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 An automatic procedure for identification, estimation and
 forecasting univariate self exiting threshold autoregressive models

 N. DAVIES', J. PEMBERTON2, J. D. PETRUCCELLI3

 'Trent Polytechnic, Nottingham, 2Salford University, Salford, United Kingdom and
 3Worcester Polytechnic Institute, Worcester, MA, U.S.A.

 Abstract. We outline the procedure for identification and estimation of self exiting threshold autore-
 gressive-SETAR-models, based on cusum tests. Forecasting for a general nonlinear autoregres-
 sive-NLAR-model is then discussed and a recurrence relation for quantities related to the forecast
 distribution is given. Some preliminary results from fitting and forecasting SETAR models are then
 summarised and discussed.

 1 Identification and estimation of SETAR models

 We are concerned with the fitting of self exiting threshold autoregressive (SETAR)
 models of the form

 k

 Xt = ao(i+ Eai(j Xt- 1 + 91(j if Xt-d e (ri- 1, ril

 where j=1, 2, .., l, -oo =ro<r1< ... <r,= oo are the threshold values, k=largest
 order of the model >d=delay lag, and etW are i.i.d. sequences of random variables
 with zero mean and variance oj2. These sequences are also independent. The acronym
 SETAR (1; ki, k2, ..., k,) is used for such a model, signifying that there are / sub-
 models, the jth of which has order kj, the last non-zero coefficient being at this lag.
 Further information about this class of models can be found in, e.g. Tong (1983).

 Given n observed values of a time series, xl, x2, ..., xn, we have used two methods
 of identifying and fitting a SETAR model. The first is based on the cusum test for
 detecting nonlinearity developed by Petruccelli & Davies (1986) and it proceeds in
 four steps:

 (i) For 1 <d<k<KMAX, conduct a cusum test to select the (k, d) values for which
 the series is suggested as nonlinear. If none are selected, then the series is taken to be
 linear.

 (ii) If (i) throws out some values, use a vmask and runs test to find initial threshold
 estimates (up to a maximum number to be selected by the investigator).

 (iii) Fit these models and compute their BIC.
 (iv) Perturb the threshold values slightly, go to (iii), unless a local minimum of BIC

 has been attained.
 The second procedure is based on a likelihood ratio test (LRT). It is more time

 consuming and as a result we have only used one threshold. The three stages of this
 procedure are as follows:

 (i) For each 1 <d<k<KMAX, obtain the least squares estimate of the threshold
 value. Fit the model and denote its MSE by MSE(k, d).

 (ii) Choose the parameter estimates ko, do, for which MSE(ko, do) is the minimum of
 MSE(k, d) over all (k, d) allowed in (i). Find the likelihood ratio statistic of this model
 versus the null model, i.e. a linear AR(ko).
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 200 Univariate self exiting threshold autoregressive models

 (iii) To assess the significance of the LRT statistic, simulate n observations from the
 AR(ko), and repeat from (i).

 2 Forecasting with general nonlinear AR models

 The problem of obtaining the minimum mean squared error (MMSE) m-steps ahead
 forecast of a nonlinear autoregressive (NLAR) model was first tackled by Jones (1976,
 1978). Recently, a different approach was proposed by Pemberton (1987) and this is
 the one adopted here. We now give a brief outline of the derivation of this method.

 Let X, be given by the NLAR of order k, i.e. a NLAR(k).

 X, = A(X,- 1) + 9t (2.1)

 where A: IRk_ IR, Xt_l=(Xt-1, Xt2, ..., Xtk)T and {et} is a sequence of zero mean,
 independent, identically distributed random variables with variance 02. Let g(.) be the

 p.d.f. of et and fm(xlxt) denote the conditional p.d.f. of Xt+m given Xt=xt (i.e. the m-
 step predictive p.d.f.). Then

 00

 fm(xl xt)= f fm-1 (XI Xt+1) g{xt+1-A(xt)}dxt+1 (2.2)
 -00

 where

 XS (xs, XS-1 **, XS-k+l),I s=t, t+ 1 .

 This equation can be obtained by considering the joint p.d.f. of Xt+m, Xt+mil, . . ., X,+1
 conditional on Xt=xt and integrating out the unwanted variables as in Pemberton
 (1987). Alternatively, we can follow Tong & Moeanaddin (1987) and use the Chap-

 man-Kolmogorov relation for the conditional p.d.f. of Xt+m given Xt=xt, which can be
 written with an abuse of notation as

 fm(xt+ilxt)= I kfm-i(xt+m xt+1)Jxt+1 l xt) dxt+l

 00

 f fm-i(Xt+mlxt+i)Axt+l IXt) dxt+l.
 - Go

 The last expression follows from the fact that for the model (2.1), all but the first

 element of Xt+1 is fixed by knowledge that Xt=xt. Hence the conditional p.d.f. of the
 former given the latter contains a product of delta functions and so we obtain the last
 expression. It remains to integrate out the unwanted variables as before.

 Although equation (2.2) contains all the information about the future observation
 Xt+m given knowledge of the past and present, Xt, we are interested in the performance
 of the MMSE forecast i.e. the mean of the m-step predictive p.d.f. given by the
 solution of the recurrence

 00

 Pm(xt)= f Pm..(Xt+l) g{xt+i -A(xd)} dxt+l (2.3)
 -00

 with Pl(xt) A(xt). In fact, we can use (2.2) to obtain a similar recurrence for
 E[H(Xt+mlXt=xt] for any suitably well behaved function H(.), by taking Pl(xt)-
 E[H(Xt+ 1) Ixt=X,=x,

 We have developed a numerical procedure for solving equation (2.3), based on
 Guass quadrature rules for the threshold autoregression (1.1), when g(.) is the density
 of the N(0, o;) distribution in the cases H(x) x and H(x) x2. We also allow for the
 noise variances to be different in the different regions of the model. This simply
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 requires g(z) to be replaced by O(Z/lJ)/%r if rJ_l<Xt-d+14rJ, where z=x,+1-A(x,) and
 0(.) is the N(0, 1) density.

 3 Performance of MMSE forecasts of SETAR models

 Several experiments to assess the forecasting performance of SETAR models driven by
 Gaussian noise were carried out. In all of these the forecast errors for 1, 2 and 3 steps
 ahead are compared with those for a linear AR model. The relative accuracy of the
 numerical calculation of SETAR forecasts was four significant figures. This is an
 adjustable parameter in our computer program and in practice would probably be set
 to two or three significant figures. We only present here the results of three experi-
 ments, these being typical of what we have observed and sufficient for our discussion
 in section four.

 In experiment I we carried out the identification and estimation of SETAR models
 with KMAX=3 and up to 4 thresholds for 155 real time series. Of these, 63 were
 identified as being nonlinear. Experiment II was similar, except that we used simu-
 lated series of length 100 from each of 50 randomly selected stationary SETAR(2; 1, 1)
 models of the form

 X-J aX{ 1 + et if Xt_1 0 (2.4)
 t bXt-,+et if X,_>0

 with the noise taken to be independent N(0, 1) in both regions. This time, 45 were
 identified as being nonlinear.

 For all of these series, the last three observations were not used in the identification
 stage, but were used to compute the forecast errors for forecasts from the origin at the
 fourth observation from the end of the series. For any series identified as nonlinear, a
 linear AR model was identified and fitted using the BIC selection criterion. The
 maximum order was taken as the number of estimated parameters in the fitted SETAR
 model i.e. the number of thresholds plus the number of coefficients plus 1 for the delay
 lag, and this came to at most 25.

 Experiment III was intended to be the ultimate 'benchmark'. The models used in
 experiment II were once again employed for simulation with N(0, 1) noise, but this
 time 10003 observations were obtained. A linear AR model was fitted to the first
 10000 and the remaining 3 were used to compare forecasts with the origin at the
 1 0000th observation. The linear AR order was selected in one of two ways, (a) fixed to
 be 1 and (b) selected by BIC with maximum 20. These were thought of as being the
 theoretical MMSE AR approximations to the SETAR models.

 We summarise our results in Table 1 by reporting the percentage of times that the
 absolute forecast error is smaller for the nonlinear than for the linear model.

 Table 1. Percentage of times absolute forecast
 error is smaller for nonlinear than for linear

 model in MMSE forecasts

 No. of steps ahead
 Experiment 1 2 3

 I 48 56 52
 II 69 51 58
 Illa) 66 48 58
 IlIb) 62 48 54

 The differences in magnitude of the forecast errors between the linear and the
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 202 Univariate self exiting threshold autoregressive models

 nonlinear models is represented for experiment IlIb for one, two and three steps ahead
 by dotplots of the performance measure

 PM = (L2 -NL2)/(L2 +NL2).

 Here, L and NL are used to denote the forecast errors for the linear and nonlinear
 models respectively. Clearly -1 PM< 1, positive values indicating that the nonlinear
 error is the smaller. The plots are given in Fig. 1, and are typical of those from the
 other experiments.

 (a)

 :szs .. . :S.S .s. s : :.:

 -0.80 -0.40 0.00 0.40 0.80

 (b)

 : . . . s s s~~ .. |s: .. .
 -0.80 -0.40 0.00 0.40 0.80

 (c)

 S S. :..

 I~~~~ ~~~~ . . s.. .S.: :s.:s.:s.:ts: . . s.

 -1.05 -0.70 -0.35 0.00 0.35 0.70

 Fig. 1. Dotplots of the performance measure, PM, for experiment IlIb. (a) one step ahead, (b) two
 steps ahead, (c) three steps ahead.

 As can be seen, the results do not suggest that there is a substantial improvement to
 be made when using a SETAR model for forecasting, even when we use the exact
 SETAR model that has generated the data.

 There is, however, a simple explanation of what might at first seem to be an
 anomaly. It is simply that we do indeed have the MMSE forecasts, but our criterion
 for comparing these with the linear AR forecasts is based on absolute error. The latter
 is not necessarily minimised by the same forecast, although the two forecasts will be
 equal when the predictive distribution has equal mean and median. When we have a
 SETAR model with Gaussian noise, this will always be the case for one step ahead, but
 will not in general be true for more than one step.

 If we use the conditional median instead of the conditional mean i.e. the minimum
 mean absolute deviation (MMAD) forecast instead of minimum mean square forecast,
 then it is easily seen that any other forecast based on the same information cannot
 have smaller absolute error in more than 50% of the ensembles passing through the
 same state at time t. In other words, if X,(m) is the median of the distribution of Xt+m
 given X,=x, and FCT(x,) is any other forecast, then
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 P( lXt+m-Xt(M)1l > lIXt+M-FCT(Xt)l| X, Xd': 21

 The conditional median has other nice properties, such as (i) the conditional distribu-
 tion need not have any moments and (ii) it is invariant under monotonic transforma-

 tions of the data i.e. If we wish to forecast Yt= T(Xt), then the conditional median of Y,
 is given by T(Xt(m)) when T(.) is a monotonic transformation.

 We do have some preliminary results from a simulation study of the performance of
 the MMAD forecast for the 50 series simulated from the SETAR models of the form
 (3.1). These are along the same lines as for the MMSE results reported in section 3 and
 are contained in Table 2. These results do not show a significant improvement over
 those obtained previously using the MMSE criterion.

 Table 2. Percentage of times absolute forecast error
 is smaller for nonlinear than for linear model in

 MMAD forecasts

 No. of steps ahead
 1 2 3

 Method of fit
 Least squares' 66 58 64
 LRT2 71 57 60
 cusum test3 60 47 62

 1 SETAR(2; 1, 1) fitted by least squares to all 50 series.
 2 LRT first, then SETAR(2; 1, 1) fitted by least squares: 42 series selected as being nonlinear by this

 method.
 3 Full cusum procedure, with KMAX= 3 and up to 4 thresholds, which yielded 45 out of the 50 as

 nonlinear. Linear AR fitted using BIC with maximum order equal to the number of fitted SETAR
 parameters.

 4 Conclusions

 We have developed a package for the identification, estimation and forecasting of
 SETAR models. Some preliminary results on the performance of the MMSE forecast
 in comparison with that of a linear AR model have been obtained, and it has been
 seen that on the basis of absolute error, the performance is not good. However, since
 in general the MMSE forecast and the MMAD forecast will not be the same, this is
 only to be expected. We do not universally advocate the use of the MMAD criterion
 although it does seem to have some advantage over MMSE including the fact that for
 nonlinear models the usual computational advantage of the latter disappears. On the
 other hand, when we used the MMAD forecast, the improvement was seen to be
 marginal. Indeed, from some preliminary results of a further study, it appears that
 both criteria produce similar forecasts for a wide selection of first order SETAR
 models, and thus at present it looks as though the linear model is doing much better
 than expected. We need to do a much more detailed investigation before we can reach
 any concrete conclusions and the results of this will be published elsewhere.
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