreducibility we have a subinvariant measure ir(-) such that

 ir(A) -f r(dy)P(y, A), AEA.
 Iterating the above equation we obtain

 (2.2) P (1 -P )-1i (A) r(dy)G, (y,A),
 where 0 < < 1 and G (y,A)= EX= P"P"(y,A). It is not hard to show that

 Gg (y,") is continuous for y 0 D and
 lim G (x,A)>o, lim G (x,A)>o
 xtd xid

 for all d E D whenever ~ (A)> 0. Hence, we have, for any K E 3,

 inf G, (y, A) > O
 yEK

 whenever C (A)> 0. Using (2.2) and taking A E A such that 0 < T(A) < oo, then

 '(K)_ --(1-p)-r'(A) inf Go,(y,A) < . yEK 1
 That ir(K)> 0 follows from the fact that 4 (K)> 0.

 Remark. The above result is true for more general Markov chains than the
 one we have defined here. In particular, let {P(x,. )} be the transition law for an
 aperiodic and M-irreducible Markov chain with state space (R, 2). Let D be the
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 finite set of discontinuities of {P(x, )} and let I(.) be the associated subin-
 variant measure. Then, if G, (x, )= ~= f3"P"(x,.) and

 lim G,3 (x,A) > O, lim G, (x,A) > O xid xtd

 for all d E D, whenever M(A)> 0, we have that every compact K E A has finite
 Ir-measure. This is an extension of Lemma 4.1 in Tweedie (1975) and indicates
 that the compact sets are still status sets in this case (see Tweedie (1976)).
 We now prove necessary and sufficient conditions on the parameters {k(i, k);

 i= 0,1; 1 k - l} for the process {Z,} to be ergodic.
 Theorem 2.1. The process {Z, }, defined by (1.2), is ergodic if and only if one
 of the following conditions holds:

 (2.3) 4 (1,1)<l, 4 (1, l)<l, 4 (1,1) b(1,/)<1;
 (2.4) k(1,1)=1, c (1,1)<1, q5(0, 1)>0;

 (2.5) 4 (1,l)<l, 4 (1,l)=l, (0, 1)< 0;
 (2.6) k(1,1) = 1, (1, l) = 1, 4(0, l) < 0 < (0,1);

 (2.7) (1,m) b(1,1)= 1, 4 (1,1)<0, Oh(0,1)+ 4 (1,l) b(0, 1)>0.
 The proof of Theorem 2.1 is divided into two lemmas, the first of which proves

 sufficiency, the second necessity.

 Lemma 2.2. If {Z,}, given by (1.2), satisfies one of (2.3)-(2.7) then {Z,} is
 ergodic.

 Proof. Similarly to the proof of Lemma 2.1 in Petruccelli and Woolford
 (1984), Lemma 2.1 above implies that the result of the theorem will follow from
 Theorem 3.1 of Tweedie (1975) if we can find a compact set K E s, having
 positive Lebesgue measure, and a non-negative measurable function g on R such
 that

 (2.8) p(x, y)g(y)dy g(x)-1, x K

 (2.9) f p(x, y)g(y)dy = A(x)? R <0c, xE K, for some fixed R > 0.

 We prove that {Z,} is ergodic for each of (2.3)-(2.7) separately below by
 indicating a function g and a set K for which (2.8) and (2.9) hold.

 (2.3): As in Petruccelli and Woolford (1984), we note the existence of positive

 constants a and b such that 1 > 4(1, 1)> - (ba'-) and 1 > b(1, 1)> - (ab-I') and
 take
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 A multiple-threshold AR(1) model 271

 ax, x > 0

 g(x) blxl, x-=-0.
 b|x | x?0.

 Then there is an M > 0 such that (2.8) and (2.9) hold for K = [- M, M].
 (2.4): In this case we take

 (c,x, x > 0
 g(x) =

 - 2[4(0,1)]-'x, x 0

 where c, > 21 4(1, 1)1 [4(0, 1)1-'. Then, again, there is an M >0 such that (2.8) and (2.9) hold for K = [-M,M].
 (2.5): By symmetry, we can take

 - 2[4(0, l)]-'x, x > 0
 g(x) =

 -c 2x, x <= 0

 where c2> -214,(1, 1)I[4(0, l)]-1. The result follows as for (2.4).
 (2.6): Again the result follows as for (2.4) and (2.5) with

 2[14(0, )l]-'x, x >o0

 - 2[4(0,1)]-'x, x 0.

 (2.7): In this case we consider the Markov chain {Z2,) with transition law {P2(x, )}. Taking

 ax, x>0
 g(x) =  - bx, x ? 0,

 where a and b are positive constants, we obtain, for x E R;,

 I(x) = P2(x, dy)g(y)

 = a (u -f3(k,x)) fk(u - 4b(1, k)a) f(a)dadu
 k =1 #(k,x) R(k~j)

 -b (u -13(k,x)) fk(u -4(1, k)a)fi(a)dadu ,
 where

 p (k, x) = - 4(0, k )- 4(1, k)4(0, j)- 4 (1, k)4(1, j)x
 and

 R(k,j)= {y :y + 4(0,j)+ 4~(1,j)x E Rk}.
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 Clearly I(x) B;, O < B < co, for x E R;, j = 2,- . , I - 1. In addition, it is not
 hard to show that there is an M > 0 such that

 b

 I(x) = - bx-- (4 (O,l1) + 4(1, l)4 (O, 1)), x < - M
 a

 I(x)- ax +- ((0, 1)+ 4(1, 1)4(0, 1)), x > M.

 Hence we can define a and b so that (2.8) and (2.9) hold for K = [- M, M]. Thus

 we conclude that {Z2,) is ergodic which, due to the irreducibility and aperiodicity
 of {Z,}, implies the ergodicity of {Z,}.

 Lemma 2.3. If {Z,}, given by (1.2), does not satisfy one of (2.3)-(2.7) then
 {Z,} is not ergodic.

 Proof. We can distinguish four cases:

 (i) 4 (1, 1) > 1 or 4 (1, l) > 1.

 (ii) (4 (1, 1) = 1 and 4 (0, 1) _ 0) or (4 (1, l) = 1 and 4 (0, l) _ 0).
 (iii) 4 (1, 1) < 0, 4 (1, 1) 4 (1, l) > 1.

 (iv) 4 (1,1)<0, 4.(1,1)4.(1,l)= 1 and 4 (0,1)4 (1,/)+ 4(0,/)_-O0. For Cases (i)-(iii), slight modification of the proof of Theorem 2.1 in
 Petruccelli and Woolford (1984) applies and we do not repeat the proof.

 In order to prove Case (iv), we appeal to Theorem 9.1 (ii) in Tweedie (1976) to
 show that {Z,} is not ergodic (what Tweedie (1976) calls 'null'). Thus it suffices to
 find a non-negative Borel measurable function, g(x), a set A of the form
 [- a1, a2], aI > 0, a2 > 0 and a constant B > 0 such that

 (2.10) f p(x,y)g(y)dy -g(x), x A

 (2.11) f p(x,y)lg(y)-g(x)l =B, xER
 (2.12) g(x)> sup g(y), x f A.

 yEA

 As 4(1, 1)4(1, 1) = 1, there exist positive constants a and b such that

 4(1,1)= -ba', k(1, 1)= -ab-'

 Define, for a, 3 > 0, k > 0, M > 0,

 ax + a, if x > 0
 gu (x) =

 - bx + [3, otherwise
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 and

 Sk, ifIxl-M Ik4M(X) =:
 0, otherwise,

 where the constants a, 3, k and M are chosen so that

 (2.13) a4 (0, 1)_-p - at bq (0, 1)
 (2.14) M max( 4(0, 1)1, 14(0, 1)1)
 (2.15) k ? (a + b)max( 4~ (0,1)1, 1 (0, 1)).

 Note that (2.13) is always possible since 4(0, 1)4(1, 1) + 4(0, 1) 0.
 Thus, for

 g(x)= go(x)+ Ikm (x)

 and x E R,, large and positive,

 I p(x, y)g(y)dy = f(y - 4(0,1)- 4(1,1)x)g,,(y)dy
 + f f(y - 4(0,1)- 4(1, l)x)IM(y)dy.

 But

 fL f(y - (0, 1)- 4(1, 1)x)g, (y)dy

 = [- b(z + 4(0, 1)+ 4(1, l)x)+ l]fi(z)dz

 +f [(a + b)(z + 4(0, l)+ 4 (1, l)x)+ a - ]Jf,1(z)dz -4(o,t)-4(1,t)x

 so that

 R p(x, y)g(y)dy = ax + a + ( - a)- b4(O,l)
 o"

 (2.16) + [(a + b)y + a - ~lf,(y- 4 (0, 1)- 4(1, 1)x)dy

 + f kf (y - 4(0, 1)- 4(1, l)x)dy.

 Similarly, for x E R,, negative with Ix large,
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 J p(x,y)g(y)dy - bx + P +(a - P3)+ a4(0,1)

 (2.17) - _ [(a + b)y + a - l]f(y - 4(0,1)- 4(1, 1)x)dy
 rM

 + kf,(y - k(0, 1)- 4(1, 1)x)dy.
 J-M

 However, using (2.13)-(2.15) in (2.16) and (2.17), we see that, for w > 0
 sufficiently large and A = g-'([0, w]),

 J p(xy)g(y)dy g(x), x A.
 Clearly, (2.12) is satisfied and (2.11) can be easily shown to hold with

 B aE(I al(1)J)+ bE(I a,(l)J)+ 2(a J (0,1)J + b J 4(0, )J)

 +2J13-aJ.

 Remarks. (1) We note that the conditions of ergodicity in Theorem 2.1

 depend only on the parameters 4(0, 1), 4(0, 1), k(1, 1), 4(1, 1) and, hence, only
 on the behavior of the process in regions R1 and R1.

 (2) The regions of ergodicity are illustrated in Figures 2.1 a-c. We note that in
 the proof of Theorem 2.1 we have shown that the process is transient in regions
 (VI) and (VII). However, on those portions of regions (II)-(V) where the process
 is not ergodic we conjecture (but have been unable to prove) that the process is
 null recurrent.

 Theorem 2.3. Assume E (1 a, (i) Ik)< 00o, 1 ? i ? 1, and some integer k. Then, if
 4(1, 1)4 (1, 1) < 1, d(1, 1) < 1, and 4 (1, 1) < 1, the invariant probability distribu-
 tion for the chain {Z,} has a finite kth moment, and the model is geometrically
 ergodic.

 Proof. Choose a, b > 0 such that 1> 4(1, 1)> -(ba-') and 1> (1, l) >
 - (ab-'). Let c > 0 and define

 a kxk + c, x > 0
 g(x) lx>0

 bk x I'+c, x <O.
 It is not hard to show that for I x large

 J p(x,y)g(y)dy _ (1- E)g(x), some e >0.
 The result then follows from Tweedie (1983).
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 b(1, l)

 (II) (VI)

 4,(1,l) = 1 .... - - . ._.- (IV )

 I - - (1, 1) (I)

 (V) (III)

 (VII)

 4 (1, 1)4 (1, 1) = 1

 4 (1, 1) = 1

 Figure 2.1a. {Z,} is ergodic for 4(1,1), 4(1,1) in (I) and not ergodic for 4(1,1), 4(1,1) in (VI) and (VII)

 / (0, 1)
 regWithon (II, 1), of Fig. 2.ain region (II) of Fig. 2.1a

 4 (0, 1)

 With o (1,1), 4(1, 1) in

 region (III) of Fig. 2.1a

 4b(0, l)

 -- (0, ) ,1)

 regWithon (IV, 1), o(,f Fig. 2.lan region (IV) of Fig. 2.1a

 Figure 2.lb. {Z,} is ergodic for 4(0, 1), 4(0, 1) in the shaded regions

 4(OI,l) 4"L,(O,1)4b(1, l)+4(O, l)=O0
 _____ -6(0,1) V

 I/

 Figure 2.1c. With 4(1,1), 4(1,1) in region (V) of Figure 2.1a, {Z,} is ergodic for 4(0,1), 4~(0,1) in
 the shaded region

This content downloaded from 130.215.176.72 on Wed, 31 Jul 2019 20:23:22 UTC
All use subject to https://about.jstor.org/terms



 276 K. S. CHAN, J. D. PETRUCCELLI, H. TONG AND S. W. WOOLFORD

 Remark. These results strengthen those described in Theorem 2.2 and the
 remark following it in Petruccelli and Woolford (1984). However, it is not known
 if similar results hold under the other conditions of Theorem 2.1, each of which

 ensures the ergodicity of {Z,}.

 3. Estimation of model parameters

 Throughout this section we make the following assumptions.

 Al: {Z,} is ergodic and its stationary distribution has a finite second
 moment

 and

 A2: E(a,(k)2)= 2(k)< oo, 1 k l.

 We note that if 4(1,1)4(1,)<1, 4(1,1)<1, c;(1,/)<1, and r2(k)<oo,

 1 k - 1, then, by Theorem 2.3, the stationary distribution of {Z,} has a finite second moment. In what follows we take Z to be a random variable having as its

 distribution r(.), the invariant probability distribution for {Z,}. Z(k) will denote the random variable ZI(Z E Rk). We shall also denote by J(k),

 1- k _ l, the set of integers {O t n -1:Z, E Rk} and let n(k) be the cardinality of J(k).
 Assuming rk, 1 ? k 1, are known, the least squares estimators for the

 parameters {4(i, k)} are given by (for 1 = k 1 in all cases):

 (3.1) 8(1, k)= ~1 ZZ,, -LZ,, Zc,, k) where

 (3.2) 4(O, k) = n(k) Z - 4(1, k) E Zj
 Lt e ) tel~k) /

 and the corresponding natural estimator for or2(k) is

 (3.3) 2(k) = n(k)- ,){Z,, - 4(0, k)- f(1, k)Z,}2.
 The next two theorems establish the strong consistency and asymptotic

 normality of the estimators in (3.1)-(3.3) when the process {Z,} is ergodic.

 Theorem 3.1. Under assumptions Al and A2, 4(i, k) and 5-2(k), i=0,1;
 1 ? k ? 1, are strongly consistent estimators of 4 (i, k) and or2(k), i = 0,1; 1 k - 1 respectively.

This content downloaded from 130.215.176.72 on Wed, 31 Jul 2019 20:23:22 UTC
All use subject to https://about.jstor.org/terms



 A multiple-threshold AR(1) model 277

 Proof. Rewrite (3.1), (3.2) as

 (3.4) $(1, k) =B(1,k)+ ,kZ,a,?(k)- Z, a,.1k)/n(k) nS2(k)
 4 (0, k) = 4 (0, k)

 (3.5)

 + n(k)-' [, Z, ,Z a,+(k)-, ) ZZ, Zta.+(k)] nS2(k). By arguments analogous to those of Theorem 3.1 of Petruccelli and Woolford

 (1984) we have, as n - oo,

 n(k)/n -- (Rk) a.s. 1 k - I,

 n-' Z'---> E(Z(k)'") a.s. m = 1,2, teJ(k)

 (3.6)

 n-l' t)Znal(k)-- E(Z(k))E(al(k))= O a.s.,

 n-l tk' a?l(k)- -r(Rk)E(al(k))= 0 a.s.,
 so that

 S2(k)-- E(Z(k)2)- E2(Z(k))/,n'(R ).

 Now by the Schwarz inequality S2(k) -0 with equality holding if and only if Z(k) is almost surely constant. As this is clearly not the case, S2(k)>0.

 Applying (3.6) to (3.4) and (3.5) we see that, as n --*o,

 4 (i, k)--> 4 (i, k) a.s., i = 1, 2; 1 -< k -< I.
 To prove the strong consistency of o2(k), rewrite (3.3) as

 2(k)'= n(k)-' ~~{al(k)+ (4(0, k)- 4(0, k))2 te(k)

 + (4(1, k) - 4(1, k))2Z, - 2a,+,(k)(Q(0, k) - 4(0, k)) (3.7)
 (3.7)- 2a,+l(k)( (1, k)- 4(1, k))Z,

 + 2(4(0, k) - 4(0, k))(4(1, k) - 4 (1, k))Z,}.
 By applying (3.6) to (3.7) it is clear that

 92(k)-- o'2(k), a.s. as n -- .
 To state the next theorem we shall need some notation. Let y(k)=

 E(Z(k)2)-E2(Z(k))/lr(Rk), 1 < k I. For n = 1,2,- - - let 4(n) be the 21 x 1
 vector whose (2k - 1)th element is
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 [ny(k)?r(Rk )/crZ(k)E(Z(k )2)1/2( (O, k)- 4(O, k))
 and whose 2kth element is

 [ny(k)/tr2(k)]/2(4(1, k)- 4(1, k)).

 For k = 1, ---, I let D(k) be a 2 x 2 matrix with entries of 1 on the main diagonal

 and off-diagonal entries of - E(Z(k))/[E(Z(k)2)r(Rk )]/2
 Let D be the 21 x 21 matrix with matrices D(k) along the main diagonal and

 entries of 0 everywhere else.

 Theorem 3.2. Under assumptions Al and A2, as n - 0o, 4(n) converges in

 distribution to an N(0, D).

 Proof. Consider [ny(k)Ir(Rk)/&2(k)E(Z(k)2)]1/2(4(0, k)- 4 (0, k)). This is
 easily shown to be asymptotically equivalent to

 Co(k, n)n-1/2 Y,(k)a,l(k),
 t=1

 where

 Co(k, n)= [Ir(Rk)/y(k)&2(k)E(Z(k)2)]1/2

 and

 Y, (k) = IRk (Z,) [E(Z(k)2)- E(Z(k))ZI/r(Rk ).
 In a similar manner we see that [ny(k)/IT2(k)]'/2(4(1, k)- 4(1, k)) is asymp-

 totically equivalent to

 C,(k, n)n-''/ C W,(k)a,.l(k),
 t=l

 where

 Cl(k, n)= [y(k)&2(k)]-'/2
 and

 W,(k) = IR, (Z,)[Z, - E(Z(k))/'(Rk)].

 Letting 9' = [, ' , i21] be a 1 x 21 vector of real constants, it follows that for
 each n,

 n l

 'I'(n)= n-' C > [,2k-1Co(k, n)Y,(k)+ q2kC,(k, n)W,(k)]a,+,(k).
 t=l k=l

 However,

 [#2I-,Co(k, n)Y,(k)+ h 2kC,(k, n)W,(k)la,+,(k), t= 1
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 A multiple-threshold AR(1) model 279

 is a martingale difference sequence satisfying the conditions of Theorem 23.1 in
 Billingsley (1968). From this we can conclude that W'I(n) converges in
 distribution to an N(0, ''D1) which implies the result.

 4. Discussion

 The thresholds are assumed known in this paper. In practice, they are seldom
 known. The estimation of the thresholds remains a challenging problem.
 Although estimates have been proposed their sampling properties are unclear
 (see Tong (1983)).

 The main results of this paper carry over quite easily to the fuzzy extension of
 model (1.1) as described by Tong (1983).
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