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ABSTRACT

Tests for SETAR-type non-linearity in time series have recently been
proposed by Petruccelli and Davies (1986), W. S. Chan and Tong (1986),
Tsay (1987), Luukkonen er al. (1988), Petruccelli (1987) and Moeanaddin
and Tong (1988). In this paper we consider the relative performance of
these tests.
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INTRODUCTION

As more applications of non-linear time series models are found in areas in which forecasting
plays a major role the importance of non-linear model building methodology to forecasters will
continue to grow. Examples of such applications in hydrology, ecology and astronomy are
found in Tong (1983) and in economics in Wecker (1977) and Maravall (1983).

Some of the structural features of non-linear models, such as limit cycles, which cannot be
modeled by linear processes, can have a significant impact on the performance of forecasts.
Jones (1976, 1978), Tong (1983), Pemberton (1987), Tong and Moeanaddin (1987) and Davies
et al. (1988), among others, discuss multi-step forecasting using non-linear models.

As the use of non-linear models grows, so too will the need for tests to determine whether
a given series is non-linear. In the past several years a number of such tests have been proposed
by researchers. In the frequency domain, tests for general non-linearity have been outlined by
Subba Rao and Gabr (1980) and Hinich (1982). In the time domain Keenan (1985) and Tsay
(1986) have proposed tests based on the Volterra series representation of a time series. McLeod
and Li (1983) have suggested a diagnostic portmanteau test statistic based on squared residuals
from a linear fit. Lagrange multiplier tests for several specific classes of models have been
considered by Saikkonen (1986), Saikkonen and Luukkonen (1986) and Luukkonen er al.
(1987). W. S. Chan and Tong (1986) give a detailed discussion of several of these tests.

In this paper we investigate five tests designed to detect self-exciting threshold autoregressive
(SETAR)-type non-linearity. In the next section we describe the five tests and discuss what we
perceive to be the advantages and disadvantages of each. In the third section we compare their
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performance via simulation on a large number of SETAR models. Our conclusions are given
in the final section.

TESTS FOR SETAR-TYPE NON-LINEARITY

We assume the SETAR model of order p with delay ¢ and thresholds
—o=rg<rn<-<r=o:

Y,=¢6j)+i ¢§j)Y,_i+ a, rio1 < Y_qa<rj (1)
i=1
where r=max{d+ 1, p+1},..., n. Here the a, are assumed i.i.d. with mean 0 and variance ¢>.
Tong (1983) calls this a SETAR (/; p, p, ..., p) model.
Let A =max{1, p+1— d} and let (i) denote the index of the ith smallest of yu,..., ¥n - 4.

If we assume that equation (1) is linear, so that ¢!V = ¢@ = ... = oM =0, ..., p, then we may
write an ordered autogression for this equation as
Y=Xp+a )

where 'Y is a column vector containing Yihy+a,i=1,....n—d—-h+1, X 1is an
(n—d—-h+1)x(p+ 1) matrix whose first column is a vector of 1’s and whose remaining
columns contain appropriate lagged Y(+q values, ¢ is a column vector with entries
o8V, ofV, ..., 0, and a is a column vector of noise terms. This ordered autoregression
effectively divides equation (1) into the respective autoregressions in the / regions defined by

the thresholds (see Petruccelli and Davies, 1986).

Test based on one-step-ahead forecast errors
Two of the tests we consider are based on successive one-step-ahead forecast errors from
equation (2). Specifically, for each test:

(1) We choose the order p, delay d and a minimum number of startup observations
Imin > p+ 1.

(2) We then regress the first r rows of Y on the first » rows of X and compute z,., the one-
step-ahead standardized forecast error, successively for r = rmin, Fmin + 1, ..., n — d — h.
This may be done very efficiently using regression updating methods (Brown et al,

1975).
The two tests differ in the use they make of the {z,.,}. Petruccelli and Davies (1986) form
the CUSUMS
Z.= >, 7, r=rmin+1,....,n—d—-h+1
I=rmin+1

and from them their P-statistic,

P= max | Z,|[Jn*

*
fmin+t 1 K7 <A+ Fmin

where n* =n — d — h + 1 — rmin. The asymptotic distribution of P is known if {Z,} isarandom
walk, which it will be approximately if the null hypothesis for linearity in equation (1) holds:

Ho: oV =...= oV i=0,1,...,p 3)
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However, we have recently found a more powerful test based on these CUSUMS, and it is
this test that we will consider in this paper. The test is based on the idea that whereas the
CUSUMS behave as a random walk under equation (3), if the observed process is SETAR, then
it is the later rather than the earlier standardized forecast errors which should be biased. Thus
we look at the reverse CUSUMS:

r
W,= Z Zn*+rmin+ 1 —i r=1,...,n
i=1

In order to provide greater sensitivity to deviations in W, for small r, we use boundaries of the
form ar + b and reject Ho if | W,| > ar + b for some 1 < r < n*. Using a Brownian motion
approximation (see e.g. Breiman, 1968, p. 289) and assuming the probability that the W, cross
both the lines ar + b and — ar — b is negligible, we have

P(sup | W, | [(ar + b) > 1) = 2P(sup W,[(ar+b)> 1) = 2e 2

After a small amount of experimentation, we have found that for a level « test, choosing
b= {J[ - (n*[2)In(ef2)] }/2 and a=2][ —In(af2)[2n*] gives satisfactory results and these
values are used below. Undoubtedly, these choices can be improved upon. On virtually all
simulated data we looked at, this text improved on the P-test, sometimes significantly so.

Remarks: We note that:

(1) The Petruccelli-Davies (1986) P-statistic uses boundaries of the above form for a = 0.

(2) Brown et al. (1975) gave a more complicated approximation than we have used for
computing a and b. However, in our experience, their approximation gives no better
results than does the one used here.

The second test based on one-step-ahead forecast errors is that of Tsay (1987). He suggests
performing the regression

z=XB+e¢ @

where z is the vector of standardized one-step-ahead forecast errors with entries
Zisi=Fmin+ 1, ...,n* + rmin, and X is the matrix X of equation (2) with the first ryin rows
deleted, and computing the usual test statistic £, for testing Ho: 8 = 0. He shows that under
hypothesis (3), Fi is asymptotically distributed as F,,,,, where vy =p+ 1, ma=n*-p—1.

Remark: We have considered a simplification of Tsay’s test, in which z is regressed on time
rather than past values of the time series. That is, we perform the simple linear regression

z2=Wy+$§

11 ... 1
W' =
[1 2 .. n*}
The test statistic £> is the usual statistic for testing Ho:y=0. We can show that, under
hypothesis (3), £ is asymptotically distributed as F,, where n=n* —2. This test has the
advantage of simplicity and of being easier to interpret than the more complicated Tsay test.

However, as it had virtually the same performance in simulations as did the Tsay test, we will
not consider it further here.

where
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Likelihood ratio-based tests
Suppose, for the moment, that /=2 and that ry p and d are known in equation (1). Then,
assuming normal errors, the likelihood ratio test statistic for equation (3) versus

Hi:o’#0®,  some0<ig<p

is A= (6>(NL; r)[5*(L))"~P* V"2 where 3%(L) and 53(NL; ry) are, respectively, the residual
variances from an AR(p) and SETAR (2; p, p) fit to the data, the latter with the known d and
r1 (see Petruccelli and Woolford, 1984; K. S. Chan and Tong, 1986). Under Hy, — 2 In(\)
converges in distribution to a x5+ .

If the threshold r; is unknown, the likelihood ratio test statistic is

)\/ — (aZ(NL;f[)/aZ(L))("_p+l)/2,

where 7y is a least squares estimate of r;. Until recently the asymptotic distribution of A’ was
unknown.

For this reason, K. S. Chan and Tong (1986), who mention \' as a possible test statistic,
did not pursue its use further. Rather, W. S. Chan and Tong (1986) developed the following
combined SETAR fitting/testing procedure:

(1) A ‘best’ (according to some criterion—Chan and Tong used BIC) AR model of order
1 € p < Pmax is obtained. 3%(L) is computed from this fit.

(2) By searching over a grid of values of 1< d< dmax, | <p< Pmas
—=rg<r<--<r=0o for 2 </ < /max, a ‘best’ SETAR model is selected by the
same criterion as in (1). 3*(NL) is computed from this fit.

(3) The test statistic \" = (62(NL)[62(L))"~P*Y"2 is computed. Call it Alps.

(4) An empirical significance level for Agps is obtained by simulating realizations from the
fitted AR model obtained in (1) and comparing N\ for these realizations with Alps.

In what follows, we consider the test \” as described above. Petruccelli (1987) implemented
the test \', obtaining empirical significance levels as in (4) above by simulating realizations
from the AR(p) fit to data. This implementation was feasible (though computation time was
still large) only through the use of an efficient regression updating algorithm.

Recently K. S. Chan and Tong (1988) solved this difficulty by obtaining the asymptotic
distribution of a function of N\’ under Ho as the first passage probability of a (p + 1)-
dimensional Brownian bridge. In what follows we use critical regions based on this result. The
regions are determined from the exact distribution for SETAR (2;0, 0) processes and SETAR
(2;1, 1) processes with zero intercept and are empirically determined for all other SETAR
processes, as described in Moeanaddin and Tong (1988).

A Lagrange multiplier test
Luukkonen et al. (1988) have devised an approximate Lagrange multiplier test for linearity
versus smooth threshold autoregressive (STAR) alternatives, which are essentially, as the name
implies, SETAR models whose autoregressive functions have a smooth transition between
regimes. (See K. S. Chan and Tong, 1986b, for more on STAR models.)

Luukkonen er al. offer three versions of their test but all have a similar form:

(1) Regress Yron {1,Y,—;,j=1,...,p},t=p+1,...,n, form the residuals {4,} and the
residual sum of squares SSE,.

(2) Regress @ on 1 and certain powers and cross-products of Y,_;, j=1,..., p; obtain the
residual sum of square SSE;.
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(3) Form the test statistic S = (n— p)(1 — SSE1/SSE)).

The three versions of their statistic and the powers and cross-products in (2) which give them
are

51: {Yl—jy Yt—iYI—j; ivjzla"'?p}
SZ: {Yl—j, YI'—I'YI—jy Yf—iY:(—j; i’jzly"'vpak:2r3}
Sy (Y, Y iYe, Yiy i,j=1,...,p}.

Under the null hypothesis that the process is AR(p),

2 2 2
St~ Xpp+ 132, S22~ Xp + p(p+1)/2, 33 ~ Xp+p(p+1)/2
We note that:

(1) S is the Tsay (1986) test statistic. (Note: this is not the Tsay, 1987, statistic considered
below.)

(2) S;is a simpler version of S, designed to cut down on the large number of independent
variables in the regression which yields SSE; for S..

(3) The tests do not assume the delay, d, is known. If it is, the second regressions can be
done with far fewer independent variables in all tests. (See Luukkonen et al., 1988, for
details.)

Strengths and weaknesses of the tests
For convenience let us label the tests as:

LM, the Lagrange multiplier test;

L, the likelihood ratio test based on \';
CT, the Chan and Tong test based on \";
T, the Tsay test; and

C, the reverse CUSUM test.

We summarize what we see as the strengths and weaknesses of each test in Table 1.

Some comments on the entries in Table 1 are in order. First CT differs from the other tests
in that, in addition to varying the thresholds, it selects an ‘optimal’ SETAR model with respect
to parameters p and d over a specified range. While LM requires a fixed value of p, it can be
run in one version with d unspecified. While L, C and T all require p and d to be fixed, repeated
applications of these tests for varied p and d can identify p and d values for model fitting.

Finally, LM is different from the other four tests in that, whereas they all explicitly
incorporate the form of the SETAR model, LM seems to be testing for the presence of certain
polynomial terms in the autoregressive function. Because of this, there does not appear to be
clear and direct relation between the test and a particular SETAR fit to the data as there is with
the other four tests.

With regard to the speed of the procedures, CT is very slow, primarily because of the use
of simulations to obtain empirical significance levels, while the other four tests are very fast
and of comparable speed. As an example, to process a series of length 100, CT averaged nearly
one minute of CPU time compared to less than one half-second for the other four procedures!
We have not tried CT or L for more than one threshold, but we would expect run times to
increase exponentially for both tests with the number of thresholds tried.
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Table 1. Strengths and weaknesses of the tests

Test Strengths Weaknesses

LM (1) Can be used with either known or (1) Size of second regression can grow
unknown d quickly
(2) Does not identify threshold, or delay
(3) Must fix p

L (1) ‘Optimal’ model selected is truly (1) Must fix p, d
optimal in least squares sense (2) Must prespectify a number of thresholds
(3) Not a pre-test, as SETARs must be
fitted
CT (1) Gives ‘optimal’ model over a range of (1) Very slow
r, p and d values (2) ‘Optimal’ model has no known

optimality properties

(3) ‘Optimal’ model is only as good as the
search procedure

(4) Not a pre-test

C (1) Does not require full model (1) Must fix p,d
identification and fit
(2) CUSUMS can be used to identify
numbers and locations of thresholds

T As for C As for C

PERFORMANCE OF TESTS ON SIMULATED DATA

We ran a simulation experiment to assess the performance of the five tests. In all cases the
version of the test statistic S3 with the correct known value of d was used for the LM procedure.
This was done to keep the assumptions for its use in line with those for the L, C and T
procedures. Its performance was comparable to that of S, which further justified the use of
this version. The CT procedure was allowed to search over the range of parameter values
I<d<p<3andi<i<?2

A number of SETAR processes were simulated. For each process and test considered, 100
simulated series of length 100 were generated, using N(0, 1) noise terms (except where noted
otherwise) created by the IMSL routing GGNML. The slowness of CT made it necessary to use
only 100 simulations. For each series startup values were set to 0 and the first 500 observations
discarded. All simulations were performed on the DEC 20-60 computer at WPI.

We used rmin = p+ 2 in the T and C tests. Even though Tsay recommends rmin = /10 + p,
we found our choice gave better results for both tests.

Empirical significance levels
To assess empirical significance levels, the tests were performed on the AR(1) processes

Y=Y+ a

for o=+ 0.9, £0.5, £0.1 and 0. Table 2 shows the results for the 0.05 significance level.
It can be seen that test C produces some high values and that CT tends toward low ones, but
all empirical significance levels lie within the two standard error boundaries. This same pattern
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Table 2. Empirical significance levels at nominal 5%
level; 100 observations. Two standard error boundaries:
(0.006, 0.094)

AR parameter Significance
¢ C L T CT LM
-0.9 0.09 0.04 0.06 0.05 0.04
-0.5 0.09 0.03 0.06 0.04 0.04
-0.1 0.05 0.06 0.03 0.03 0.07
0 0.03 0.07 0.04 0.01 0.07
0.1 0.09 0.04 0.06 0.05 0.05
0.5 0.04 0.09 0.04 0.04 0.04
0.9 0.05 0.04 0.03 0.03 0.05

shows itself in empirical significance results at the 0.01 and 0.10 nominal significance levels as
well, and for sample size 50.

Power of the tests versus SETAR alternatives

In what follows we present the results of power studies conducted on simulated realizations of
SETAR models. Since the number of realizations per simulation was relatively small, we also
conducted an LSD (least significant difference)-type procedure to provide some guidance as to
the true magnitude of differences in empirical power levels. The power levels for each model
are ordered from highest to lowest and those groups having non-significant (at the 0.05 level)
differences are underlined. All tests were conducted at the 0.05 level of significance.

Table 3 presents power results for data simulated from equation (1) with
p=1,d=1,1=2,r=0and ¢§" = ¢§? = 0; that is, a SETAR (2; 1, 1) with zero threshold and
intercepts. Although the autoregressive functions for these processes are non-linear, they are
still continuous. The models in Table 4 have discontinuous autoregressive functions and
threshold at the origin.

Since tests L and CT both fit single threshold models it is of interest to consider their
performance on models with more than one threshold. Table S presents results for two such
models. Others are found in Tables 6 and 7 as described below.

In addition to the above, we ran the tests on data simulated from three models from the
literature that were fitted to the Canadian lynx data (see Tong, 1983). These models are:

Tong 1 (Tong, 1983, p. 102):

Y, =0.62+1.25Y,.,-0.43Y,_,, Y,-2<3.25
=2.25+1.52Y,.,-1.24Y,_,, Yi-»>3.25

with residual variances 0.0381 and 0.0626, respectively.

Tong 2 (Tong, 1983, p. 115):

Y, =0.733 +1.047Y,-, - 0.007Y,_, — 0.242Y,_3, Y, -2 <3.083
=1.983 +1.52Y,_-1.162Y,_>, Y>> 3.083

with residual variances 0.0357 and 0.0586, respectively.
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Table 3. Power of tests from equation (1): p=d=1,7/=2, r, =0,
08" = o8 = 0; 5% level; 100 observations

(D (2)

@1 o1 Power
C LM L CT T
0.9 -0.1 0.60 0.59 0.55 0.26 0.20
L LM C CT T
0.9 -0.77 0.87 0.87 0.79 0.48 0.36
LM C L T CT
0.5 -0.5 0.59 0.59 0.54 0.45 0.21
C LM L T CT
0.5 -1 0.95 0.93 0.93 0.80 0.29
LM C L T CT
0 -1 0.80 0.74 0.65 0.58 0.38
LM C L T CT
-0.5 -1 0.52 0.45 0.31 0.26 0.21
LM C L T CT
1 -0.5 0.67 0.48 0.36 0.32 0.17
C T L LM CT
-1 0 0.81 0.71 0.64 0.62 0.42
C LM L T CT
-1 0.5 0.93 0.91 0.90 0.90 0.23
T C L LM CT
-0.5 0.5 0.67 0.66 0.61 0.46 0.26
T L C LM CT
-0.77 0.9 0.84 0.84 0.78 0.72 0.55
LM T C L CT
-0.1 0.9 0.61 0.61 0.55 0.48 0.28

Table 4. Power of tests from equation (1): p=d=1,1=2, r; =0; 5% level;

100 observations

o8 M o o? Power
L LM C T CT
1 0.5 -1 1 0.99 0.91 0.89 0.50 0.44
C L T LM CT
1 -0.5 -1 1 1.0 1.0 1.0 1.0 0.35
L LM CT T C
-1 0.5 1 -1 0.50 0.40 0.14 0.11 0.08
CT LM T L C
1 0.5 -1 -1 1.0 1.0 1.0 1.0 1.0
L LM C CT T
-1 -0.5 1 -1 1.0 0.78 0.61 0.31 0.18
LM L C CT T
1 -0.5 -1 -1 1.0 1.0 0.84 0.81 0.69
L LM C CT T
1 0 -1 -0.5 1.0 0.96 0.96 0.88 0.75
L C T CT LM
1 0.5 1 -1.5 1.0 1.0 1.0 1.0 1.0
L C T CT LM
1 0.5 -1 -1.5 1.0 1.0 1.0 1.0 1.0
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Table 5. Power of tests from equation (1); p=d=1,/=3,r = -1, 2= 1; 5% level; 100 observations
o ot o of? 0§ ot Power
L C CT LM T
0 0.5 0 -0.5 0 0.5 0.61 0.37 0.36 0.32 0.10
LM L C CT T
-1 0 0 1 0 0.53 0.46 0.32 0.27 0.24
Table 6. Power of tests on three data models for Canadian lynx
data; 5% level; 100 observations
Model Power
C L LM T CT
Tong 1 1.0 .9 0.98 0.94 0.85
L C LM CT T
Tong 2 1.0 .0 0.95 0.94 0.94
C L T LM
Tsay 1.0 .0 0.96 0.94
Table 7. Power of tests on three models for Canadian lynx data with equal variances; 5%

level; 100 observations

Model Variance Power
LM L C CT T
Tong 1 0.05 1.0 0.99 0.97 0.89 0.80
C L LM T CT
Tong 2 0.05 1.0 0.98 0.97 0.90 0.90
C L LM T
Tsay 0.03 1.0 0.99 0.97 0.87
Tsay (Tsay, 1987):
Y, =0.083 +1.096Y;_1, Y, -2<2.373

=0.63+0.96Y,_; —0.11Y,.,+0.23Y,-3—-0.61Y/-4

+0.48Y,_5—0.39Y,.6+0.28Y,_7,

=2.323+1.53Y,_1 ~ 1.266Y, >,

with residual variances 0.015, 0.025 and 0.053, respectively. These models allow us to learn
something of the effects of different variances on the performance of the tests. In addition, the
TSAY model adds the effect of multiple thresholds. Tests, LM, L, C and T were run with the
appropriate p and d values for each model. Test CT could not be run on the TSAY model due
to the inordinate amount of CPU time required. The results are found in Table 6.

In order to gauge the effects due to unequal variances in the different regions we simulated
these same three models with equal variances in all regions. The variances were chosen to be
close to the average of the regional variances. Table 7 displays the results.

2373<Y,-2<3.154
Yi-2>3.154
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CONCLUSIONS

A number of conclusions can be drawn from the power studies described in the previous
section. Our conclusions are based on differences in power significant at the 5% level.

First, not one of the tests considered performs best for all models considered. That having
been said, there are clear differences apparent in the performance of the five tests.

For the SETAR (2; 1, 1) processes with zero intercept and threshold at the origin (Table 3)
the C and LM statistics outperform the others. On the other hand, the CT test is clearly worst
overall, while L seems to outperform T.

For the SETAR (2;1,) models with non-zero intercepts and thresholds at the origin (Table
4), and for the two threshold models (Table $), test L is clearly the best performer followed
by LM and then by C. T is below these and CT worse still.

For data simulated from the three Canadian lynx models, C and L perform best in both the
unequal and equal variance cases. CT is again worst. The only test affected by the unequal
variances seems to be T, which performs better when the variances are unequal.

While no one test performs best for all series considered, a remarkable result of these
simulations is the uniformly poor performance of CT. The reason for this performance has to
be the search procedure for choosing the ‘best’ SETAR model from among a range of such
models, for in all our simulations the search procedure had the option of duplicating the model
chosen by L.

In order to overcome any bias in the results due to the CT search procedure choosing over
a range of p and d values we re-ran a number of the simulation experiments on a version of
CT that restricted its search to the correct p, d values. CT showed some improvement overall,
but still performed no better than L and often much worse. Perhaps an improved search
procedure would result in some real improvement in the performance of the CT test.

As regards C, L and LM, the best performers in our study, C and LM performed very well
on the SETAR (2;,1, 1) models with continuous autoregressive functions, while L dominated
LM and LM dominated C when the autoregressive functions had a jump discontinuity. This
suggests that C and LM may be more sensitive to a smooth change of regime while L may be
more powerful when the change is abrupt. Perhaps there is some guidance here to the most
profitable use of these tests.

Simulation results were obtained for sample size 50 for all models studied here. With the
exception that C was clearly the best performer on the models of Table 3, the results were
similar in general, though not in each particular, to those presented here. The similarity in
performance extends to the same tests performed at the 1% and 10% levels.

Finally, we give some observations drawn from our experience in using these tests with
simulated data not presented here and with real data.

(1) Given any of these tests, we can always find SETAR models on which it will perform
poorly.

(2) The power of the tests quite clearly depends on the separation of the linear regimes
within the SETAR model and on the signal-to-noise ratio of the data. For example, for
the SETAR (2; 1, 1) models with r; = 0 and zero intercept (such as those in Table 3), the
power depends in a clear way on | ¢f” — o{? | for fixed 2, and on o for fixed {7, (.
For higher-order models the dependence is more complicated.

(3) For real data, which are often noisy, it is frequently difficult to detect true SETAR
structure. Partly this is for the reasons described in (2), but just as often it is due to
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outliers (with respect to a linear model). Simulation results indicate that a linear series
with one or more added outliers is often detected to be non-linear. Of course, this may
be reasonable in that the resulting data may certainly have non-linear features, yet
unreasonable in that we would not wish to fit a non-linear model to the data. Similarly,
SETAR series to which one or more outliers have been added are often detected as
linear.
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