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ON THE APPROXIMATION OF TIME SERIES BY
THRESHOLD AUTOREGRESSIVE MODELS

By JOSEPH D. PETRUCCELLI
Worcester Polytechnic Institute

SUMMARY. It is shown that threshold autoregressive models can approximate a geners
class of time series processes almost surely. This clase includes exponential autoregressive and
invertible bilinear processes.

1. INTRODUOTION

In recent years a number of nonlinear alternatives to the classical linear
time series models have been developed. The most notable among these are
the bilinear (Granger and Andersen, 1978 ; Subba Rao, 1981), the threshold
autoregressive (TAR) (Tong and Lim, 1980 ; Tong, 1983), and the exponential
autoregressive (Ozaki, 1981 ; Haggen and Ozaki, 1981) classes of models. In
addition to these specific classes, Priestley (1980) has introduced a generalized
class of nonlinear models, the state dependent models, (SDMs) which includes
each of the above classes as a special case.

In this note we show that threshold autoregressive models can almost
surely approximate a general class of time series processes, including both
exponential autoregressive and invertible bilinear processes.

While Haggen ef al. (1984) give a passing reference to TAR models
as approximations to SDMs, and Tong (1983) provides an heuristic justification
of TAR models as approximations to more general models, we feel the question
of such approximations has not been adequetely addressed.

The importance of knowing that TAR models can approximate a wide
class of processes lies in their tractability and interpretability. In addition,
by knowing the ranges of possible behaviour of TAR processes, we can infer
the behaviour of the processes they approximate.

These results also help to explain why tests designed to detect TAR-type
nonlinearity (see, eg. Chan and Tong, 1987 ; Petruccelli and Davies, 1986)
often perform well in detecting other types of nonlinearity such as exponential
autoregressive or bilinear,
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THBESHOLD AUTOREGRESSIVE MODELS 107

The approximation theorems are stated and proved in Section 3. In
Section 2 a brief review of the main classes of nonlinear models is given. In
Section 4 TAR approximations to specific classes of nonlinear models sre
considered.

2. NONLINEAR MODELS

The following are the nonlinear models we will consider. In all cases
{as, t > 0} is an i.i.d white noise process, and {Z;} are observed values of the

process.
(i) Bilinear models (Granger and Andersen, 1978 ; Subba Rao, 1981).

P q Q P
Zi=pt B Dt X Opgt BB fusaliita,

where u, {9}, {03}, {fu} are constants.
(il) Threshold AR (TAR) models (Tong and Lim, 1980 ; Tong, 1983).

»
Zi= g0+ 2 997 gta

(Ziy, ..., Zyp)eRW, i =1, ..., 7
where {R®, 1 < i < r} is a partition of R?, and {u¥}, {pf"} are constats.
(iii) Exponential AR (EAS) models (Ozaki, 1981 ; Haggan and Ozaki,
1081).
? -
Zi= 8 Octme™ 2 itay

where v, {6}, {ms} are constants.

(iv) State dependent models (SDMs) (Priestley 1980, 1981 ; Haggan
et al. 1984),

P q
Zy = Zs_,) +121 (Zey) Zey + ;‘:‘10: (Zey)ar_g+az

where Z;_y = (Z—y ... Z;_p, G4y, ..., 31_g) i8 the state vector of the proces at
time ¢t—1, and u(.), {¢¢ (.)}, {fs(.)} are suitably smooth (usually analytic) real-
valued functions.

By defining the functions x(.), {ps (.)} and {6 (.)} appropriately models
(i)—(iii) are seen to be special cases of the SDM (see Priestley, 1980).
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108 JOBEPH D. PETRUCOELLI

3. APPROXIMATION RESULTS
Suppose, to begin with, that f: R¥-» R¥ is a continuous function and
consider :he k-dimensional process

Ly =fZ )+ A, 121 o (3.0)
where {A,} are i.i.d. zero mean k-dimensional random vectors. Univariate
processes of the form

zl = U(Zt—p T ZH)+G‘! ses (3-2)
where g : R*— R and {a;} are i.i.d. zero mean random variables, may be
written in the form (3.1) by using the state space representation

zl' = (zh sy z‘-k+l)
N Ze-)) = @ Zey, ..., Ze k), Doy, Zity, ..., Zsi)
Al' = (a" 0, vesy 0}'
Let f, : R¥— R¥, n = 1, 2, ..., be a sequence of functions approximating
f uniformly on any compact set in R¥. That is for each ¢, L > 0, there is an
M = M(e, L) such that n > M implies |f,(x)—f(z)| < e whenever|a| < L.

Here ||| is the usual norm on R¥. Assume (Q. &, P) is the underlying
probability space throughout. We then have

Theorem 3.1. Let Z, ¢ R¥ be the starting point of the process defined by
(3.1) and consider the process {Zi ,, t> 0} defined by Z,, = Zy Zi, n =
Io (Zi_y, n)+As, t > 1, where Ay is the white noise process driving (3.1) and
fn 18 as above. Then for each we Q, Z;, (w)= Zy(w) as n— o0, t =1,2,....

Proof. For each we Q. 2y, () = fua(w))+Ai(0) o B w)+As(0)
= Z;(cu).
Suppose Z,, %3 Zp, k=1,2,...,t—1. Then, for every we Q.

n-pxo
1Ze, w(w)—Ze(w)l|
= Ifa(Zt-y, a(@))+ Al 0)—(f(Zs_3(0))+ Al )|
I1fa(Ze-y, w(@)—f(Zt-y, ()]
Hf(Ze—y, a(@))— f(Zesy(@))]. o (33)
By the continuity of f, there is, for each ¢ > 0,aé > 0 such that
ll®—Z_s(w)i| < & implies [|f(@)—f(Z_y(w))| < €/2.
By assumption there is an N = N(w,d) such that n > N implies
1Z4—ysn( @)= Z_4(w)]| < 8. ‘ . .
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THRESHOLD AUTOREGRESSIVE MODELS 109

Let L = || Z;_,(w)||4+8. Then for M(¢/2, L) as defined above and for n >
max {N, M(e/2, L)} we have

1fa(Zt-s, n(@))—f(Zgy, (@)l < €/2.
Thus (3.3) is bounded above by ¢, proving the theorem.

Remark. In particular, we may choose piecewise linear f, to satisfy the
conditions of Theorem 3.1. Thus TAR models may be used to approximate
any process of the form (3.1) when f is continuous.

In order to extend the result of Theorem 3.1 to processes defined by arbi-
trary measurable f we restiict consideration to univariate models of the form
(3.2) and to approximation by TAR processes.

Lemma 3.1. Consider the {Z;,t > 0} process defined by (3.2) with g
measurable and bounded, with {a;} having a density on R and with fixed starting
values Zy g, ..., Zy. Then for each € > 0 there is a sequence of TAR processes
{Zt,w, t >0}, n=1,2,..., such that Z,, ,— Z; almost surely as n— oo,
t=12, .. where P(Z] # Z;, some 1—k <l L t) < €t.

Proof. Suppose that |g| is bounded by M and choose R = R(Z,e¢)
such that P(|a;| > R[\/k—M) < €/2k and | Z,| < R. Tt can be shown that
for r > 1, the r-step trarvsition probabilities for the process, given Z,, are abso-

lutely continuous with respect to Lebesegue measure on RE. Thus there
is & § > 0 such that for any set A C R¥ of Lebesgue measure less than &,

P(z,_lﬁAlzo) < Ela, T = 2, ...,‘.
By Lusin’s Theorem (see, e.g. Rubin, 1966) we may find a function g, conti-
nuous on C(R) = {x : ||@/| < R} such that |g,| < M on C(R) and such that
g. = g on C(R) except on a set B(R, €) of Lebesgue measure less than 4. We
may, and do, choose g, such that g,(Z,) = g(¥,) and such that g, =0 on

C¢(R), the complement of C(R). Let {g,,a, n > 1} be a sequence of piecewise
linear functions on R* converging uniformly to g,. Define the processes .-

Zy =92y s Za) o
Zin = Gon Ziey s s Zy_yn)t+ae, t 3 0
with Z;, = 2, = %, j= —k+1, —k+2, ...,0.
By Theorem 3.1
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110 JOSEPH D. PETRUCOELLI
Let A(t) ={Z2}=2;,1=1—k, ...,t},t > 1. Then 2Z;=2Z, so
P(A(1)) = 1. Now for ¢ > 1,
PAR)NA(E—Y) = P(Z] # Z4, 2= 74, 1 < t—1)
& P(Z;_, € B(R, ¢))+P(Z;_, € C¢(R))

k -
< €2+ E‘; P(|Z¢ 1| > R[\E)

<o+ X Plladl > RIVE-M) < e

Thus P(A(2))=P(A(2) (" A(1))> 1—e. Suppose P(A(r)) » 1—re, r=1, ..., t—1.
Then
P(Ac(t)| A(t—1)) = P(A<(t) () A(t—1))[PA(E—1)) > ¢](1—(t—1)e)
80
P(A(t)| A(t—1)) > 1—e/(1—(t—1)€) = (1—te)/(1—(t—1)¢)

and

P(A(t) = P(A(t) N A(E—1)) > (1—(t—1)e) [(1—te)/(1—(t—1)e)] = 1—te

Theorem 3.2. Suppose the function g defining process (3.2) is an arbi-
trary measurable function. Suppose also that {a;} has a density on R and that
the process {Zy} has fixed starting values Z, g, ..., Z,. Then there is a sequence
of TAR processes {Z;,(N),t,n, N > 1}, each having these same fixed starting
values, and a sequence of integers (ny} such that Z, = (N)—> Z; almost surely
as N> oo, for all t > 1.

Proof. For each N > 0 let

gn(.) = g( )Mo, m190)|).

Then gy is bounded and measurable. Let {Z, ¢ > 0} be defined by (3.2)
and define

by

Zt(N) = gﬂ(zl-l(N)! wery Z;_;(N))+a¢, t > 1

where the starbup values (Zy(N), ..., Z, §(N)) = (Zy, ..., ..., Zy_p).
Then clearly, for ¢t > 1.

ZyN)= 24, N > IB&:’ {l9(Zs_y, ... Zia))}
80 that
Z(N) 3%, a8 N > .

But by the proof of Lemma 3.1 and the above, for ey | 0 as N — co we may
find a sequence of piecewise linear functions {gJ(.) ; », N > 1} such tha if

Ziy(N) = F”(Zl.-l. o), s Zig, o(N)) a4
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THRESHOLD AUTOREGRESSIVE MODELS 111

where (Z3,u(N), ..., Zi_t, n(N) = (Zy, ..., Zys), then Z; (N)5 Zy(N) as
n —» 0o where P(Z}(N) # Zy(N)) < en/3. Let € > 0 and let ny(f) be such that
P(| Zin o)~ Zi )| > €[3) < en3.

Thus

P(|Z; .N“,(N)-—Zg(N)l > 2¢[3) < 2ep/3.
Now there is an M = M(ey) such that N > M implies

P(| Z(N)—Z,] < €/3) < ex/3.
Thus N > M implies
P(Iz:,n’. W (N)—2Z¢| > €) < en.

That is Z;, , (N) 5 Z,. Now for t > 1 we may take {ny(t+1)} to be
subsequence of {ny(t)}. Then define a subsequence {ny} to be the resulting
diagonal subsequence. We then have the approximating sequence Z; .N(N )

2 Z,, for allt > 1. Hence there is a subsequence which converges a.s. to Z;.

4, APPROXIMATION TO SPECIFI0 CLASSES OF PROCESSES

Approximation to EAR models. Clearly EAR models are a special case
of (3.2), 50 that Theorem 3.1 guarantees their almost sure approximation by
TAR models.

Approximation to ARMA models with observation dependent coefficients.
Consider models of the form

y ] a
Zc=‘21 P42 gy +a— ;21 0,(Z:—y)ae—s o (4)

where Z; = (Zy, Z;_y, ..., Zyx). Define (4.1) to be invertible if it has the
mean square convergent representation

Zy = ‘31 Vi 221) 2+ ay,
where Z"‘) = (Z;, Z;_l, ciry Zg_g_H_l). . (4.2)
n
That is, S Y29 )2 +a ™ Z, o (4.3
f=n

a8 n—o0,¢ » 1. This implies convergence in probability and hence almost
sure convergence of a subsequence. But TAR processes, being almost surely
dense in processes of the form (4.3) are therefore almost swely dense
in invertible processes of the form (4.1).
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112 JOSEPH D. PETRUCCELLI

As bilinear processes are special cases of (4.1), we get almost sure TAR
approximation to invertible bilinear processes.
Approximation to SDMs. If, in the proof of Theorem 3.1, we take
Z, = (Z, ..., 2% %y ,.. 4, snd we define the process generating the
Z, in state space form to be
7 = [(Zy_,)+ A e (49)
where A, = (a,0,..,0)
([ Zer)) = @ Zes), Zooy, .., Zoky Qay, ..., B20)

for some g : R%*— R continuous, then the results of the theorem still hold.
Thus piecewise linear processes of the form

r q
Zy = pO+ Z o Zy ¢tag — 2 Of apy, e (4.5)
i=1 §=1

Zg_, € R“”, v=1,..,r

where {R/)} is a partition of R%, are almost surely dense in the set of processes
of the form (4.4). But thse processes contain Priestley’s SDMs as a sub-
class (see Priestley, 1980). Thus the processes defined in (4.5), which may
be termed threshold ARMA, or TARMA, processes, may be used to approxi-
mate SDMs almost surely.

The practical difficulty in fitbing processes such as (4.5) lies in determining
when the vector of both observations and error terms lies in a given region.

Approximation of heteroscedastic processes. A referee has suggested that
by sllowing the distributions of error terms in the various regions of the
approximating TAR model to differ, we might be able to approximate a wider
class of processes. That is, the TAR models would be of the form

Zy = p+- 5 o Zi_g+-af, (Zy_y, ..., Zy_p) € RV .. (4.6)
j=1

where for each 1, {a{’} would be i.i.d. but af and & might have different
distributions, ¢ # j.

Indeed, one interesting class of models that can be approximated by
models of the form (4.6) are heteroscedastic versions of (3.1) and (3.2):

Zy = f(Zi_y)+Z(2,) A e (47)

Zi=9Zy, o Do)t o(Zey, ooy Ze) .. (4.8

Iwhere S :R¥—> Rkand o : R¥> (0,00). Then, assuming I is continuous,
and {Z,} is & sequence of functions approximating Z uniformly on any compact

and
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THRESHOLD AUTOREGRESSIVE MODELS 113

set in R¥, an analoglus version of Theorem 3.1 holds with the approximating
sequence being

Zyn = [alZt-yon) +En(Zt_y,0) As-
In particular piecewise linear f, and piecewise constant ¥ will give a multi-
variate version of (4.6) as approximants.

Similar modifications to the proofs of Lemma 3.1 and Theorem 3.2 show
that TAR processes of the form (4.6) can approximate models of the form
(4.8) with g and ¢ measurable functions in exactly the sense given by that
lemma and theorem.

Acknowledgement. The author wishes to thank Neville Davies and John
Pemberton for suggesting the problem of approximating nonlinear processes
by TAR models.
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